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Late-time Attractors and.Cosmic Acceleration

y X {.
: 2 - R
t ‘,/
j
- {.
.‘t x x /
X X -
. iy ¥ i .
!
it
o 5\ - » 3 L]
-5 ! x :
~ .
4 -
"l -
-, N

. G -
- ;’-‘_ -
o bty .
’\“ f




Based on work with:

|3 *’.ﬂr ;/

Flavio Tonioni Hung V. Tran
UW-Madison Physics = KU Leuven UW-Madison Math

* G. Shiu, F. Tonioni, H.V. Tran, "Accelerating universe at the end of time,’" [arXiv:2303.03418]
* G. Shiu, F. Tonioni, H.V. Tran, Late-time attractors and cosmic acceleration,” [arXiv:2306.07327]

* (. Shiu, F. Tonioni, H.V. Tran, several ongoing works to appear.



A plea to the theorists
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Nobel Prize 2011 Saul Perimutter Brian P. Schmidt Adam G. Riess

But Riess suspects that the mystery can't be solved by observations alone. "We won't really resolve it until
some brilliant person, the next Einstein-like person, is able to get the idea of what's going on," he said.

So he issued a plea to the theorists: "Keep working," he said. "We need your help. ... It's a very juicy
problem, it's hard, and you'll win a Nobel Prize if you figure it out. In fact, I'll give you mine."

Oct 4, 2011 https://www.nbcnews.com/science/cosmic-log/physics-prize-highlights-puzzles-flna6c10402772



de Sitter vacua in String Theory

Simplest possibility is A > 0 . Sophisticated string theory scenarios for realizing dS vacua
have been developed (KKLT, LVS, ...), but a fully explicit construction remains elusive.

Root of the challenge: source of cosmic acceleration should be derived (not just postulated)
in a UV complete theory of gravity.

It is a formidable task to demonstrate that the microphysics which stabilizes all moduli would
lead to a theoretically controlled metastable de Sitter vacuum.

The Dine-Seiberg problem: difficulty in finding parametrically weakly-coupled vacua.
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Asymptotic runaway potentials

This makes runaway to the boundary of field space an interesting possibility.

Cosmic acceleration can be realized with: V().

* a de Sitter critical point, or

. a runaway potential with ¢ = 77 <1
Argument for asymptotic
Related to the “deceleration parameter” g: 0 exponential fall-off
¥
q = —da/a? e=14q. \i

|Y

Criterion for acceleration is in general unrelated to
potential gradient. An aim or our work is to find the link
(& the conditions for the link to exist)



Asymptotic Dark Energy

This possibility has recently been explored in various
forms

As In many dynamical systems, the late-time regime
exhibits some universal behaviors. This allows us to
prove bounds on acceleration

Like large N expansion for QCD, studying the
asymptotically late-time behavior may teach us about
our current (old) universe

Finding asymptotic dark energy in string theory is a
tall order: all non-rolling fields must be stabilized
and the runaway potential cannot be too steep.

(weak couplings, approximate
symmetries, V — 0, ...)



Criterion for Cosmic Acceleration

How do we know if a model leads to cosmic acceleration w/o finding the on-shell solutions?

(Slow-roll) inflation intuition: €y, < 1, |y | < 1

Swampland criteria are often stated in terms of gradient and/or curvature of the potential.

Dynamics is in general much more complicated!
Time evolution does not follow gradient flow of the potential. Kinetic energy not negligible.

Under additional assumptions, late-time solutions approach an attractor known as scaling
solutions . Non-negligible kinetic energy yet € = €y, Before an attractor is

reached (which can take infinite time), € # €y,

In models with 4d curvature , €y, also fails to provide the right diagnostic.

Our bound in holds w/o knowledge of the actual solution to eoms.



Summary of Results

We bound the rate of time variation of the Hubble parameter at late time
The bound provides a useful diagnostic for dark energy models.

Our bound when applied to string theoretic constructions identifies a generic obstacle to
acceleration if the d-dim. dilation is one of the rolling fields. We also suggest several ways out.

We prove conditions under which scaling solutions are late-time attractors. Moreover, we
prove that scaling solutions saturate our bound on €

For scaling solutions, we showed y = WV\/V=2\/€/(d—2) w/o0 assuming that a single

potential term dominates or whether the kinetic or potential term dominates; in general, ¥ is
unrelated to acceleration.

Our results go beyond previous no-goes as we allow for quantum effects and we encompass
vacua and rolling solutions (irrespective of whether the kinetic term is negligible or not).

As a spinoff, we derived analogous bounds on ekpyrosis



Multi-field Cosmology



Multi-exponential potentials

Our bound applies for any potential that takes the form (also argument by ):
V = Z A; e_lid%a’qﬁa ,
i=1

after canonically normalizing the scalar fields to @“, a = 1,..., n.

« A\, 7;, depend on the microscopic origin of V,, k, = d-dim. gravitational coupling. The sources of
potential include e.g. internal curvature, fluxes, branes/O-planes, Casimir-energy, etc.

. {¢p% a=1,...,n} includes minimally the d-dim. dilaton 6 and the string-frame volume & unless
they are stabilized; related to string dilaton & Einstein-frame volume by a field rotation.

We consider scalars rolling towards the boundary of the moduli space, the axions which have a
compact field space are assumed to be stabilized. The saxions can then be canonically normalized.

* |In general, the field space is curved (e.g., the axio-dilaton and the Kahler modulus). Unstabilized
axions recently considered in where field space curvature cannot be ignored.



Cosmological Equations

Non-compact d-dim. spacetime is characterized by the FLRW metric:

ds; = —dt® + a”(t) dlza_,

7 H
Hubble parameter: H = —. The proper diagnostic for cosmic acceleration is € = — 7] <1
a

d—2 [ VV\’
to be distinguished from the slow-roll parameter ¢, = 7 K (7) .

Scalar field equations and Friedmann equations:

.. : oV

“+(d—1)Hp" 1 =0,

6+ (A= DHY" + 5
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Cosmological Autonomous System

It IS convenient to work with the rescaled variables:

a’: K/d éa y: /{d\/i "/;
Vd—1vd—2 H 7" Jd—1vd—2 H

X

The cosmological equations can be formulated in terms of an autonomous system of ODEs
given schematically as follows:

dz S .
E:é’(z) : where 7= (x',...,x"y', ..,y", H)

Among the above ODEs is ¢ = — H/H* = (d — 1)x?; strategy is to bound the kinetic energy.

Friedmann equation also takes a simple form:

®’+ (y) =1



Bound on Late-time Cosmic Acceleration

An accelerating universe can only be achieved if the total scalar potential is positive; we
therefore focus on scenarios in which V' > 0 at least asymptotically.

Individual potential terms can be positive or negative: our proof covers general cases but for
clarity, let us first show how we bound the case when A; > 0

Rank order the exponents:

ve, v* = min, v,* > 0
0, v <0

Then we derived analytically a late-time acceleration bound:

d— 9 The bound holds w/o assuming
d—1>¢e> (fy )2 knowledge of the actual
- A4 > time-dependent solution.




Visualizing the Acceleration Bound

Define vectors m vectors u;, one for each potential term with components (y;) , = 7;,
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Optimizing the Acceleration Bound

It is clear that we can find an optimal bound by an O(n) rotation [GS, Tonioni, Tran, 23]:

€ > i max [Veo (R)]? The bound is basis-independent.
4  ReO(n)
Yoo2 A
3 )50 Voot
2 \
2 y K1
Voo2
L\




How to use our bound?

Given a model, we can check if the minimum distance to the coupling convex hull is smaller
than 1. Our bound does not assume any on-shell solutions nor kinetic terms are negligible.

Easy to find bottom-up models of accelerating universe, e.g., the bound can even be trivial.
The challenge is to find: Vo241
couplings like these in string theory, and

to stabilize the remaining non-rolling moduli

Are there universal moduli that set already a strong bound?
Each of the canonical scalars contributes positively to the bound.

Additional rolling fields strengthen further the bound.




Obstruction by the Dilaton

String-theoretical potentials take the form:

~

g — _/ (A, A *1,9Ar] Avo. o~ ko—xg® — _/ %1 g1 A oralvs(xe)d—7s (xm,7,k)o]
X

1,9 X1,d-1

RR fields are not weighed by e 7E® (effectively set y = 0) but would not affect our argument.
The d-dim. dilaton 5 is a linear combination of the 10d dilaton ® and Einstein frame volume.

While the field basis choice is not unique, d-dimensional dilaton 6 has universal properties:

d 1 2 d— 2 d— 2
L Vd—2 > > 2>
75 \/d—2 2XE \/d—2 : S /A (700) — 4

vE > 1

Ways out: 1) o is stabilized; 2) O is rolling but not in the asymptotic regions; 3) V' contains at
least three terms, not all of the same sign (e.g., from loop corrections).

Non-universal couplings for other moduli: can use our bound to constrain compactifications.



Scaling Solutions



Scaling Solutions

The cosmological autonomous system admits scaling solutions (¢ = constant > 0):
scale factor takes a power law form: a(t) ~ ¢’
critical points of the autonomous system: x* = 0O

Analytic solution: for rank y,, = m

- m

field space trajectory:  ¢%(t) = & > (MY In—, Mij = YiaV;®

-i=1 j=1

| 4 m m i
scale factor: p=-— ZZ(M )i

i=1 j=1

The kinetic term & every potential term have the same parametric dependence in time:

2 2
No slow-roll: T(r) = 1(ty) (%) , V() = V(1) (%)



Scaling Solutions: Relevance

Late time scale factor is bounded by power-law behavior
d—12€e2>[(d—2)/4] (Vo)

Scaling solutions are perturbative late-time attractors (linear stability)

New result . we can analytically prove that if

1. all potential terms are positive definite, i.e., A, > 0, and

m
7 AN r—1\27 a NG A A

j=1 1=1

then scaling solutions are late-time attractors, irrespective of initial conditions, and furthermore
saturate the lower bound!

We can actually drop condition 2 in the proof; see forthcoming paper



Scaling Solutions: Trajectory
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Straight line in field space:
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Acceleration bound: Physical Interpretation

In the optimal basis, the asymptotic potential:

o 2 Vool
I
V p— Z AO’ e_’{d&adqba e_’/"’d%oogb
o ' (Voo )?
Fields other than ¢ appear in the exponents 2 1
with both signs and get stabilized. )
Yoo2
Asymptotically, we have effectively a single A ’
field, single potential on-shell: 1 1
VOO — AOO e_lid&oogb
. . d . 2 R . . . . . .
which gives ¢ — 52 The st.ralgh.t line t.rajectory of scaling solution solves this
4 effective single field problem and saturates the bound.



Coupling Convex Hull
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 |f the distance vector from the origin to the hyperplane containing the convex hull intersects
the convex hull, we find analytically the late-time e-parameter:

d—2 . 5 d—2 [T 7
€ 4 (700) 4 < ( ) ]

else the potential is truncated, and ¢ is given by the truncated convex hull (proof In
forthcoming paper which dropped condition 2).



Living Dangerously

If a Swampland bound is robust, we ought to find examples that saturate it. For exponential
potentials, the Trans-Planckian Censorship Conjecture (TCC) bounds € > 1.

Tree-level potential of the d-dim. dilaton 5 saturates this bound. If all other moduli are stabilized,

A\

2K 0
V=Aevi-2 " =>¢e=1

The late-time attractor has € = 1 (non-accelerating) but it takes infinite time to reach this attractor
from an initial € < 1 phase (accelerating). [Note ¢, = 1 at all time, gives wrong diagnostic].

This mechanism was recently exploited for k = — 1 models though this type
accelerating solutions with no cosmological horizon can be found with £ = 0.

The challenge is to stabilize the remaining moduli or else any additional rolling scalars would stop
acceleration as should be clear from our bound

A string theory model of quintessence is yet to be constructed. Outstanding question for the future.



Summary



Summary of Results

We bound the rate of time variation of the Hubble parameter at late time
The bound provides a useful diagnostic for dark energy models.

Our bound when applied to string theoretic constructions identifies a generic obstacle to
acceleration if the d-dim. dilation is one of the rolling fields. We also suggest several ways out.

We prove conditions under which scaling solutions are late-time attractors. Moreover, we
prove that scaling solutions saturate our bound on €

For scaling solutions, we showed y = WV\/V=2\/€/(d—2) w/o0 assuming that a single

potential term dominates or whether the kinetic or potential term dominates; in general, ¥ is
unrelated to acceleration.

Our results go beyond previous no-goes as we allow for quantum effects and we encompass
vacua and rolling solutions (irrespective of whether the kinetic term is negligible or not).

As a spinoff, we derived analogous bounds on ekpyrosis



Backup






