Astronomy in the era of climate change

Jürgen Knödlseder

@jknodlseder@astrodon.social

The climate history of Homo Sapiens

Rockström et al. (2009), Ecology and Society, 14, 32

Planetary Boundaries

Richardson et al. (2023), Science Advances, 9, eahd2458

Science-based analysis of the risk that human activities will destabilise the Earth system at the planetary scale

We are no longer in the safe operating zone for 6* out of 9 planetary boundaries

*novel entities, climate change, biosphere integrity, land-system change, freshwater change, biogeochemical flows

Socioeconomic metabolism of the global economy

Adapted from Krausmann et al. (2018), Global Environmental Change, 52, 131-140

Climate change: the evidence

Changes in global surface temperature relative to 1850-1900

a) Change in global surface temperature (decadal average) as reconstructed (1-2000) and observed (1850-2020)

b) Change in global surface temperature (annual average) as **observed** and simulated using human & natural and only natural factors (both 1850-2020) °C

Figure 1 of Summary Report for Policy Makers of the IPCC 6th assessment report of Working Group 1

Climate change: the risks

Global and regional risks for increasing levels of global warming

Figure 3 of Summary Report for Policy Makers of the IPCC 6th assessment report of Working Group 2

Climate change: responsibilities

Per capita carbon footprint for each decile of regional populations

Bruckner et al. (2022), Nature Sustainability, 5, 311

Climate change: our responsibility

« Un très large accord se fait jour sur la nécessité que la recherche, comme toute activité, participe à l'effort de réduction des émissions de gaz à effet de serre. »

« La prise en compte de l'environnement fait partie intégrante de l'éthique de la recherche »

C'est de « la responsabilité des acteurs et actrices de la recherche de penser leur activité au regard des enjeux environnementaux »

« Cette responsabilité concerne non seulement l'empreinte des pratiques de recherche mais plus généralement l'impact environnemental négatif ou positif que le choix de tel ou tel sujet de recherche et de telle ou telle voie pour le traiter peut engendrer pour l'environnement au sens large, à court, moyen ou long terme. »

The carbon footprint of astronomy

Huge differences among estimates

Strong impact of carbon intensity of electricity production

Knödlseder et al. (2023), in: Climate Change for Astronomers (IOP)

Based on data from: Van der Tak et al. (2021) – Netherlands Jahnke et al. (2020) – MPIA Simcoe et al. (2022) – MIT Kavli Martin et al. (2022) – IRAP Stevens et al. (2020) – Australia

Importance of following standards in carbon accounting and considering all sources of GHG emissions

IRAP carbon footprint

Martin et al. (2022), Nature Astronomy, 6, 1219; arXiv:2204.12362

Carbon footprint computation

Knödlseder et al. (2023), in: Climate Change for Astronomers (IOP)

Carbon footprint computation

Professional travels

- 96% GHGs due to air travelling
- 15% GHGs attributed to visitors

- very unequal emissions among travellers
- Iimited relation to seniority
- gender effect (disproportional large fraction of male among high-impact travellers)

Purchase of goods and services

•

- Estimated using a monetary method (based on NACRES codes)
- Average emission factor: 365 kgCO₂e/k€

Martin et al. (2022), arXiv:2204.12362

Use of observatory data

- Inventory of observatories used in 2019 refereed papers
 - 46 space missions (probes & telescopes)
 - 39 ground-based observatories
- Computation
 - Include construction (amortised) and annual operations
 - Monetary and mass ratios (tCO₂e ~ M€ ; tCO₂e ~ kg)
 - Emission factors from literature survey
 - Activity data from literature and internet
- Attribution
 - Based on the fraction "IRAP authors / all authors" on refereed papers published in 2019 that cite a given facility

Notes:

- Estimations based on the same method have been recently derived for the use of Earth observation satellites (Marc et al. 2023)
- The inclusion of research infrastructures in the GES 1p5 tool is under implementation and will include, for example, the LHC (thanks to work by Mélissa Ridel and colleagues)

Emission factors for observatories

Emission factors derived from existing carbon footprint estimates

Activity	Emission factor
Space missions (based on payload wet mass)	50 tCO ₂ e / kg
Space missions (based on mission cost)	140 tCO ₂ e / M€
Construction of ground-based observatories	240 tCO ₂ e / M€
Operations of ground-based observatories	250 tCO ₂ e / M€

Selected other activities for comparison

Activity	Emission factor
Insurance, banking and advisory services	110 tCO ₂ e / M€
Architecture and engineering, building maintenance	170 tCO ₂ e / M€
Installation and repair of machines and equipment	390 tCO ₂ e / M€
Metal products (aluminium, cupper, steel,)	1700 tCO ₂ e / M€
Mineral products (concrete, glass,)	1800 tCO ₂ e / M€

Activity data

•

•

٠

Construction

M€) Reference

75

75

92

96

(1) 98 78

(1)

104

(2)

6.0

0.9 (1)

1.0

Operations

81

85 87

75

89

91

93

95 97

32

98

100

1.2 101

102

105

106

(3)

(3) (1)

(3)

(3)

(3)

(M€ / yr) Reference 40 79

5.2

10

9.2

5.5

3.5

8.8

13

3.1

0.7

0.5

0.3 0.5 0.1 0.2 0.2

0.1

0.1

Mission	Payload launch mass (kg)	Mission cost (M€)	Reference	Observatory
HST	11 110	8037	43	· · · · · · · · · · · · · · · · · · ·
Chandra	5860	4114	44	VLT (Paranal)
Cassini	5820	2806	45	ALMA
Cluster	4800	944	46	SOFIA
Fermi	4 303	863	47	TAA
INTEGRAL	4 000	419	48	VLA
Curiosity	3893	2 5 9 0	45	VLBA
XMM	3800	1113	49	IRAM
Juno	3625	1082	45	Gemini-South
Herschel	3400	1152	50	CFHT
RXTE	3200	360	51	ESO 3.6m (La Silla)
SDO	3100	865	52	GBT
Bosetta	2900	1709	53	LOFAR
Galileo	2 560	1275	45	JCMT
MAVEN	2454	638	45	ATCA
ROSAT	2421	635	54	H.E.S.S.
MBO	2180	928	45	MeerKAT
GAIA	2034	1037	55	GTC
Planck	1900	775	56	NRO
SallO	1950	1.460	57	LMT
Suzaku	1 706	1400		MLSO
AstroSat	1515	27	59	APEX
MMS	1 360	1054	58	SMA
Venus Express	1270	300	61	EHT
WIND	1 250		-	Noto Radio Observatory
STEREO	1 238	614	60	2m TBL
Mars Express	1 223	374	62	2.16m (Xinglong Station 1.93m OHP
Dawn	1218	439	45	KMTNet
Hipparcos	1 1 4 0	933	63	THEMIS
Kepler	1 0 5 2	636	64	2.4m LiJiang (YAO)
GEOTAIL	1 009		OF.	1.5m Tillinghast (FLWO)
Akari	952	106	CO	1.5m (OAN-SPM)
Spitzer	950	1 188	66	1.8m (BOAO)
SWIFT	843	279	67	1.3m Warsaw (OGLE)
ACE	752		45	C2PU
InSight	694	714	43	TAROT
PSP	685	1310	68	1m NOWI
WISE	661	335	67	
TIMED	660	259	07	
IMP-8	410			
NICER	372	53	69	
NUSTAR	360	156	70	
TESS	325	275	71	
GALEX	280	120	67	
DEMETER	130	21	72	

- Collection of cost data was the most timeconsuming part of the work
- Collection of payload mass data was easy
- Cost data not always include mission extensions and never include upgrades; if no data were found contribution was skipped (results are lower limits)
- All cost data were inflation corrected to 2019 economic conditions

Facility carbon footprint

٠

٠

Mission*	Years	Papers	Authors	Mass-base	ed			Cost-based	P		
	(total :	since laun	ch)	Footprint (tCO ₂ e)	Annual (tCO ₂ e yr ⁻¹)	Carbon intensity (tCO ₂ e paper ⁻¹)	Carbon intensity (tCO ₂ e author ⁻¹)	Foctprint (tCO ₂ e)	Annual (tCO2e yr '')	Carbon intensity (tCO ₂ e paper ⁻¹)	Carbon intensity (tCO ₂ e author ⁻¹)
HST	30	52,497	42,315	555,500	18,517	11	13	1,125,197	37,507	21	27
Chandra	21	17,714	23,942	293,000	13,952	17	12	575,955	27,426	33	24
Cassini	22	4,691	9,328	291,000	13,227	62	31	392,902	17,859	84	42
Cluster	20	2,433	2,959	240,000	12,000	99	81	132,207	6,610	54	45
Fermi	12	8,619	19,675	215,150	17,929	25	11	120,881	10,073	14	6
NTEGRAL	18	2,808	10,640	200,000	11,111	71	19	58,720	3,262	21	6
Curiosity	7	1,360	4,393	194,650	19,465	143	44	362,595	36,259	267	83
MM	21	18,859	23,773	190,000	9,048	10	8	155,845	7,421	8	7
uno	8	521	1,832	181,250	18,125	348	99	151,547	15,155	291	83
lerschel	11	5,046	11,092	170,000	15,455	34	15	161,238	14,658	32	15
XTE	24	7,473	11,601	160,000	6,667	21	14	50,438	2,102	7	4
00	10	4,189	4,946	155,000	15,500	37	31	121,164	12,116	29	24
osetta	16	1,665	4,337	145,000	9,063	87	33	239,316	14,957	144	55
alileo	30	2,432	4,594	128,000	4,267	53	28	178,503	5,950	73	39
AVEN	6	672	2,023	122,700	12,270	183	61	89,270	8,927	133	44
OSAT	30	19,765	23,154	121,050	4,035	6	5	88,844	2,961	4	4
RO	14	1,927	4,261	109,000	7,786	57	26	129,850	9,275	67	30
aia	7	2,550	10,565	101,700	10,170	40	10	145,114	14,511	57	14
lanck	11	5,515	13,388	95,000	8,636	17	7	108,486	9,862	20	8
oHo	25	12,218	12,955	92,500	3,700	8	7	205,617	8,225	17	16
uzaku	15	3,869	9,525	85,300	5,687	22	9				
stroSat	5	313	5,406	75,750	7,575	242	14	3,751	375	12	1
MS	5	769	1,623	68,000	6,800	88	42	147,501	14,750	192	91
enus xpress	15	1,221	3,394	63,500	4,233	52	19	41,945	2,796	34	12
Vind	26	3,877	8,254	62,500	2,404	16	8				
TEREO	14	3,731	6,768	61,900	4,421	17	9	86,021	6,144	23	13
lars Express	17	2.969	6,118	61,150	3,597	21	10	52,332	3.078	18	9
lawn	12	791	2,175	60,885	5,074	77	28	61,409	5,117	78	28
Ipparcos	31	4,743	8,373	57,000	1,839	12	7	130,664	4,215	28	16
epler	11	4,306	9,606	52,620	4,784	12	5	89,037	8,094	21	9
eotail	28	3,288	3,996	50,450	1,802	15	13				
kari	14	2,037	6,993	47,600	3,400	23	7	14,878	1,063	7	2
pitzer	17	9,050	15,940	47,500	2,794	5	3	166,333	9,784	18	10
wift	16	7,397	17,307	42,150	2,634	6	2	39,030	2,439	5	2
CE	23	4,147	7,560	37,600	1,635	9	5				
Sight	1	58	447	34,700	3,470	598	78	99,922	9,992	1723	224
SP	2	287	1,075	34,250	3,425	119	32	183,456	18,346	639	171
/ISE	11	6,990	18,877	33,050	3,005	5	2	46,855	4,260	7	2
IMED	18	2,205	3,593	33,000	1,833	15	9	36,196	2,011	16	10
ouble Star	16	166	540	28,000	1,750	169	52				
MP-8	47	2,485	3,835	20,500	436	8	5				
ICER	3	338	2,657	18,600	1,860	55	7	7,374	737	22	3
USTAR	8	2,227	9,559	18,000	1,800	8	2	21,799	2,180	10	2

- Order of magnitude estimates of lifecycle carbon footprints for 85 astronomical research infrastructures
- Results of individual infrastructures are uncertain by 80% (recommended uncertainty by French Environmental Agency ADEME for method of monetary ratios)
- Annual footprints by dividing the lifecycle footprint by the mission or observatory lifetime (or ten years, whatever is longer)

Knödlseder et al. (2022), Nature Astronomy, 6, 503

Use of observatory data

Category	Lifecycle footprint (MtCO ₂ e)	Annual footprint (ktCO ₂ e / yr)	IRAP attribution (tCO ₂ e / yr)
Space (cost-based)	5.9 ± 1.2	366 ± 64	2 788 ± 555
Space (mass-based)	4.9 ± 0.8	310 ± 47	2 548 ± 490
Ground-based	3.0 ± 0.8	194 ± 64	1 289 ± 490
Total	7.8 ± 1.4	532 ± 106	3 953 ± 689

- Cost-based and mass-based estimates provide comparable results
- 53% of IRAP's carbon footprint
- Footprint dominated by space-based (IRAP bias)
- Footprint per IRAP astronomer: $27.4 \pm 4.8 \text{ tCO}_2\text{e} / \text{yr} / \text{astronomer}$
- Extrapolation to world inventory: $36.6 \pm 14.0 \text{ tCO}_2 \text{e} / \text{yr} / \text{astronomer}$

Summary of the situation

Research Infrastructures

Other items of astronomy related footprint

Lifestyle footprint

 $\sim 60 \text{ tCO}_2 \text{e} / \text{astronomer}$

Summary of the situation

Research Infrastructures Other items of astronomy related footprint 2019 2050 ~ 60 tCO₂e / 2 tCO₂e / Factor 5 – 20 astronomer reduction human

> breakdown Hickel (2020), Lancet Planet Health, 4, 399

Lifestyle footprint

Based on

responsibility

in climate

Summary of the situation

Research Infrastructures

Other items of astronomy related footprint

Lifestyle footprint

Towards an action plan at IRAP

- Hiring of an environmental transition manager
- Working groups to identify potential actions
 - Professional travelling
 - Purchase of goods & services
 - Daily lab life
 - Low carbon science (change of research practices)
- Scenario based action plan (excluding use of observatory data)
 - -2% / yr (minimum requirement by research ministry)
 - -5% / yr (research ministry goal)
 - -7% / yr (compliant with Paris agreement)
- Select / adapt scenario and adopt action plan
 - Discussion forums by employee corps
 - Vote by lab council by the end of the year (current plan)

Reducing the travelling footprint

Mouinié (2023), IRAP internal document

- -30% less trips
- -50% CO₂e emissions
- Increased use of train
- Trend confirmed for first semester 2023 (reduction not related to COVID)

A real (voluntary) shift seems to have happened in the lab!

Reducing the purchase footprint

Easy fixes: mutualise, extend lifetime, repair

٠

- More difficult changes: buy less, buy differently
- Attractive: eco-design

Martin et al. (2022), arXiv:2204.12362

co-design

The difficulties of eco-design

Lifecycle footprint of electronic devices (Ademe 2018)

The difficulties of eco-design

Norlisk's emissions are more comparable to the passive degassing that happens at some of the most active effusive volcanoes. Between 2005 and 2017, only one volcano - Ambrym in Vanuatu - emitted more sulfur dioxide through passive degassing than Norilsk. (NASA Earth Observatory, 12/07/2017)

Nickel production in Norilsk mine, Russia (Aurore Stephant)

The difficulties of eco-design

Eco-design – Proba-V satellite

An Vercalsteren et al. (2018), Clean Industry Days

- Perform life cycle analysis
 (LCA) capturing all
 environmental impacts
 (keyword: impact transfers)
- Optimisation is always a trade-off (impossible to win on all impact categories without reducing scope)
- Improvements of typically 20-30% seem feasible

Reducing the purchase footprint

Significant impact reductions likely imply that we have to touch our core business

Martin et al. (2022), arXiv:2204.12362

Example of ESO (https://www.eso.org/public/france/about-eso/green/)

Example of ESO (https://www.eso.org/public/france/about-eso/green/)

- 4.4 ktCO₂e / yr

Running observatory sites using renewable energy (-7.5%) Preferring sea freight over air (-5.0%) Reducing business travel (-2.9%) Extend lifetime of IT equipment (-0.0%)

Example of ESO (https://www.eso.org/public/france/about-eso/green/)

Past and predicted annual carbon footprint of electricity consumption at the ESO observatory sites in La Silla, Paranal and Armazones

Data from Filippi et al. (2022), SPIE, 12182, 3

An inconvenient truth:

It is extremely difficult to decarbonise while ramping up!

We need BOTH carbon footprint reductions AND a reduction of the deployment pace of new observatories

Environmental impact & science roadmaps

Minimiser l'impact environnemental des projets spatiaux scientifiques Contribution émanant de la communauté scientifique (plus de 240 signataires) au séminaire de prospective du CNES 2024 sur la thématique "Empreinte environnementale des activités scientifiques spatiales"

Coordination: Didier Barret & Jürgen Knödlseder

	Prospective scientifique de l'INP		
COMETS Comité d'éthique du CNRS	Intégrer les enjeux environnementaux à la recherche en Physique		
AVIS n°2022-43 « Intégrer les enjeux env conduite de la recherche éthique »	rironnementaux à la - Une responsabilité		

Towards sustainable astronomy

- To keep our planet habitable human societies have to switch to a sustainable socioeconomic pathway (cf. IPCC)
- This concerns all human activities, including (astronomical) research (cf. inequalities)
- This (likely) implies that we have to do astronomy differently (cf. previous slides)
 - reduce air travelling
 - rethink our activities (e.g. environmental impact assessment and mitigation, less instrument development, more R&D)
 - deeper use of (abundant) archival data
 - make decarbonisation a funding priority
 - build less new facilities
- This (certainly) implies a systemic change, including individuals, laboratories, research and funding organisation, governments
- As a community, we should recognise our responsibility and be exemplary (cf. credibility)

Fitting into the planetary boundaries

Backup slides

Greenhouse gas emissions versus cost

Carbon footprint reports of 19 French companies of the construction sector versus their turnovers (source: Base Carbone ADEME).

The blue line corresponds to a monetary emission factor of 250 tCO₂e / M€, the light blue area indicates an uncertainty of 80%.

Astronomy versus other fields

Based on cost estimates in ESFRI 2021 infrastructure roadmap

Astronomy: 24% (construction)

Other domains (e.g. physics) have an equivalent issue