Update on pocket effect

N. Regnault

PSF vs APER

Detecting the effect on real data

- PSF aper versus flux
 - Fit deg0, deg1, deg2 polynomials
 - Compare the chi2's
 - \circ $\,$ -> allows to detect if the effect is present or not

Tentative model

Do we have a (qualitative) model ?

- Everything happens as if we had either traps, or a "pocket"
 - -> delayed charge
- When background is high, pocket is full -> no detectable effect
- When background is low, we detect something

Image profile (after bias subtraction)

How to train the model ?

• Overscans

- Direct measure of pocket flush function
- From science exposures and/or flat field ramps
- First pixels
 - Direct measure of pocket fill function
 - Not sure of what we measure near the physical side of CCD
- Pixel-to-pixel correlations on flat field pairs
 - Sensitive to pocket effect (low flux)
 - Sensitive to brighter-fatter (high flux)
 - -> flat field ramps

Constraining the flush function on overscans

• 148 exposures of field #600, taken after 2019-12-01

Constraining the flush function on overscans

9

Fill and flush functions

Model parameters (a and c_{max})

Indirect constraints on fill function

Fitted model behaves as expected

Inverting the effect

- Strategy 1
 - Assume the pocket is empty at the end of the overscan
 - Play the model backwards

-> this strategy turns out to be unstable

• Strategy 2

- Build a model that predicts the (distorted) pixel values as a function of the un-distorted pixel values
- Fit the model on each line (least-squares)

-> much more stable

- This strategy implies one fit (3030 parameters) per line.
- Turns out that the fit matrix (and its factorization) can be recycled from line to line, we are at about ~ 1.5 ms per line -> quadrant corrected in seconds.

Inverting the effect (II)

Fit results (4 iterations, 1.4 ms / line)

Note the deficit of variance in distorted image (went into pixel-to-pixel covariances)

A more global view (entire line)

Correction in 2D

Raw / corrected skewness

.8

g-band

Randomized exposure times

Source stability

Covariance map @ high flux

r average covariances for 25000.000000 < μ < 50000.000000

PTC fits : C00 r-band CCD09

Conclusion

- Clear path towards characterizing and correcting
 - Pocket effect
 - brighter -fatter
 - Validate and deploy correction -> full dataset

• High priority

• (need help)