Accelerated EExpansion in an
Open Universe

Dimitrios 'I'simpis
String-Cosmo, 28 novembre 2023

CIA
)

UNIVERSITE . f’ .
[UJ) DE LYON 7N iP2i,

(



Based on:

% Andriot, DT & Wrase, Phys. Rev. D, arXiv 2309.03938
% Paul Marconnet & DT, JHEP o1 (2023) 033



Outline

® Introduction

® [ _essons from universal compactifications
® An cflective point of view

® Conclusions



Introduction

® | here has been a lot of recent effort in obtaining realistic 4d
cosmologies from the 10d/11d supergravities that capture the low-
energy limit of string/M-theory.

® |n the early 21st century accelerating 4d cosmologies from
compactification were thought to be as difficult as 4d Sitter.

® | he famous no-go excludes acceleration, provided:

® absence of sources, no (or mild) singularities

B COMpPACtNEss

® two-derivative actions

® the Strong Energy Condition is obeyed by the 1od/nid theory

% Gibbons, 1934
* Mualdacena & Nuitez, 2000



Introduction

B ‘[ ime-dependent compactifications, however, can evade the no-go.
* Townsend & Woblfarth, 2003

B | ransient acceleration is in fact generic in flux compactifications
(although until recently all known examples from 1od/11d
compactifications were thought to give O(1) e-foldings).

B de Sitter space is still ruled out by the SEEC (if the 4d Newton’s
constant is time-independent in the conventional sense).

B | ate-time acceleration is not ruled out by the SEC (although no
known examples from 10d/11d compactifications, if we require
non-vanishing acceleration asymptotically).

% Russo & Townsend, 2018; 2019
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[essons from universal compactifications

B Recently we re-examined these statements within the framework
of universal 10d compactifications.

® '|'ype 11 supergravity 1od solutions with a 4d F1LRW factor.
® Compactification on 6d Einstein, Einstein-Kéhler, or CY.
® Solutions zndependent of the compactification details.

® All 1od solutions are obtainable from a 1d action (consistent
truncation) of 3 time-dependent scalars (the dilaton and 2 warp
factors). All fluxes appear as constant coefficients in the potential.

® [n many cases there is a 4d consistent truncation to
gravity+2 scalars (the dilaton and 1 warp factor). All of these
admit further consistent sub-truncations to 1 scalar.



[essons from universal compactifications

m Examples of transient acceleration in a near-de Sitter state with
parametric control of e-foldings; rollercoaster; (semi-)eternal
acceleration. They all require an open 4d universe and asymptotically
vanishing acceleration, hence no event horizon.

® The common lore that transient acceleration always gives O(1)

e-foldings is false.



'1'he 4d consistent truncation (cosmological)

B A subset of the 10d solutions are derivable from

Sy = / d%[q(R — 249" 0, AD, A — Lg" 0,00,¢ — V (A, ¢))

where
[ 72h3e 9124 4 %cge(b/ 2—-144 CY with internal 3- and 4-form fluxes
%cfpe_qb/z_wA + %m265¢/2_6A — 6 e 34 E with external 4-form flux
P %C%€¢/2—14A — %m265¢/2_6’4 — 6 e84 EK with internal 4-form flux
\ %C?pe_qb/z_wA + %c?e%/Q—lOA — 6 e % EK with internal 2-form, external 4-form

B In the CY case: a sub-truncation, to the metric and two scalars. of
the consistent truncation to the universal sector.

% Robin Terrisse & DT, 2019 ; DT, 2020



"I'he consistent truncation

® ‘| he 10d origin of the constants

zero-form (Romans mass)

internal two-form

external three-form

internal three-torm

mixed three-form

external four-form

internal four-form

mixed four-form

external curvature

internal curvature




Dynamical system analysis

® Many analytic solutions (some with up to four species of flux).
® Always possible if a single excited species of flux.

B Autonomous dynamical system if 2 excited species of flux.
® 3 first-order equations and a constraint.
= Solutions correspond to trajectories in a 3d phase-space.
® Compactification of phase-space to (the interior of) a 3d ball.

® ‘| 'he equatorial disc and the 2d sphere boundary are invariant
surfaces of the dynamical flow.

® [ixed points and trajectories on the sphere boundary or on the
disc correspond to analytic solutions. Fzxed points correspond to
scaling solutions: a(t) o< t¥

® ‘| 'here is always an additional invariant plane (sub-truncation).



Dynamical system analysis

B Rephrasing the question of accelerated expansion.

® [Kxpanding cosmologies correspond to trajectories in the northern
hemisphere (interpolating between two fixed points).

m Acceleration is possible whenever there is a non-empty acceleration
region (determined by the type of excited fluxes).

A

® ‘| 'his explains why transient
accelerated expansion is generic: it
corresponds to trajectories in the
northern hemisphere, passing
through the acceleration region.




Some unexpected results

B [ixamples of rollercoaster cosmologies and transient acceleration
with parametric control of the number of e-foldings

® [Kxample without initial singularity

® Accelerated contraction
(expansion) for t <0 (¢ > 0)

®m de Sitter in the
ncighborhood of ¢ =0

t

ds?q = —dt? + [ sinh” (Z) dQ;




Some unexpected results

B [Kxamples of semi-eternal and eternal acceleration
* Andersson & Heinzle, 2006
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Some unexpected results

B [Kxamples of semi-eternal and transient accelerated expansion
with parametric control of the number of e-foldings

® An example of eternal acceleration without initial singularity

® Accelerated contraction
(expansion) for t <0 (¢t > 0)

®m de Sitter in the
ncighborhood of ¢ =0

t

ds?q = —dt? + [ sinh” (Z) dQ;

P+



Some unexpected results

B Many examples of (semi-)eternal, rollercoaster and transient
accelerated expansion in a near-de Sitter space with parametric
control of e-foldings.

m ]

ey

m ]

ey

have &k = —1

have a fixed

point on the boundary of the acceleration region

hence no event borizon. S




Outline

® An cflective point of view



A d-dimensional model

B Action
d 1 1 B
S: d”x |gd\ §Rd—§6’uga(9“gp—voe s

® [Kquations of motion

=02 (2, k)

2 a?
a d—3 : k- p+p
d—2)- - p=0e H— — 1 0
( )a d—lp p = a?  d— 2
p+(d—1)Hp+V' =0
where
a 1 1
y P 290 =V, D 5
and q_ 3
a>0 < w :Bg
P d—1



Dynamical system

® Phase space variables

N =Ina, x= L Yy =

Hd-D(d—2)

® [Kquations of motion

E R (R NI PRSI

dN 2 v
dy o \/(d_l)(d_Q) | 2 2

m Constramnt

k
x2+y2:1+,—2
a



Dynamical system

® [ixed points

Fixed point (z,y) Allowed k | Existence constraint | Acceleration

Py : (0, 0) k=-—1 at =1 no (@ = 0)

Py (41, 0) k=0 i o (i < 0)

e <7\/(d—21)(d—2)’ =3 34) k=041 | 7" =75 (1 T f_?)) T o (@=0)
P: (%\E,i\/l %%) k=0 0<~?<44d iff 12 < 25




Dynamical system

B [for k=0,1 existence of Pr requires
4
2
< -
T =a=2

B [or k=-1 existence of Pr requires

4
2
R
® For d>10 stable node
® For d<ro stable node if

, 32

2 _
TS = o0 —d)
® [or d<ro stable spiral if

v > 2



Dynamical system

B Acceleration

yl > |z|Vd =2
B [Kxpansion
y >0

® Open universe (b=-1)
T+ y2 <1

® Flatuniverse (£=0)
v’ +y =1

=1

k=—1

—

a<0

a>0




Dynamical system

® Prisa Milne universe with angular defect
a(t) = ao (t —to) , @(t) = o+ ¢ log(t —1o) ,

o = . po = ~ log ol o1 =
0 5 2 ’ 0 ~ 2(d B 2) ’ ~
7T a2
® All solutions known analytically in the vicinity of critical points, e.g.
a1
d—2 | 2V2 — 10 (d—2 d—1
prE = \/ )t = P

B Acceleration

. 1 _
a(t) = agai(p — 1)p prE - O (t (1+2p))

® All solutions asymptoting Pr are free of (cosmic) event horizons.



Dynamical system

® Phase portraits of solutions asymptoting Pr stable node.
y




Dynamical system 6 TN

® Parametric control of e-foldings / ‘ /
‘ X

N




Dynamical system

m Uplift to a rod solution

W6A— ¢; 33 o V(p)=3e ¥, =

ds%o — 6_6AdsﬁE + e gndy™dy”
dsip = —dt* +a*dQ¥; ;  Rpmn = —6Gmn
¢ = cnst .

B | .ate time behavior
A—o00; gs=cnst; LgH — 0.

dsfy ~dT? +T*(1 4 ...)dQ; +T*(1 + ...)ds3 ;

Vi(p) 4
|4 V6
T t%



Dynamical system

® Solutions asymptoting Pr stable spiral.

2 AN_ T /Y’YS
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Dynamical system

® Parametric control of e-foldings




Dynamical system

m Uplift to a rod solution

4 1 3 5
—VT8A < ¢ ; 502 e~ AoV p) = -ctre” =P
5 477 477
36 V(o) 26
p— ——A p— p— _—

1

Wher_e |

dst, = e *dsip + e gmndy™dy"
dsip = —dt* +a?dQ; ;. Rym =0
F = C_fJ

® [ ate time behavior
A—>o0; gs—0; LgH —0.
ds?y ~ dT? + T?(1+...)dQZ + T35 (1 +...)ds? ;



Conclusions

B You can’t always get what you want, but if you try sometimes,

you might find you get what you need.
% fagger & Richards, Let it Bleed, 1969

B Examples of (emi-)eternal acceleration; rollercoaster; transient
acceleration in a near-de Sitter state with parametric control of e-

foldings.

‘| 'hey all have k = —1 and asymptotically vanishing acceleration.

® Nature abhors a (cosmic) event horizon ?

® Could that « explain » the absence of de Sitter and/or eternally
accelerating scaling solutions ?



Conclusions

B Solutions in the classical string regime (asymptotically/for some
period of time).

® No branes/orientifolds.

® '|runcated modes/stability ? (Note: universal truncations capture
sub-sectors of the effective theory).

® Moduli stabilization ? (Note: rigid examples are possible).

® Higher-order corrections ? (Note: classical string regime is possible).

B Realistic cosmologies ? Inflation ?
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"T'ype 1A supergravity

B Action
1 1 1
G _ 10 (—R “(06)? 4 3¢/2 2
2@0/ tV9( B 500) + 5
1 1 1
.2.3!6 H |2.4!€ G+2me )+SCS

B Bianchi identities

dFF =mH ; dH=0; dG=HAF



Metrics & times

® '|'he 1od Linstein-frame metric
ds?, = 24 [623(—01772 +d0Q2) + Imndy™dy" |
where
dQF = vij(z)da'da? ; RS = 2k
® '| he 4d Einstein-frame metric
dsip = —atdr? + a?d§);
where

_ ,AA+B arj 2

a y — =

® ‘| he cosmological time

d?
— =qa’; dsip = —dt® + a*d);
dr



Flux Ansitze: some examples

® Calabi-Yau
m=0; F=0; H=2%pReQ; G=32cJANJ; Rpun=0

solution of form equations and Bianchi identities

B Kinstein-Kahler with internal 2-form
m=0; F=csJ; H=0; G=0; Rpun=Agmn

solution of form equations and Bianchi identities



'I'he 1d consistent truncation

® | he remaining cquations of motion (Kinstein & dilaton)

dZA = — 2 (04U — 405U)
2B = % (04U — 305U)
d2¢ = —0uU

B Constraint

72(d, A)? 4+ 6(d, B)* + 48d,Ad, B — 1(d,¢)* =



'I'he 1d consistent truncation

® ‘| hey are derivable from

Sid = /dT{i ( —72(d, A)? — 6(d, B)? — 484, Ad, B + %(dwﬁ)?) ~ NU(A, B, ¢)}

where

( %Cie—¢/2+6A+6B 4 %C%€—¢+12A 4 3C§<6¢+4A 4 c p—$/246A _ GLo16A+4B vy
72b2 —¢p+12A4+68 _|_ 6qzﬁ/2—|—10A—|—6B CY
;Cie—¢/2—|—6A—|—6B _|_ %m265¢/2+18A—|—6B L 6]€€16A+4B L 6)\616A+GB E

U = |

2C¢6_¢/2+6A+6B _|_ ChG —p+12A _|_ §C§<6¢+4A 6kel6A—|—4B o 6)\616A+6B EK
%Cgecb/Q—l—lOA—FGB _I_ %m265q5/2—|—18A—|—GB L 6k€16A+4B L 6)\616A+GB EK

\ %Cie_¢/2+6A+6B _|_ %C?€3¢/2+14A—|—6B L 6k616A+4B o 6)\616A+6B EK



Dynamical system

B Vector field with Pr a stable node and P2 unstable.

P+

Po



