

Thomas de Jaeger (LPNHE - CNRS - Université Pierre & Marie Curie)

Toward the training and cosmology sample : ZTF+SNLS+Subaru

ZTF meeting, 11-12 Sept 2023, LPC

Training dataset

Training dataset

Cuts based on photometric observations

- -> t0 and X1 to be well constrained to efficiently select light curves with good sampling
- -> SNe with limited extinction by dust in the Milky-Way.
- -> Select SNe within specific color, X1 range.

Cut based on spectroscopic observations

-> Remove peculiar SNe Ia

Cuts based on photometric observations

- -> t0 and X1 to be well constrained to efficiently select light curves with good sampling
- -> SNe with limited extinction by dust in the Milky-Way.
- -> Select SNe within specific color, X1 range.

Cut based on spectroscopic observations

-> Remove peculiar SNe Ia

Table 7. Number of SDSS-II supernovae discarded by the suc-
cessive cuts applied before inclusion in the cosmology sample.

	Discarded	Remaining
Initial	-	507
$-3 < X_1 < 3$	20	487
-0.3 < C < 0.3	11	476
$E(B-V)_{\rm mw} < 0.15$	6	470
$\sigma(t_0) < 2$	19	451
$\sigma(X_1) < 1$	52	399
Other ^a	25	374

Table 2 Cosmology Sample Cuts			
Cut	Discarded	Remaining	
SALT2 converged		2136	
SNLS high-z	59	2077	
P _{fit}	16	2061	
U-band sensitivity	59	2002	
$\sigma(x_1) < 1.5$	85	1917	
$\sigma_{(\text{pkmid})} < 2$	10	1907	
-0.3 < c < 0.3	98	1909	
$-3 < x_1 < 3$	7	1802	
$E(B-V)_{\rm MW} < 0.20$ mag	23	1779	
$T_{\rm rest} < 5$	1	1778	
Chauvenet's criterion	5	1773	
Valid BiasCor	10	1763	
Systematics	60	1701	

Cuts based on photometric observations

- -> t0 and X1 to be well constrained to efficiently select light curves with good sampling
- -> SNe with limited extinction by dust in the Milky-Way.
- -> Select SNe within specific color, X1 range.

Cut based on spectroscopic observations

-> Remove peculiar SNe Ia

Table 7. Number of SDSS-II supernovae discarded by the suc-
cessive cuts applied before inclusion in the cosmology sample.

	Discarded	Remaining
Initial	-	507
$-3 < X_1 < 3$	20	487
-0.3 < C < 0.3	11	476
$E(B-V)_{\rm mw} < 0.15$	6	470
$\sigma(t_0) < 2$	19	451
$\sigma(X_1) < 1$	52	399
Other ^a	25	374

Table 2 Cosmology Sample Cuts			
Cut	Discarded	Remaining	
SALT2 converged		2136	
SNLS high-z	59	2077	
P _{fit}	16	2061	
U-band sensitivity	59	2002	
$\sigma(x_1) < 1.5$	85	1917	
$\sigma_{\rm (pkmid)} < 2$	10	1907	
-0.3 < c < 0.3	98	1909	
$-3 < x_1 < 3$	7	1802	
$E(B - V)_{\rm MW} < 0.20$ mag	23	1779	
$T_{\rm rest} < 5$	1	1778	
Chauvenet's criterion	5	1773	
Valid BiasCor	10	1763	
Systematics	60	1701	

Betoule+14

A SN can pass all the cuts but are poorly sampled which is not good for the training sample!!

-> Need a visual inspection... so it is not the best (Tmax wqs changing when changing ZP)

Last, a proper and stable determination of the date of maximum is necessary for SNe Ia entering in the training sample, because the date of maximum is held fixed in the training. We looked for remaining poorly sampled light curves in the training sample, and discarded the following nine SNe (only from the training sample):

- 1. Too few observations after the epoch of peak brightness (despite a reported uncertainty on t_0 passing the cuts): SDSS10434, SDSS19899, SDSS20470, SDSS21510.
- Too few observations before the epoch of peak brightness: SDSS6780, SDSS12781, SDSS12853 (2006ey), SDSS13072, SDSS18768.

Look at the chi2 for different Tmax

 \rightarrow Using sncosmo fit all the LC with Tmax, x0, x1, c as free parameters

Look at the chi2 for different Tmax

 \rightarrow Using sncosmo fit all the LC with Tmax, x0, x1, c as free parameters

Look at the chi2 for different Tmax

 \rightarrow Using sncosmo fit all the LC with Tmax, x0, x1, c as free parameters

Look at the chi2 for different Tmax

 \rightarrow Using sncosmo fit all the LC with Tmax, x0, x1, c as free parameters

Compare uncertainties from sncosmo and from chi2 curve

 \rightarrow From chi2 curve look at the Tmax for chi2+ Δ chi2(1 σ ,dof)

Compare uncertainties from sncosmo and from chi2 curve

 \rightarrow From chi2 curve look at the Tmax for chi2+ Δ chi2(1 σ ,dof)

First use JLA

First use JLA

First use JLA

 \rightarrow Understand weird cases

First use JLA

