Theoretical Challenges and Physics potential at FCC-ee

Southampton University & Rutherford Appleton Laboratory

IP2I perspectives for FCC-ee 13th of September 2023

Popular directions in Particle Physics. Which ones FC-ee can explore?

FCC-ee: main characteristics

CDRs

- "FCC-ee: the lepton collider", EPJ Special Topics 228 (2019) 26
- "FCC physics opportunities: future circular collider conceptual design report" v1 EPJ C 79 (2019) 474
- The first stage of FCC
- Two or Four Interaction Points (IPs)
- High Luminosity: ~20ab/IP @ m_z
- **CME's:** 91, (125), 160, 240, 365 GeV
- Fixed CME and precise CME calibration: ~100 keV@m_z,~300 keV@m_{ww}
- European Strategy for Particle Physics CERN-ESU-015 (2020)
 "An electron-positron Higgs factory is the highest-priority next collider"

c.m. energy	lum./ IP	int. lum./year (2 IPs)	$\operatorname{run}\operatorname{time}$	power
[GeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	$[ab^{-1}/yr]$	[yr]	[MW]
91	200	48	4	259
160	20	6	1 - 2	277
240	7.5	1.7	3	282
365	1.3	0.34	5	354

Higgs Physics: HZ

- the precision is based on the measurement the mass recoiling Z-bozon in $e^+e^- \rightarrow HZ$ process and the accuracy of CME calibration $m^2_{\text{Recoil}} = s + m^2_Z - 2\sqrt{s}(E_{\ell^+} + E_{\ell^-})$
- counting $m_{\rm Recoil}$ around the Higgs mass allows to determine σ_{HZ}

Theoretical Challenges and Physics potential at FCC-ee

Higgs Physics: HZ

- the precision is based on the measurement the mass recoiling Z-bozon in $e^+e^- \rightarrow HZ$ process and the accuracy of CME calibration $m^2_{\text{Recoil}} = s + m^2_{\text{Z}} - 2\sqrt{s}(E_{\ell^+} + E_{\ell^-})$
- counting $m_{
 m Recoil}$ around the Higgs mass allows to determine σ_{HZ}

- Determination of Higgs couplings
 - HZZ per mille precision
 - HWW, Hbb, Hcc, Hgg percent precision
 - $H\mu\mu 10\%$ precision, $H\gamma\gamma 5\%$ precision
- Challenge for theory to match HZ precision
 - N3LO QCD + N2LO EW
 - "precision calculations for future e+ecolliders" workshop (indico.cern.ch/event/1140702/)

	Azzi.Perez. EPJ (2021) 1	36:1195		Collider	HL-LHC	ILC ₂₅₀	CLIC ₃₈₀		FCC-ee		FCC-eh
	FCC-ee Simulation (Delphes)			Luminosity (ab^{-1})	3	2	0.5	5@	+1.5 @	+	2
	E h	√s = 240 GeV, L = 5 ab ⁻¹	_					240 GeV	365 GeV	HL-LHC	
1200		$e^{\text{+}} e^{\text{-}} \rightarrow \text{ZH} \rightarrow \mu^{\text{+}} \mu^{\text{-}} \text{+} \text{X}$	_	Years	25	15	7	3	+4		20
100			_	$\delta\Gamma_{\rm H}/\Gamma_{\rm H}$ (%)	SM	3.8	6.3	2.7	1.3	1.1	SM
	Ë 🚺	Perfect resolution		$\delta g_{\mathrm{HZZ}}/g_{\mathrm{HZZ}}$ (%)	1.3	0.35	0.80	0.2	0.17	0.16	0.43
800		renectresolution		$\delta g_{\rm HWW}/g_{\rm HWW}$ (%)	1.4	1.7	1.3	1.3	0.43	0.40	0.26
600	F I	IDEA detector	-	$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	2.9	1.8	2.8	1.3	0.61	0.55	0.74
000	Ê	CLD detector	_	$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	2.3	6.8	1.7	1.21	1.18	1.35
400			_	$\delta g_{ m Hgg}/g_{ m Hgg}$ (%)	1.8	2.2	3.8	1.6	1.01	0.83	1.17
	E 11.			$\delta g_{ m H\tau\tau}/g_{ m H\tau\tau}$ (%)	1.7	1.9	4.2	1.4	0.74	0.64	1.10
200	야는 🔏 🔨		_	$\delta g_{ m H\mu\mu}/g_{ m H\mu\mu}$ (%)	4.4	13	n.a.	10.1	9.0	3.9	n.a.
(-	$\delta g_{ m H\gamma\gamma}/g_{ m H\gamma\gamma}$ (%)	1.6	6.4	n.a.	4.8	3.9	1.1	2.3
	120 125	130	135	$\delta g_{ m Htt}/g_{ m Htt}$ (%)	2.5	-	_	_	_	2.4	1.7
		M _{roccil} (0	GeV)	$BR_{FXO}(\%)$	SM	< 1.8	< 3.0	< 1.2	< 1.0	< 1.0	n.a.

Events / 0.1 GeV

V.

Working point	Z years 1-2	Z, later	WW
\sqrt{s} (GeV)	88, 91, 94		157,163
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	115	230	28
Lumi/year $(ab^{-1}, 2 \text{ IP})$	24	48	6
Physics goal (ab ⁻¹)	150		10
Run time (year)	2	2	2
Number of events	$5 \times 10^{12} { m Z}$		10^8 WW

EW precision program around Z pole and WW

 10^{8}

arXiv:2203.06520

- C vv	necision brog	ji alli	aiu		pole all	
W	orking point	Z yea	ars 1-2	Z, later	WW	
	\sqrt{s} (GeV)		88, 91, 94		157, 163	-
Lu	$mi/IP (10^{34} cm^{-2} s^{-1})$	1	15	230	28	
Lu	$mi/year (ab^{-1}, 2 IP)$	2	24	48	6	-
Pł	nysics goal (ab^{-1})		150		10	-
Ru	un time (year)		2	2	2	-
N	umber of events		$5 imes 10^1$	12 Z	10^8 WW	-
Observable	Present	FCC-ee	FCC-ee	Commer	it and dominant	exp. error
$m_{ m Z} ~({ m keV})$ $\Gamma_{ m Z} ~({ m keV})$ $R_{\ell}^{ m Z} ~(imes 10^3)$	$\begin{array}{r} 91,186,700\pm2200\\ 2,495,200\pm2300\\ 20,767\pm25 \end{array}$	4 4 0.06	100 25 0.2 - 1.	From Z I From Z I 0 Ratio of	lineshape scan; b lineshape scan; b hadrons to lepte	beam energy calibration beam energy calibration beams; acceptance for letpons
$\alpha_{S}(m_{\rm Z}^{2}) \ (\times 10^{4}) \ R_{b} \ (\times 10^{6})$	$\begin{array}{c} 1,196\pm 30 \\ 216,290\pm 660 \end{array}$	0.1 0.3	0.4 - 1. < 60	6 From R_{ℓ}^{Z} Ratio of	above $b\overline{b}$ to hadrons; s	tat. extrapol. from SLD
$\sigma_{\rm had}^0 \; (\times 10^3) \; ({\rm nb} \; N_{\nu} \; (\times 10^3))$	$\begin{array}{c} 41,541\pm 37\\ 2,996\pm 7 \end{array}$	$0.1 \\ 0.005$	4 1	Peak hac Z peak c	dronic cross sect ross sections; lux	ion; luminosity measurement
$\frac{\sin^2 \theta_{\rm W}^{\rm eff} (\times 10^6)}{1/\alpha_{\rm QED} (m_{\rm Z}^2) (\times 10^6)}$	$\begin{array}{l} {}^{\rm ff}_{7} (\times 10^6) & 231,480 \pm 160 \\ {}^{\rm D}_{\rm D} (m_Z^2) (\times 10^3) & 128,952 \pm 14 \end{array}$		$\begin{array}{c} 1.4 \\ 1.2 \end{array}$	From $A^{\mu}_{\rm F}$ From $A^{\mu}_{\rm F}$	From $A_{\text{FB}}^{\mu\mu}$ at Z peak; beam energy calibra From $A_{\text{FB}}^{\mu\mu}$ off peak	
$A_{\rm FB}^{b,0} \ (\times 10^4)$ $A_e \ (\times 10^4)$ $m_{\rm WeV} \ ({\rm MeV})$	992 ± 16 1,498 ± 49 80,350 ± 15	0.02 0.07 0.25	1.3 0.2 0.3	b-quark a from $A_{\rm FI}^{\rm po}$ From W	asymmetry at Z $_{\rm B}^{{\rm ol},\tau}$; systematics W threshold sca	pole; from jet charge from non- τ backgrounds n: beam energy calibration
$\Gamma_{\rm W} ({\rm MeV})$ $\Gamma_{\rm W} ({\rm MeV})$ $N_{\nu} (\times 10^3)$ $r_{\sigma} (m^2) (\times 10^4)$	$2,085 \pm 42$ $2,920 \pm 50$ $1,170 \pm 420$	1.2 0.8	0.3 Small	From WW threshold scan; beam energy calibrat From WW threshold scan; beam energy calibrat Ratio of invis. to leptonic in radiative Z returns		
$\alpha_S(m_W)$ (×10 ⁻)	$1,170 \pm 420$	J	Smail	From R ₀		

nolo and MM EW probibion DEC CEC

Alexander Belyaev

- EW precision program around Z pole and WW
 - Improvement in our understanding of SM or BSM by at least one order of magnitude
 - Theory challenges:
 - Theory must be matched with EWPO at least at the same level of accuracy

Quantity	FCC-ee	Current intrinsic theory uncertainty	Projected intrinsic theory uncertainty
$m_{\rm W}~({\rm MeV})$	0.5 - 1	$4 (\alpha^3, \alpha^2 \alpha_S)$	1
$\sin^2 \theta_{\text{eff}}^{\ell} (10^{-5})$	0.6	4.5 $(\alpha^3, \alpha^2 \alpha_S)$	1.5
$\Gamma_{\rm Z} \ ({\rm MeV})$	0.1	$0.4 \ (\alpha^3, \ \alpha^2 \alpha_S, \ \alpha \alpha_s^2)$	0.15
$R_b \ (10^{-5})$	6	11 $(\alpha^3, \alpha^2 \alpha_S)$	5
$R_{\ell} \ (10^{-3})$	1	$6 (\alpha^3, \alpha^2 \alpha_S)$	1.5

 This requires not only N³LO and leading N⁴LO QED corrections – at least one order beyond the current state of art, but also respective MC generators

Top quark physics

 per mille precision for anomalous vector and percent precision for anomalous axial coupling

$m_{\rm eV}$ (MeV/c ²)	172740 ± 500	20	small	From t _t threshold scan
intop (ivic v / c)	112140 ± 500	20	Sman	QCD errors dominate
$\Gamma_{\rm top} ({\rm MeV/c}^2)$	1410 ± 190	40	small	From $t\bar{t}$ threshold scan
				QCD errors dominate
$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	1.2 ± 0.3	0.08	small	From tt threshold scan
				QCD errors dominate
ttZ couplings	± 30%	<2%	small	From $E_{CM} = 365 GeV run$

Flavour physics

 FCC-ee will be able to measure rare B-meson decays which are inaccessible at present

Decay mode	$B^0 \to K^*(892) e^+ e^-$	$B^0 \to K^*(892)\tau^+\tau^-$	$B_{\rm s}(B^0) \to \! \mu^+ \mu^-$
Belle II	$\sim 2\ 000$	~ 10	n/a (5)
LHCb Run I	150	-	\sim 15 (-)
LHCb Upgrade	~ 5000	-	$\sim 500 \ (50)$
FCC-ee	~ 200000	~ 1000	~1000 (100)

- LVF in Z-decay will be probed down to 10⁻⁹
- CKM probes

Observable / Experiments	Current W/A	Belle II (50/ab)	LHCb-U1 (23/fb)	FCC-ee
CKM inputs				
γ (uncert., rad)	$1.296\substack{+0.087\\-0.101}$	1.136 ± 0.026	1.136 ± 0.025	1.136 ± 0.004
$ V_{ub} $ (precision)	5.9%	2.5%	6%	1%

EW global fits

m_w vs m_{top} plane

 order of magnitude improvement – the story behind m_w will become transparent

The new physics scale can be quite low, at least for some particles

- In particular in models with partial Higgs compositeness, there could be light pseudo scalars
- **1**312.5330, 1610.06591
- 2104.11064 Cacciapaglia, Deandrea, Iyer, Sridhar

Alexander Belyaev

Sub-GeV vector DM: Vector-like fermion portat to dark SU(2) (AB, Panizzi, Thonguoi, work in progress)

- FCC-ee could the first machine coming after the LHC
 - It is unique collider, which provides incredible opportunities which come with challenges for theory and experiment
 - We should seriously consider FCC-ee not only as a precision collider, but also as a discovery machine

- New signals are likely to appear, at least we strongly feel that it is around the corner
 - From my point of view what is missing now is the strategy of mapping of the signal space into the space of concrete models (not only EFT's!)
 - This reverse engineering program should be taken very seriously

