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de Sitter vacua in String Theory
• Simplest possibility is  . Sophisticated string theory scenarios for realizing dS vacua 

have been developed (KKLT, LVS, …), but a fully explicit construction remains elusive.

• Root of the challenge: source of cosmic acceleration should be derived (not just postulated) 
in a UV complete theory of gravity. 

• It is a formidable task to demonstrate that the microphysics which stabilizes all moduli would 
lead to a theoretically controlled metastable de Sitter vacuum.

• The Dine-Seiberg problem: difficulty in finding parametrically weakly-coupled vacua.
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Asymptotic runaway potentials
This makes runaway to the boundary of field space an interesting possibility.

 [Obied, Ooguri, Spodyneiko, Vafa];[Ooguri, Palti, GS, Vafa]

Cosmic acceleration can be realized with:

• a de Sitter critical point, or

• a runaway potential with ϵ ≡ −
·H

H2
< 1

2

ter q ⌘ �äa/ȧ
2 commonly used in the cosmology litera-

ture by ✏ = 1+ q. Given this distinction between cosmic
acceleration in general and the special case of slow-roll,
we discuss the exact relationships between the scalar-
potential directional derivative, the norm of the scalar-
potential gradient and the fate of cosmic acceleration –
including its time dependence – in a model-independent
way. Scaling cosmologies are special in that they satu-
rate many inequalities and allow for exact checks of more
general bounds. This work therefore naturally connects
with the de Sitter conjecture of the Swampland Program
in that it provides analytic results for the late-time po-
tential gradient norm of multi-field multi-exponential po-
tentials commonly found in the asymptotic regions of the
moduli space in string theory.

Importantly, our mathematical results are completely
general, regardless of any higher-dimensional and/or
string-theoretic assumption. Nonetheless, the structure
of the potentials we characterize is ubiquitous in the
asymptotic regions of the moduli space of string compact-
ifications. This motivates us to discuss implications of
our late-time convergence results for the Swampland Pro-
gram. To help keep track of general results from string
theoretical discussions, all instances in which we make a
string-theoretic assumption will be pointed out explicitly.
Concerning late-time cosmologies, we formulate and give
an analytic proof of a convex-hull criterion for cosmic ac-
celeration. With respect to the universal bound on late-
time acceleration of ref. [16], we show analytically that
the distance of the coupling convex hull from the origin
gives the lower bound for the ✏-parameter, and we fur-
ther show that scaling cosmologies saturate this bound.
Moreover, we introduce a method to compute the lower
bound for the norm of the scalar-potential gradient, as it
is a defining quantity of the de Sitter conjecture. We also
point out that there exist scaling solutions where a subset
of the scalars are stabilized, while the others are rolling.
The fact that scaling solutions are late-time attractors
means that at su�ciently late time, the dynamics of the
rolling fields still keeps the stabilized moduli intact. As
our results do not rely on string-theoretic assumptions,
what we prove is a mathematically-rigorous diagnostic of
cosmic acceleration based on the convex hull of the ex-
ponential couplings. Nonetheless, this convex-hull crite-
rion can be applied to string theoretical models to check
whether the associated couplings allow for cosmic accel-
eration. The same holds for the characterization of the
constant appearing in the de Sitter conjecture. For in-
stance, it has already been discussed by ref. [16] that
a rolling d-dimensional dilaton poses a strong obstacle
to acceleration since it couples universally to all scalar-
potential terms and it does so with a very steep potential
profile. Our formalism makes it clear that the specific
dilaton couplings that appear in string theory rule out
cosmic acceleration in a vast class of models. Recently,
cosmologies with single-field exponential potentials have

received considerable attention in the context of string
theory [12, 13, 26]. Our general results presented here
would enable one to substantially extend such studies.

This paper is organized as follows. In section II, we ex-
tensively review the bound presented in ref. [16] includ-
ing its physical interpretation, and also present a new
bound. In section III, we discuss the convergence criteria
to scaling cosmologies and comment on their mathemat-
ical and physical properties. In section IV, we discuss
implications of our bounds and convergence results for
the Swampland Program. In section V, we discuss a few
illustrative toy models. For ease of presentation, all an-
alytic proofs are presented, in a detailed mathematical
fashion, in appendix A; in the main text, we focus pri-
marily on the physical interpretation of the results. Our
conventions on reference frames and the terminologies
we used for various dilatons and radions are summarized
in appendix B 1. For completeness, we provide in ap-
pendix B 2 useful formulae for the string-theoretic scalar
potentials generated by internal curvature, fluxes, local-
ized sources and Casimir energy.

II. LATE-TIME COSMOLOGIES

We consider low-energy e↵ective theories in which a
number of canonically-normalized scalar fields �a, for a =
1, . . . , n, are subject to a scalar potential of the form

V =
mX

i=1

⇤i e
�d�ia�

a

. (II.1)

We are agnostic about the origin of the potential, whether
it descends from a string compactification, or it simply
describes a phenomenological model without a higher-
dimensional structure. Here, ⇤i and �ia are constants
and they depend on the microscopic origin of the scalar-
potential, if there is one, while d is the d-dimensional
gravitational coupling. In the string-theory context, the
set of scalars �

a includes minimally the d-dimensional
dilaton �̃ and a radion �̃ that controls the string-frame
volume, unless these fields are stabilized at high energy
scales. This general class of potentials also subsumes
e.g. generalized assisted inflation [27, 28]. For d > 2, let
the non-compact d-dimensional spacetime be described
by the FLRW-metric

ds̃
2
1,d�1 = �dt2 + a

2(t) dl2Ed�1 , (II.2)

with an Euclidean (d�1)-dimensional space; the Hubble
parameter is H = ȧ/a, where a is the scale factor. Then,
it can be shown that the scalar-field and Friedmann equa-
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Criterion for acceleration is in general unrelated to 
potential gradient. An aim or our work is to find the link 
(& the conditions for the link to exist) [GS, Tonioni, Tran]

Argument for asymptotic 

exponential fall-off 


[Ooguri, Palti, GS, Vafa]



Asymptotic Dark Energy

• This possibility has recently been explored in various 
forms [Montero, Vafa, Valenzuela];[Rudelius];[Calderon-Infante, Ruiz, 
Valenzuela];[Marconnett, Tsimpis]; [GS, Tonioni, Tran x2]; [Cremonini, 
Gonzalo, Rajaguru, Tang, Wrase]; [Hebecker, Schreyer, Venken];[Van 
Riet];[Andriot, Tsimpis, Wrase];[Revello]; …

• As in many dynamical systems, the late-time regime 
exhibits some universal behaviors. This allows us to 
prove bounds on acceleration [GS, Tonioni, Tran, ’23]

• Like large N expansion for QCD, studying the 
asymptotically late-time behavior may teach us about 
our current (old) universe [a la Dirac].

• Finding asymptotic dark energy in string theory is a 
tall order: all non-rolling fields must be stabilized 
and the runaway potential cannot be too steep. 

Field-space boundaries

𝜙 ∼ ∞(𝑔 ∼ 0)

|𝜙| ≪ ∞(𝑔 ≫ 0)

ii / 5

(weak couplings, approximate 
symmetries, , …)V → 0



Criterion for Cosmic Acceleration
• How do we know if a model leads to cosmic acceleration w/o finding the on-shell solutions?

• (Slow-roll) inflation intuition: 

• Swampland criteria are often stated in terms of gradient and/or curvature of the potential.

• Dynamics is in general much more complicated!

• Time evolution does not follow gradient flow of the potential. Kinetic energy not negligible. 

• Under additional assumptions, late-time solutions approach an attractor known as scaling 
solutions [GS, Tonioni, Tran, 2306.07327]. Non-negligible kinetic energy yet . Before an attractor is 
reached (which can take infinite time), .

• In models with 4d curvature [Andriot, Tsimpis, Wrase],  also fails to provide the right diagnostic.

• Our bound in [GS, Tonioni, Tran, 2303.03418] holds w/o knowledge of the actual solution to eoms.

ϵV ≪ 1, |ηV | ≪ 1

ϵ = ϵV
ϵ ≠ ϵV

ϵV



Summary of Results
• We bound the rate of time variation of the Hubble parameter at late time [GS, Tonioni, Tran, ’23,  STT1] 

The bound provides a useful diagnostic for dark energy models.

• Our bound when applied to string theoretic constructions identifies a generic obstacle to 
acceleration if the -dim. dilation is one of the rolling fields. We also suggest several ways out.

• We prove conditions under which scaling solutions are late-time attractors. Moreover, we 
prove that scaling solutions saturate our bound on  [GS, Tonioni, Tran, ’23, STT2].

• For scaling solutions, we showed w/o assuming that a single 
potential term dominates or whether the kinetic or potential term dominates; in general,  is 
unrelated to acceleration.

• Our results go beyond previous no-goes as we allow for quantum effects and we encompass 
vacua and rolling solutions (irrespective of whether the kinetic term is negligible or not).

• As a spinoff, we derived analogous bounds on ekpyrosis [GS, Tonioni, Tran, ’23, STT3, to appear].

d

ϵ

γ ≡ |∇V | /V = 2 ϵ/(d − 2)
γ

[GS, Tonioni, Tran, ’23 x 3]



Multi-field Cosmology



Multi-exponential potentials
• Our bound applies for any potential that takes the form (also argument by [Ooguri, Palti, GS, Vafa]):

after canonically normalizing the scalar fields to .

• ,  depend on the microscopic origin of ,  = -dim. gravitational coupling. The sources of 
potential include e.g. internal curvature, fluxes, branes/O-planes, Casimir-energy, etc.

•  includes minimally the -dim. dilaton  and the string-frame volume  unless 
they are stabilized; related to string dilaton & Einstein-frame volume by a field rotation.

• We consider scalars rolling towards the boundary of the moduli space, the axions which have a 
compact field space are assumed to be stabilized. The saxions can then be canonically normalized.

• In general, the field space is curved (e.g., the axio-dilaton and the Kahler modulus). Unstabilized 
axions recently considered in [Revello, ’23] where field space curvature cannot be ignored. 

ϕa, a = 1,…, n

Λi γia Vi κd d

{ϕa, a = 1,…, n} d δ̃ σ̃

Accelerating universe at the end of time

Gary Shiu⇤ and Flavio Tonioni†

Department of Physics, University of Wisconsin-Madison,
1150 University Avenue, Madison, WI 53706, USA

Hung V. Tran‡
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We investigate whether an accelerating universe can be realized as an asymptotic late-time solution
of FLRW-cosmology with multi-field multi-exponential potentials. Late-time cosmological solutions
exhibit a universal behavior which enables us to bound the rate of time variation of the Hubble
parameter. In string-theoretic realizations, if the dilaton remains a rolling field, our bound singles
out a tension in achieving asymptotic late-time cosmic acceleration. Our findings go beyond previous
no-go theorems in that they apply to arbitrary multi-exponential potentials and make no specific
reference to vacuum or slow-roll solutions. We also show that if the late-time solution approaches a
critical point of the dynamical system governing the cosmological evolution, the criterion for cosmic
acceleration can be generally stated in terms of a directional derivative of the potential.

I. INTRODUCTION

The discovery of dark energy presents a deep challenge
for quantum gravity. While a number of sophisticated
scenarios for realizing de Sitter vacua in string theory
have been developed (for a recent review, see ref. [1] and
references therein), it is fair to say that a fully explicit
construction remains elusive. The root of the challenge
is that the source of cosmic acceleration should be de-
rived (rather than postulated) in a fundamental theory
of gravity. It is a formidable task to demonstrate that the
microphysics which stabilizes all moduli would lead to a
theoretically controlled metastable de Sitter vacuum.

The Dine-Seiberg problem highlights the di�culty in
finding parametrically weakly-coupled vacua [2]. To
avoid runaway to asymptotic regions of the moduli space
(where the coupling is arbitrarily weak), di↵erent-order
terms in the moduli potential necessarily compete. Hav-
ing arbitrarily weak coupling would mean that there exist
infinitely many vacua, or hidden parameters not related
to vacuum expectation values of any field. This makes
asymptotic runaway potentials an interesting alternative
[3, 4]. Indeed, the observed small numbers and the ap-
proximate symmetries in nature suggest that the current
universe may be approaching an asymptotic region of
the field space. In this work, we study such asymptotic
regions and prove a no-go theorem for an accelerating
universe. As in many dynamical systems, the late-time
regime exhibits some universal behaviors: this allows us
to prove a bound on the rate of change of the Hubble pa-
rameter with only knowledge of the dimension of space-
time. The way we formulate this no-go statement also
makes it clear how to evade it.

The main results of our paper are the following. (i) We
find a bound on the rate of time variation of the Hub-
ble parameter at late time irrespective of whether sta-
tionary (vacua) or scaling solutions (which are the pos-
sible critical points of the dynamical system of inter-

est) are reached. (ii) This bound, when checked against
string-theoretic constructions, imposes a generic obstacle
to acceleration if the dilaton is one of the rolling fields.
This also suggests ways out: for instance, if the dilaton
is stabilized, or rolling in the non-asymptotic region, or if
there are su�ciently many terms in the scalar potential
(with terms of both signs necessarily present), the bound
on acceleration is not automatically violated. (iii) If a
critical point is reached, we can express the proper defi-
nition of the acceleration parameter – defined as the Hub-
ble-parameter time variation – in terms of a directional
derivative, without assuming that a single term domi-
nates in the potential or whether the kinetic or potential
term dominates. We emphasize that in general, the pa-
rameter ✏ = �Ḣ/H

2, rather than the gradient of the po-
tential commonly used as a swampland criterion, is the
proper diagnostic for whether accelerating universes can
occur. The bound (i) and the obstacle (ii) observed go
beyond previous no-go results as we allow for quantum
e↵ects and we encompass vacua, non-vacua, slow-roll and
non-slow roll solutions. Detailed mathematical proofs are
provided in the supplemental material.

II. CONSTRAINTS ON FLRW-COSMOLOGIES

String compactifications typically give rise to low-
energy e↵ective theories in which a number of
canonically-normalized scalar fields �

a, for a = 1, . . . , n,
are subject to a scalar potential of the form

V =
mX

i=1

⇤i e
�d�ia�

a

. (1)

Here, ⇤i and �ia are constants that depend on the mi-
croscopic origin of the scalar-potential, while d is the
d-dimensional gravitational coupling. The set of scalars
�
a includes minimally the d-dimensional dilaton �̃ and



Cosmological Equations

• Non-compact -dim. spacetime is characterized by the FLRW metric:

• Hubble parameter: . The proper diagnostic for cosmic acceleration is                                             

to be distinguished from the slow-roll parameter .

• Scalar field equations and Friedmann equations:

d

H ≡
·a
a

ϵ ≡ −
·H

H2
< 1

ϵV =
d − 2

4
κ2

d ( ∇V
V )

2

2

a radion �̃ that controls the string-frame volume, unless
these fields are stabilized at high energy scales. This
general class of potentials subsumes e.g. generalized as-
sisted inflation [5, 6]. Let the non-compact d-dimensional
spacetime be characterized by the usual FLRW-metric

ds̃
2
d
= �dt2 + a

2(t) dl2Rd�1 ,

with the Hubble parameter defined as H = ȧ/a. One can
reformulate the scalar-field and d-dimensional Einstein
equations in terms of an autonomous system of n + m

ordinary di↵erential equations.
An accelerated cosmological expansion can only be

achieved if the total scalar potential is positive: there-
fore, from now on we focus on the scenario in which, at
least asymptotically, V > 0; scenarios where the sign of
the potential oscillates indefinitely are not contemplated
here. Let ⇤i+ > 0 and ⇤i� < 0 denote the positive-
and negative-definite scalar-potential coe�cients, respec-
tively, distinguishing by the indices i = i+, i�. For each
field �

a, let �a

+ = mini+ �i+
a and �a

� = maxi� �i�
a, and

let �a

+ = maxi+ �i+
a and �

a

� = mini� �i�
a: if their or-

dering is such that �a

+ � �a

� or �a

� � �a

+, we are able to
bound the acceleration parameter ✏ at su�ciently late
times.

Let �
a

+ � �a

�, with (�+)2  4 (d� 1)/(d� 2): if
�
a

+ > 0, let �a

1 = �
a

+; else, let �
a

1 = 0. Then, we are able
to prove that, at all times t > t1, where t1 is a su�-
ciently large time, the acceleration parameter is bounded
from below as

✏ � d� 2

4
(�1)2. (2)

Of course, the acceleration parameter is also bounded
from above as ✏  d� 1. If �a

� � �a

+, then one can re-
define the field as �̂a = ��

a and find the same bound in
terms of the flipped �-coe�cients. All these statements
are proven in the supplemental material: see corollary
2.2 and remarks 6.2-6.3. If (�1)2 > 4 (d� 1)/(d� 2), ir-
respective of the ordering of the �

a

±- and �a

±-coe�cients,
then the acceleration parameter asymptotically ap-
proaches the specific value ✏ = d � 1. Again, we refer
to the supplemental material for a proof: see lemma 3
and remark 6.4.

A special situation is the one in which all terms in the
potential are positive, i.e. ⇤i > 0. In this case, there
are no �

a

�- and �a

�-coe�cients to compare with, and the
bound in eq. (2) is automatically true. This already goes
beyond the condition known for the limited case of a sin-
gle scalar potential: for a single term V (�) = ⇤ e�d��,
the late-time Hubble parameter takes the form H = q/t,
with q = max {1/(d� 1), 4/

⇥
(d� 2)�2

⇤
}, depending on

the magnitude of � [7]; we also emphasize that it is gen-
erally not correct to assume that one exponential po-
tential will dominate over the others, since for instance
scaling solutions are such that all terms fall over time
in exactly the same way. In view of the bound in eq.

(2), if the condition (�1)2 � 4/(d� 2) holds, there can-
not be accelerated expansion. It should be noticed that
the bound becomes trivial for all cases in which �

a

1 = 0
for all fields �

a: this is the case, for instance, of (gen-
eralized) assisted inflation. However, in string-theoretic
constructions, this contrived situation is not encountered
in the standard potentials generated by non-trivial cur-
vature, NSNS-fluxes, heterotic Yang-Mills fluxes, type-II
RR-fluxes, type-II D-brane/O-plane sources and generic
Casimir-energy terms. In fact, here the d-dimensional
dilaton �̃ always appears with a �-coe�cient such that

�
2
�̃
� 4

d� 2
. (3)

This can be motivated as a consequence of the fact that
all interactions in any string-frame e↵ective action, in
terms of the 10-dimensional dilaton �, are weighed by
string-coupling powers of the form f(�) = e��E�, with
�E being the Euler number that weighs the perturbative
order via the string-worldsheet topology: as the mini-
mum value, for tree-level interactions, corresponds to a
sphere �E(S2) = 2, one can never violate eq. (3). Be-
cause (�1)2 � �

2
�̃
, this necessarily rules out late-time ac-

celerated expansion in all string-theoretic constructions
with positive-definite scalar-potential terms in which the
dilaton appears as one of the rolling scalar fields.
In a more general scenario where some of the scalar-

potential terms are negative-definite, the bound in eq.
(2), together with the dilaton coupling in eq. (3), does
not automatically give an insurmountable obstruction. It
is indeed harder to draw general conclusions because the
dilaton could appear in such a way as to satisfy neither
of the requirements �

�̃

± � ��̃

⌥. An exception to this im-
passe is the simple situation with only two terms in the
potential, a positive and a negative one: in this case, one
has �

�̃

± = ��̃

±, and one of the two inequalities �
�̃

± � ��̃

⌥
is necessarily in place. Therefore, an accelerating uni-
verse involving a rolling dilaton would minimally require
at least three terms in the potential, not all of the same
sign.
Although the dilaton field is in principle coupled to all

the scalar-potential terms, it could be stabilized. If the
dilaton is not a rolling scalar, then we cannot draw fully
general conclusions based on eq. (2) since the other fields,
such as radions and complex-structure moduli, are not
characterized by universal features but rather depend on
the structure of the internal space. Evidently, the same
can also be said in other phenomenological constructions
that disregard a possible string-theoretic origin, since in
principle the exponential couplings are not necessarily
constrained by universal principles. Qualitatively, a gen-
eral expectation is the following: the presence of large
numbers of scalar-potential terms has a tendency to ease
the restrictions since, for all fields, it makes it harder to
fall in the condition �

a

1 > 0; conversely, a large number of
rolling fields tends to obstruct acceleration, since the co-

Cosmological late-time attractors
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We discuss the conditions under which scaling solutions are inevitable late-time cosmological
attractors of multi-field multi-exponential potentials. [...]

I. INTRODUCTION

[...]
A point that we highlight is the following: the ✏-

parameter is defined as ✏ = �Ḣ/H
2, which is the

physically-meaningful measure of the acceleration rate of
the scale factor.

[...]
All our conventions on reference frames and on our

dilaton and radion terminology are summarized in ap-
pendix A1. For completeness, a review of the string-
theoretic scalar potentials generated by non-trivial cur-
vature, NSNS-fluxes, heterotic Yang-Mills fluxes, type-II
RR-fluxes, type-II D-brane/O-plane sources and generic
Casimir-energy terms is in appendix A 2.

II. LATE-TIME COSMOLOGIES

String compactifications typically give rise to low-
energy e↵ective theories in which a number of
canonically-normalized scalar fields �

a, for a = 1, . . . , n,
are subject to a scalar potential of the form

V =
mX

i=1

⇤i e
�d�ia�

a

. (II.1)

Here, ⇤i and �ia are constants that depend on the mi-
croscopic origin of the scalar-potential,1 while d is the
d-dimensional gravitational coupling. The set of scalars
�
a includes minimally the d-dimensional dilaton �̃ and

a radion �̃ that controls the string-frame volume, unless
these fields are stabilized at high energy scales. This
general class of potentials subsumes e.g. generalized as-
sisted inflation [1, 2]. Let the non-compact d-dimensional
spacetime be characterized by the usual FLRW-metric

ds̃
2
1,d�1 = �dt2 + a

2(t) dl2Rd�1 , (II.2)

1 For completeness, we provide an overview of generic string-
theoretic multi-field multi-exponential potentials in app. A 2.

with the Hubble parameter H = ȧ/a. Then, it can be
shown that the scalar-field and Friedmann equations re-
duce to

�̈
a + (d� 1)H�̇

a +
@V

@�a

= 0, (II.3a)

(d� 1)(d� 2)

2
H

2 � 
2
d


1

2
�̇a�̇

a + V

�
= 0, (II.3b)

Ḣ = � 
2
d

d� 2


1

2
�̇a�̇

a � V

�
� d� 1

2
H

2
, (II.3c)

where for simplicity it has been assumed that the scalars
only depend on the FLRW-metric time parameter. A
combination of eq. (II.3b) with eq. (II.3c) gives

Ḣ = � 
2
d

d� 2
�̇a�̇

a
. (II.4)

One can reformulate the scalar-field and Friedmann equa-
tions in terms of an autonomous system of ordinary dif-
ferential equations.
A comment on canonical normalization is in order. In

string-theoretic realizations, the moduli space is not al-
ways flat, typically due to the presence of axions.2 For
instance, in type-II compactifications with N4 = 1 su-
persymmetries, typically such axions ✓ belong to chi-
ral supermultiplets as components of complex scalars
⇠ = ✓ + i el', where ' is one of the moduli that in our
models are canonically normalized, provided the constant
rescaling ' = (

p
24/

p
nl)�, here assumed to approach

the boundary as ' ! 1, and l and n are constants that
depend on the details of the fields, with Kähler poten-
tials of the form 

2
4K = �n ln [�i(⇠ � ⇠)]. In this case,

2 For instance, we can consider the type-IIB axio-dilaton ⌧ = C0+
i e�� and Kähler modulus ⇢ = a+ i e4! , where C0 and a are the
0- and 4-RR-form axions, respectively. In the presence of 3-form
flux G3 = F3 � ⌧H3, in a 4-dimensional Calabi-Yau orientifold
compactification, their purely kinetic action can be read o↵ the
Kähler potential [3, 4]

2

4K = �ln [�i(⌧ � ⌧)]� 3 ln [�i(⇢� ⇢)] + ln
2

⇡
.



Cosmological Autonomous System

• It is convenient to work with the rescaled variables:

• The cosmological equations can be formulated in terms of an autonomous system of ODEs 
given schematically as follows:

• Among the above ODEs is ; strategy is to bound the kinetic energy.

• Friedmann equation also takes a simple form:

ϵ = − ·H/H2 = (d − 1)x2

d ⃗z
dt

= g( ⃗z) , where ⃗z ≡ (x1, …, xn, y1, …, ym, H)

Cosmological equations as an autonomous system

▶ cosmological equations:

⎧{{{{⎨{{{{⎩
̈𝜙𝑎 + (𝑑 − 1)𝐻 ̇𝜙𝑎 + 𝜕𝑉𝜕𝜙𝑎 = 0(𝑑 − 1)(𝑑 − 2)2 𝐻2 − 𝜅2𝑑[12 ̇𝜙𝑎 ̇𝜙𝑎 + 𝑉] = 0�̇� = − 𝜅2𝑑𝑑 − 2 ̇𝜙𝑎 ̇𝜙𝑎

▶ let 𝑥𝑎 = 𝜅𝑑√𝑑 − 1√𝑑 − 2 ̇𝜙𝑎𝐻 , 𝑦𝑖 = 𝜅𝑑√2√𝑑 − 1√𝑑 − 2 √𝑉𝑖𝐻
with 𝑓 = (𝑑 − 1)𝐻, 𝑐𝑖𝑎 = 12 √𝑑 − 2√𝑑 − 1 𝛾𝑖𝑎

Copeland, Liddle, Wands [gr-qc/9711068]
Coley, van den Hoogen [gr-qc/9911075]

Guo, Piao, Zhang [hep-th/0304048]
cosmological equations:̇𝑥𝑎 = [−𝑥𝑎(𝑦)2 + 𝑚∑𝑖=1 𝑐𝑖𝑎(𝑦𝑖)2] 𝑓, for

⎧{⎨{⎩
(𝑥)2 + (𝑦)2 = 1̇𝑓𝑓2 = −(𝑥)2

4 / 20(x)2 + (y)2 = 1



Bound on Late-time Cosmic Acceleration

• An accelerating universe can only be achieved if the total scalar potential is positive; we 
therefore focus on scenarios in which  at least asymptotically.

• Individual potential terms can be positive or negative: our proof covers general cases but for 
clarity, let us first show how we bound the case when  [General case in STT1].

• Rank order the exponents:

• Then we derived analytically a late-time acceleration bound:

V > 0

Λi > 0
Late-time bound on cosmic acceleration
Positive potentials

if all Λ𝑖 > 0, let 𝛾𝑎∞ = { 𝛾𝑎, 𝛾𝑎 = min𝑖 𝛾𝑖𝑎 > 00, 𝛾𝑎 ≤ 0
then analytic late-time bounds𝑑 − 1 ≥ 𝜖 ≥ 𝑑 − 24 (𝛾∞)2
example:

𝜙𝑎 = 𝜙1, 𝜙2𝛾𝑖𝑎 = ⎛⎜⎜⎝𝛾11 𝛾12𝛾21 𝛾22𝛾31 𝛾32⎞⎟⎟⎠
𝛾∞1

𝛾∞2

𝜇1

𝛾11

𝛾12
𝜇2

𝛾21

𝛾22
𝜇3

𝛾31

𝛾32

(𝛾∞)2 = (𝛾21)2 + (𝛾12)2
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The bound holds w/o assuming 
knowledge of the actual

 time-dependent solution.



Visualizing the Acceleration Bound

• Define vectors  vectors , one for each potential term with components m μi (μi)a = γia
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�
a = �

1
,�

2

�ia =

0

@
�11 �12

�21 �22

�31 �32

1

A

�11

�12

µ1

�11

�12

µ2

�21

�22

µ3

�31

�32

(�1)2 = (�21)2 + (�12)2

�2 = 4
d� 1

d� 2

FIG. 1. A graphical representation of the acceleration bound
for positive scalar-potential terms with positive exponential
couplings.

�
a = �

1
,�

2

�ia =

0

@
�11 �12

�21 �22

�31 �32

1

A

�11

�12

µ1

�11

�12

µ2

�21

�22

µ3

�31

�32

(�1)2 = (�12)2

FIG. 2. A graphical representation of the acceleration bound
for positive scalar-potential terms with both positive and neg-
ative exponential couplings: the bound is less restrictive than
with positive-only couplings but still non-trivial.

In the presence of both positive- and negative-definite
terms in the potential, the interpretation of the bound
is trickier, since it depends on the fine details of the hi-
erarchies and of the relative sizes of all the couplings.
It should not be forgotten that we are always assuming
the total potential to be positive, as this is a prereq-
uisite to even hope for acceleration. As apparent from
eq. (II.3c), a smaller potential provides a larger ✏, so
studying solutions such that V > 0 is by itself the most
optimistic scenario anyway, since negative-definite terms
may even induce a negative potential. A schematic rep-
resentation of the bound in the presence of both positive-

and negative-definite scalar potentials is in fig. 3.

�
a = �

1
,�

2

�i±a =

✓
�1±1 �1±2

�2±1 �2±2

◆

�11

�12

�+1

�+2

�+1

�+2

��1

��2

��1

��2

�̂+2

�̂+2

�̂�2

�̂�2

(�1)2

FIG. 3. A graphical representation of the acceleration bound
for both positive- and negative-definite scalar-potential terms
in a 2-field potential with two positive and two negative terms.
Here, the solid teal and green lines represent the exponential
couplings for the positive- and negative-definite terms in the
potential, respectively; the dotted teal and green lines repre-
sent the couplings that one has after flipping the sign of the
field �2, which is necessary for the application of our formal-
ism (the field �1 does not require any flip). Although it is less
straightforward to express the lower bound, the definition of
the (�1)2-term is analogous to the case of a positive-definite
scalar potential.

A noteworthy observation to make is that the bound
in eq. (II.5) generically rules out late-time slow roll. In-
deed, we can immediately that the on-shell late-time w-
parameter of the cosmological fluid of a multi-field multi-
exponential potential is bounded from below as

w =
T � V

T + V
� �1 +

1

2

d� 2

d� 1
(�1)2. (II.6)

This clearly shows that, as long as the (�1)2-parameter
is not infinitesimally small, or vanishing, the kinetic en-
ergy T = �̇a�̇

a
/2 is not parametrically suppressed with

respect to the scalar potential energy V . new con-
sideration
(trivial
but please
check)

Flavio

agreed
Hung

To conclude, we discuss an important observation on
the bound in eq. (II.5) that is not discussed explicitly
in ref. [5]: clearly, the bound is basis-dependent (this
is also apparent for instance in figs. 1 and 2). In fact,
the action is invariant under field-space O(n)-rotations
�̂
a = R

a

b
�
b, provided that one also redefines the expo-

nential couplings as �̂ia = �ia(R�1)b
a
. Therefore, one

can refine the bound by rotating the field-space basis that
maximizes the lowest-possible value that the acceleration



Optimizing the Acceleration Bound

• It is clear that we can find an optimal bound by an  rotation [GS, Tonioni, Tran, ’23]: O(n)

Analysis of the acceleration bound
Further comments

• the late-time bound is basis-dependent
• we can maximize it by a field-space basis rotation

𝛾∞1

𝛾∞2

𝜇1
𝛾11

𝛾12
𝜇2

𝛾21

𝛾22
𝜇3

𝛾31

𝛾32
(𝛾∞)2 = (𝛾12)2

𝜙𝑎 = 𝜙1, 𝜙2
𝛾𝑖𝑎 = ⎛⎜⎜⎝𝛾11 𝛾12𝛾21 𝛾22𝛾31 𝛾32⎞⎟⎟⎠

𝛾∞1

𝛾∞2

𝜇1
𝛾11

𝛾12
𝜇2

𝛾21

𝛾22
𝜇3

𝛾31

𝛾32 ̂𝛾∞1

̂𝛾∞2
( ̂𝛾∞)2
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4

parameter can take. In practice, the optimal version of
the bound can be expressed as

✏ � d� 2

4
max

R2O(n)
[�1(R)]2, (II.7)

where R 2 O(n) indicates all possible O(n)-rotations in
the n-dimensional field-space basis and [�1(R)]2 repre-
sents the (�1)2-coe�cient computed in the R�1-rotated
field-space basis. Although this formulation of the bound
is even stronger than the previous one, there can still
be situations in which the bound happens to be trivial.
From now on, we will express the optimal bound in eq.
(II.7) by referring to the quantity

(�̂1)2 = max
R2O(n)

[�1(R)]2,

which specifies the bound assuming that we have rotated
the field-space basis in such a way as to reach the best
bound among all the possible ones. Of course, all con-
siderations made so far in terms of the quantity (�1)2

also immediately translate to the quantity (�̂1)2. A
schematic intepretation of the bound of eq. (II.7) is pro-
vided in figs. 4 and 5.

�
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�21 �22

�31 �32
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�11

�12

µ2

�21

�22

µ3

�31

�32 �̂11

�̂12

(�̂1)2

FIG. 4. A graphical representation of the optimal late-time
acceleration bound ✏ � [(d� 2)/4] (�̂1)2: lighter lines denote
the original field basis, while darker lines denote the basis
with the maximal lower bound.
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1
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2

�ia =

✓
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�21 �22

◆

�11

�12

µ1

�11

�12

µ2

�21

�22

µ3

�31

�32

(�̂1)2 = 0

FIG. 5. A graphical representation of a situation in which the
acceleration bound is trivial. In a scenario like this, we do not
see any obstruction for late-time acceleration (or even for de
Sitter vacua).

B. Alternative late-time acceleration bounds

As usual, we assume that the total scalar potential
is positive, but make no assumption on the sign of the
individual contributions. Let �(�)

a be the solutions to
the system of equations

�ia�
a = (�)2,

for each index i = 1, . . . ,m, where the �-subscript is
a label for each of the solutions. Then, if we define
�
2 = max�(�(�))

2 and �
2
1 = min{d� 1, �2}, we can show

that the late-time acceleration parameter is bounded
from below as

✏ � d� 2

4
�
2
1. (II.8)

A mathematical proof of this is in appendix B: see corol-
lary 2.1 and remark 2.3. Such a bound is generally dif-
ferent from the bound in eqs. (II.5, II.7): it requires
di↵erent conditions to apply and it may be more or less
restrictive, on a case-by-case basis.

III. LATE-TIME SCALING COSMOLOGIES

Although the bounds in eqs. (II.5, II.7) and eq. (II.8)
are strong and powerful ones, in certain conditions we
can do even more and compute the late-time ✏-parameter
analytically. This is going to be discussed below.

The bound is basis-independent.



How to use our bound?

• Given a model, we can check if the minimum distance to the coupling convex hull is smaller 
than 1. Our bound does not assume any on-shell solutions nor kinetic terms are negligible.

• Easy to find bottom-up models of accelerating universe, e.g., the bound can even be trivial.

• The challenge is to find: 

• couplings like these in string theory, and 

• to stabilize the remaining non-rolling moduli

• Are there universal moduli that set already a strong bound?

• Each of the canonical scalars contributes positively to the bound.

• Additional rolling fields strengthen further the bound.

[GS, Tonioni, Tran, ’23]

Acceleration bound: an optimistic scenario

observation 1:
on paper, there are plenty of possibilities for late-time acceleration!

𝜙𝑎 = 𝜙1, 𝜙2𝛾𝑖𝑎 = (𝛾11 𝛾12𝛾21 𝛾22)
𝛾∞1

𝛾∞2
𝜇1

𝛾11
𝛾12

𝜇2

𝛾21

𝛾22

𝜇3

𝛾31

𝛾32

( ̂𝛾∞)2 = 0

observation 2:
however, it is hard to find coupling like these, in string theory
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Obstruction by the Dilaton
• String-theoretical potentials take the form:

RR fields are not weighed by  (effectively set ) but would not affect our argument.

• The -dim. dilaton  is a linear combination of the 10d dilaton  and Einstein frame volume.

• While the field basis choice is not unique, d-dimensional dilaton   has universal properties: 

• Ways out: 1)  is stabilized; 2)  is rolling but not in the asymptotic regions; 3)  contains at 
least three terms, not all of the same sign (e.g., from loop corrections).

• Non-universal couplings for other moduli: can use our bound to constrain compactifications.

e−χEΦ χE = 0

d δ̃ Φ

δ̃

δ̃ δ̃ V

Dilaton obstruction
Universal bound and ways out

generic string-theoretic potential:𝑆 = − ∫
X1,9[𝐴𝑟 ∧ ⋆1,9𝐴𝑟] Λ10,𝑟 e−𝑘𝜎−𝜒EΦ = − ∫

X1,𝑑−1̃∗1,𝑑−1Λ e𝜅𝑑[𝛾 ̃𝛿(𝜒E) ̃𝛿−𝛾�̃�(𝜒E,𝑟,𝑘)�̃�]
- string frame: 𝜎, string-frame radion; Φ = ln 𝑔𝑠, 10-dim. dilaton
- Einstein frame: �̃�, can. string-frame radion; ̃𝛿, can. 𝑑-dim. dilaton▶ universal ̃𝛿-coupling structure: 𝛾 ̃𝛿 = 𝑑√𝑑 − 2 − 12𝜒E

√𝑑 − 2
• upper bound on 𝛾 ̃𝛿: 𝜒E ≤ 2, so 𝛾 ̃𝛿 ≥ 2√𝑑 − 2
• lower bound on 𝜖: 𝜖 ≥ 𝑑 − 24 (𝛾∞)2 ≥ 𝑑 − 24 𝛾2̃𝛿 ≥ 1

different argument, but related conclusion, in Rudelius [hep-th/2101.11617]
ways out:

- theory not at weak string coupling
- stabilized dilaton
- presence of negative-definite potential terms:

bound takes a different form, less obvious but still restrictive!
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different argument, but related conclusion, in Rudelius [hep-th/2101.11617]
ways out:

- theory not at weak string coupling
- stabilized dilaton
- presence of negative-definite potential terms:

bound takes a different form, less obvious but still restrictive!
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Scaling Solutions
• The cosmological autonomous system admits scaling solutions ( constant ):

• scale factor takes a power law form: 

• critical points of the autonomous system: 

• Analytic solution: for 

• field space trajectory:

• scale factor: 

• The kinetic term & every potential term have the same parametric dependence in time:

ϵ = > 0

a(t) ∼ tp

·xa = 0

rank γia = m

3

e�cient (�1)2 is additive. In fact, more scalar-potential
terms tend to flatten the total potential, whereas more
scalar fields tend to make it steeper, therefore these con-
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Even with all the caveats above, we stress that the
bound applies only to quintessence-like proposals in
which one assumes that we are currently observing an
asymptotic regime of the cosmological evolution. It does
not inform us about inflation since the latter can be real-
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III. PROPERTIES OF SCALING

COSMOLOGIES
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factor is of power-law form, i.e. scaling solutions, have a
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+  4 (d � 1)/(d �
2), due to eq. (2), at su�ciently late times, the scale
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Scaling solutions can be characterized analytically [10].
If the rank of the �ia-matrix matches the number of
terms in the scalar potential, i.e. if rank �ia = m, then
rolling-scalar solutions are general. Given the matrix
Mij = �ia�j

a, rolling-scalar solutions exist of the form
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with a scale-factor power
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j=1

(M�1)ij .

It can also be shown that in this case there are no de
Sitter vacua. If the rank of the �ia-matrix is smaller

than the number of terms in the scalar potential, i.e.
if rank �ia < m, then rolling-scalar solutions are not
general. One can see this as a consequence of the fact
that the scalar-potential terms outnumber the scalars
and therefore, generically, they tend to constrain their
dynamics into stationary points. Nevertheless, if they ex-
ist, such rolling solutions are mathematically analogous
to the ones above.
All in all, for a given time t1, let the generic scalar-

field trajectories corresponding to a scaling solution
a(t) = a1(t/t1)q, with q � 1/(d � 1), be parameter-
ized as
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a
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a
/

p
↵b↵b, which fol-

lows the trajectory of the time evolution of the scalar
fields over the moduli space, we can show that the nor-
malized directional derivative of the scalar potential is
related to the expansion rate as

�⇤ = �


1

V (�⇤)
✓
a

⇤
@V

d @�
a
⇤
(�⇤)

�
=

2p
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This can be proven by exploiting explicitly the analytic
properties of scaling solutions. Therefore, the power-
law scale-factor evolution is accelerated – meaning that
the condition ✏ < 1 holds – only if the directional scalar-
potential coe�cient is bounded as �⇤ < 2/

p
d� 2.

A point that should be emphasized is the follow-
ing: the ✏-parameter measures the rate of acceleration
of the FLRW-metric scale factor and it is defined as
✏ = �Ḣ/H

2. It can be estimated via the gradient of
the potential, i.e.

� =

p
�ab @aV @bV

dV
, (5)

only under the slow-roll approximation, by which one
may approximately write ✏ = �Ḣ/H

2 ' (d� 2) �2
/4.

For instance, for theories with finite �1-coe�cients, as
dictated by eq. (2), and for scaling scenarios, the slow-
roll approximation is generically invalid. For the former,
this is obvious as long as (�1)2 & 4/(d� 2). For the lat-
ter, the terms that should be dropped in the slow-roll
approximation, despite being numerically smaller by a
factor q(d� 1) � 1, decrease over time in the same para-
metric way as the terms that would be kept. Therefore,
the parameter � is not necessarily a meaningful quantity
to describe the expansion rate: in this case, the scalar-
potential shape determines the rate of acceleration via
the parameter �⇤ in eq. (4).
As scaling solutions can be characterized analytically,

we can easily discuss swampland conjectures in theories
of exponential-only scalar potentials.
To start, we highlight the fact that one can always

identify a single scalar field that serves as a measure ofT(t) = T(t0) ( t0
t )

2

, Vi(t) = Vi(t0) ( t0
t )

2

No slow-roll:
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and the field equations thus read
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2 + l

2
'̇
2 + V

⇤
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So, if the initial conditions are such that '0 � 1, then
the ✓-equation is dominated by the potential term, which
stabilizes the axion at a constant value, and the ✓-' mix-
ing term in the '-equation and the axion kinetic term
in the Friedmann equation are highly suppressed. As
the time evolution is consistent with dropping the same
terms at any time, it is consistent to neglect the axions.
In physical terms, one can see that the asymptotic field-
space metric is such that the axionic kinetic term is highly
suppressed, thus explaining the reason why the axion can
be assumed to be stabilized by the potential and disre-
garded.

III. LATE-TIME SCALING COSMOLOGIES

Although the bounds in eqs. (II.8, II.10) and eq.
(II.13) are strong ones, in certain conditions we can do
even more and compute the late-time ✏-parameter ana-
lytically. We discuss how to do this below.

A. Scaling cosmologies

Scaling cosmologies are defined as solutions to the
Friedmann equations in which the scale factor is of power-
law form, meaning that it evolves over time as

a(t) = a0

⇣
t

t0

⌘p

, (III.1)

where the constant and positive power p is related to
the Hubble parameter through the identity H = p/t and
to the ✏-parameter as ✏ = 1/p, which is necessarily con-
stant and positive. For a multi-field multi-exponential
potential, scaling cosmologies are well-known exact so-
lutions to the cosmological equations and, in particular,
they correspond to the critical points of the cosmologi-
cal autonomous system. In this subsection we consider
the scaling cosmologies that generically always exist, fol-
lowing the classification of ref. [15]; more details can be
found in appendix A: see lemmas 3 and 5.

In detail, we consider the case in which the rank of the
�ia-matrix matches the number of terms in the scalar
potential, i.e. rank �ia = m. This can easily be the
case whenever the number of fields is not smaller than
the number of scalar-potential terms, i.e. n � m. If

rank �ia = m and also n = m, then the scalar poten-
tial can be regarded as the non-trivial multi-field ex-
tension of a single-field exponential potential; if instead
rank �ia = m and n > m, the scalar fields outnumber the
scalar-potential terms, but then we can rotate the field-
space basis and obtain a theory where n�m scalars are
flat directions, thus reducing the problem to the previ-
ous case. If this rank-condition rank �ia = m is in place,
then, given the matrix Mij = �ia�j

a, rolling-scalar solu-
tions exist of the form

�
a

⇤(t) = �
a

0 +
2

d

 mX

i=1
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j=1

�i
a(M�1)ij

�
ln
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, (III.2)

where the scale-factor power is

p =
4

d� 2

mX

i=1

mX

j=1

(M�1)ij . (III.3)

It can also be shown that in this case there are no de
Sitter stationary points. Physically, this is because the
shape of the multi-dimensional exponential potential is
not complicated enough to constrain the fields into a sta-
tionary point. It may also be the case that n � m, but
rank �ia < m, in which case scaling solutions may exist
but are not of the form above. Scaling cosmologies in
cases with rank �ia < m are discussed in subsec. III E.
Before moving on, we stress an obvious but important

point: scaling cosmologies do not respect the slow-roll
approximation, by which one drops the second-derivative
term and the kinetic energy in eqs. (II.3a, II.3b, II.3c),
and thanks to which one manages to express the ✏-
parameter through the gradient of the scalar potential.
This is obvious from eq. (III.2) and it will be commented
on also in subsubsecs. III C 1 and III C 3. All this means
that, in a scaling cosmology, the slow-roll conditions are
not fulfilled. Nonetheless, accelerated expansion is still
possible if p > 1.

B. Scaling cosmologies as late-time attractors

Scaling cosmologies can be perturbatively-stable at-
tractors of theories with multi-field multi-exponential po-
tentials [17–23]. Moreover, at su�ciently late times, if
(�̂1)2  �2

d
, in view of eq. (II.10), the scale factor is

bounded from below and from above by power-law evolu-
tion; if (�̂1)2 > �2

d
, scaling solutions are inevitable, with

a power p = 1/(d� 1). In this paper, we extend these ob-
servations by proving that, under certain conditions, scal-
ing cosmologies are late-time attractors independently of
the initial conditions, thus going beyond a perturbative
analysis.
Given n canonically-normalized scalars �a, let a multi-

exponential potential of the form V =
P

m

i=1 ⇤i e�d�ia�
a

,
as in eq. (II.1), in a d-dimensional FLRW-metric, as in
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It can also be shown that in this case there are no de
Sitter stationary points. Physically, this is because the
shape of the multi-dimensional exponential potential is
not complicated enough to constrain the fields into a sta-
tionary point. It may also be the case that n � m, but
rank �ia < m, in which case scaling solutions may exist
but are not of the form above. Scaling cosmologies in
cases with rank �ia < m are discussed in subsec. III E.
Before moving on, we stress an obvious but important

point: scaling cosmologies do not respect the slow-roll
approximation, by which one drops the second-derivative
term and the kinetic energy in eqs. (II.3a, II.3b, II.3c),
and thanks to which one manages to express the ✏-
parameter through the gradient of the scalar potential.
This is obvious from eq. (III.2) and it will be commented
on also in subsubsecs. III C 1 and III C 3. All this means
that, in a scaling cosmology, the slow-roll conditions are
not fulfilled. Nonetheless, accelerated expansion is still
possible if p > 1.

B. Scaling cosmologies as late-time attractors

Scaling cosmologies can be perturbatively-stable at-
tractors of theories with multi-field multi-exponential po-
tentials [17–23]. Moreover, at su�ciently late times, if
(�̂1)2  �2

d
, in view of eq. (II.10), the scale factor is

bounded from below and from above by power-law evolu-
tion; if (�̂1)2 > �2

d
, scaling solutions are inevitable, with

a power p = 1/(d� 1). In this paper, we extend these ob-
servations by proving that, under certain conditions, scal-
ing cosmologies are late-time attractors independently of
the initial conditions, thus going beyond a perturbative
analysis.
Given n canonically-normalized scalars �a, let a multi-

exponential potential of the form V =
P

m

i=1 ⇤i e�d�ia�
a

,
as in eq. (II.1), in a d-dimensional FLRW-metric, as in

[Copeland, Liddle, Wands, ’97] 
[Collinucci, Nielsen, Van Riet, ’04]



Scaling Solutions: Relevance
• Late time scale factor is bounded by power-law behavior [GS, Tonioni, Tran, ’23, STT1]:

• Scaling solutions are perturbative late-time attractors (linear stability) See e.g. [Hartong, Ploegh, Van 
Riet, Westra]

• New result [GS, Tonioni, Tran, ’23, STT2]: we can analytically prove that if

1. all potential terms are positive definite, i.e., , and

2.                                    subject to                   [no apparent subleading terms] 

then scaling solutions are late-time attractors, irrespective of initial conditions, and furthermore 
saturate the lower bound!

• We can actually drop condition 2 in the proof; see forthcoming paper [GS, Tonioni, Tran, to appear].

Λi > 0
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Given n canonically-normalized scalars �a, let a multi-
exponential potential of the form V =

P
m

i=1 ⇤i e�d�ia�
a

,
as in eq. (II.1), in a d-dimensional FLRW-metric, as in
eq. (II.2). Under certain assumptions, we are able to
prove analytically the late-time form of any cosmological
solution to eqs. (II.3a, II.3b, II.3c). In particular, we
focus on two distinct cases.

First, we consider scenarios that correspond to proper
scaling solutions. In particular, let the following condi-
tions be in place.

(i) All scalar potential terms are positive-definite, i.e.
⇤i > 0, for all i-indices. In physical terms, this
means that we consider scalar potentials that are
bounded from below to be larger than zero. Also,
let rank �ia = m: this is a necessary condition for
the scaling solutions in eqs. (III.2, III.3) to exist.

(ii) Given the matrix Mij = �ia�j
a, for all i-indices we

have the inequalities

�
i =

mX

j=1

(M�1)ij � 0,

subject to the additional condition

mX

i=1

�
i
> 0.

Physically, this means that the scalar-potential
terms are such that there cannot be any apparent
notion of subdominating terms (see e.g. discussion
in subsecs. IVB and IVC).

(iii) The time-integral of 2
d
V/H is divergent, i.e.

� =

Z 1

t0

dt [(d� 1)� ✏(t)]H(t) = 1.

Intuitively, this represents the fact that the �ia-
couplings are not too large, since, if they were, then
we would have � < 1 [3].

In case conditions (i), (ii) and (iii) are satisfied, we can
show that the late-time solutions to the scalar-field and
Friedmann equations are the scaling solutions in eqs.
(III.2, III.3). This is proven in appendix A: see theorem
2. This is the first analytic proof that scaling cosmologies
are attractors of the scalar-field and Friedmann equations
for a multi-scalar multi-exponential scalar potential and
it represents the fundamental result of this paper.

Second, we consider scenarios that correspond to de-
generate non-proper scaling cosmologies: from now on,
we define them to be the aforementioned scenarios in
which the integral � is finite. If we have

� =

Z 1

t0

dt [(d� 1)� ✏(t)]H(t) < 1,

then the acceleration parameter asymptotically ap-
proaches the value ✏ = d � 1 [3]. Notice that this is
the case whenever we have (�̂1)2 > 4 (d� 1)/(d� 2), in
the terminology of subsec. II A; in this case, we do not
even need to consider conditions (i)-(ii), but it is enough
to have a positive-definite potential.

An important point to notice is the following. As-
suming conditions (i)-(ii) to be verified by the scalar
potential of interest, we are faced with a conceptual
impasse: in order to compute �, we need to know
the field-space trajectories, but to determine the field-
space trajectories, we need to know whether � is di-
vergent. Unfortunately, the only situation in which
this impasse is known to be bypassed is if we have
(�̂1)2 > 4 (d� 1)/(d� 2), as explained above. In all
other cases, what we can conclude is only the following:
we either have the proper scaling solution or the degener-
ate non-proper solution, namely the acceleration param-
eter is either ✏ = [(d� 2)/4]/

⇥P
m

i=1 �
i
⇤
, or ✏ = d� 1.4 In

what follows, if conditions (i)-(ii) are met, we will pri-
marily discuss the proper scaling solution, but with the
caveat in mind that the degenerate non-proper scaling
solution may also be the actual attractor (as a priori we
do not know whether � is infinite or not). Since we are
concerned with cosmic acceleration, therefore, even if we
find an accelerating proper scaling solution, this is just
a necessary check that accelerated expansion is possible,
but without any su�ciency condition being known to be
in place as well.

In case some of the terms �i are negative, we are cur-
rently unable to prove any convergence results. How-
ever, physical intuition suggest us that it happens that
�
i
< 0 in cases in which the scalar-potential term Vi is

asymptotically subdominant. Our intuition is based on
the considerations in subsecs. IVB and IVC and on ear-
lier perturbative and numerical analyses in refs. [4–6].
Therefore, we expect that one may able to prove conver-
gence to the scaling solution that one obtains after e↵ec-
tively truncating the potential to the sum V =

P
m1
�=1 V�,

with � = 1, . . . ,m1  m, where the subset of �-indices
denotes a set of potentials such that �� � 0 [15].

At present, we do not have a fundamental physical in-
terpretation of the integral �. However, we can observe
a few noteworthy features. To start, given the parameter
⌘ = �✏̇/(✏H), one can qualitatively see that � < 1 re-
quires the asymptotic behaviors ✏(t ⇠ 1) . (d� 1)� `/t

and �⌘(t ⇠ 1) & `/t, for some positive constant `. 5 It please
confirm
✏(t⇠1).
(d�1)�
`/t after
recent
rethinking

Flavio

agreed
Hung

is harder to prove any complementary implications since

4 Although conceptually this impasse also appears in the bound
proven in ref. [3], namely the bound reviewed here in eq. (II.9),
that situation is easier. Indeed, if (�̂1)2  4 (d� 1)/(d� 2),
then we have [(d� 2)/4] (�̂1)2  ✏  d� 1 if � = 1 and ✏ =
d� 1 if � < 1: therefore, whichever the value of � is, a conser-
vative claim is that, at least, one has ✏ � [(d� 2)/4](�̂1)2.

5 For a finite integral � < 1, we know the late-time behaviors
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in place as well.

In case some of the terms �i are negative, we are cur-
rently unable to prove any convergence results. How-
ever, physical intuition suggest us that it happens that
�
i
< 0 in cases in which the scalar-potential term Vi is

asymptotically subdominant. Our intuition is based on
the considerations in subsecs. IVB and IVC and on ear-
lier perturbative and numerical analyses in refs. [4–6].
Therefore, we expect that one may able to prove conver-
gence to the scaling solution that one obtains after e↵ec-
tively truncating the potential to the sum V =

P
m1
�=1 V�,

with � = 1, . . . ,m1  m, where the subset of �-indices
denotes a set of potentials such that �� � 0 [15].

At present, we do not have a fundamental physical in-
terpretation of the integral �. However, we can observe
a few noteworthy features. To start, given the parameter
⌘ = �✏̇/(✏H), one can qualitatively see that � < 1 re-
quires the asymptotic behaviors ✏(t ⇠ 1) . (d� 1)� `/t

and �⌘(t ⇠ 1) & `/t, for some positive constant `. 5 It please
confirm
✏(t⇠1).
(d�1)�
`/t after
recent
rethinking

Flavio

agreed
Hung

is harder to prove any complementary implications since

4 Although conceptually this impasse also appears in the bound
proven in ref. [3], namely the bound reviewed here in eq. (II.9),
that situation is easier. Indeed, if (�̂1)2  4 (d� 1)/(d� 2),
then we have [(d� 2)/4] (�̂1)2  ✏  d� 1 if � = 1 and ✏ =
d� 1 if � < 1: therefore, whichever the value of � is, a conser-
vative claim is that, at least, one has ✏ � [(d� 2)/4](�̂1)2.

5 For a finite integral � < 1, we know the late-time behaviors

Scaling cosmologies: late-time attractors

relevance:
- late-time scale factor is bounded by power-law behaviors

remember: 𝑑 − 1 ≥ 𝜖 ≥ [(𝑑 − 2)/4] ( ̂𝛾∞)2
- scaling solutions are perturbative late-time attractors

see e.g. Hartong, Ploegh, Van Riet, Westra [gr-qc/0602077]

▶ new result:
we can analyically prove that

1. if all terms in the potential are positive-definite, i.e. if Λ𝑖 > 0
2. if 𝜆𝑖 = 𝑚∑𝑗=1(𝑀−1)𝑖𝑗 ≥ 0 and

𝑚∑𝑖=1 𝜆𝑖 > 0 (i.e. no subdominant terms)

then scaling cosmologies are late-time attractors, irrespectively of initial
conditions, and saturate the universal bound, i.e. they have 𝜖 = 𝑑 − 24 ( ̂𝛾∞)2

[all mathematical proof in the papers]
[we can actually drop condition 2.; proof in future paper]
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the scalars and identify a single scalar '̃ that evolves over
time: to be able to do so, however, one needs the details
of all the scalar potentials, as reviewed in eq. (III.11).7

As an extra relationship, we also highlight that the
scalar-field pressure p = �̇

a
�̇a/2� V and energy density

⇢ = �̇
a
�̇a/2 + V give the on-shell equation of state

w =
p⇤
⇢⇤

= �1 +
2

(d� 1) q
.

Furthermore, we notice that we can write the scale factor
as a(t) = a1 (t/t1)2/[(d�1)(w+1)].

2. Time-measuring and quintessence-like scalars

One can always identify a single scalar that serves as
a measure of time. As one can see explicitly, each term
in the scalar potential evolves as

Vi

⇥
�
a

⇤(t)
⇤
= ⇤i e

�d�ia�
a
1

⇣
t1
t

⌘2
.

This means that, whatever combination of scalar fields
appears in each Vi-term, this is such as to provide a
�2 ln (t/t1)-behavior. So, for an arbitrary term Vi0 , we
can define a canonically-normalized scalar field via the
redefinition

�̃⌧̃ = �i0a�
a
, (III.8)

where the parameter �̃ and the field ⌧̃ are defined by the
O(n)-rotation for the specific �i0a-coe�cients, and where
the field evolves over time as

⌧̃⇤(t) = ⌧̃1 +
1

d

2

�̃
ln

t

t1
. (III.9)

Indeed, since the action is independent of O(n)-rotations
in the moduli space, this is the only possible behavior
such that the potential Vi0 = ⇤i0 e

�d�̃⌧̃ can evolve in
the right way. In the remaining m � 1 scalar-potential
terms, one generally finds linear combinations of the field
⌧̃ and other n�1 canonically-normalized scalar fields: the
latter evolve with di↵erent slopes, but in such a way that
all contributions to the scalar potential have a (1/t2)-
behavior. As the scalar ⌧̃ provides a measure of time, all
scalar-potential terms evolve with an on-shell behavior
that is captured by t = t1 ed�̃ (⌧̃⇤�⌧̃1)/2. For this reason,
we can also express the Hubble scale as

lH =
1

H
= l1 e

1
2 d�̃⌧̃⇤ , (III.10)

7 Note that all results here in subsubsec. III C 1 apply to both
solutions in eqs. (III.2, III.3) and solutions in eqs. (III.22, III.23).
However, for the latter we do not have a proof that they are
inevitable late-time attractors.

where l1 = (t1/q) e�
1
2 d�̃⌧̃1 is the initial value. It is

important to stress that, although one may always define
a scalar ⌧̃ that appears alone in one scalar-potential term,
all scalar-potential terms participate in the cosmological
evolution as they fall o↵ over time in the same way and
therefore contribute with the same weight to the total
energy density.
Another possible field redefinition that one can make is

that of a scalar '̃ that is aligned with the field trajectory
in the moduli space. Once the trajectories �a

⇤ have been
identified, this can be defined by an O(n)-rotation where
'̃ is parallel to the vector ✓a⇤ and the remaining fields �̌ǎ

are orthogonal to it, with the ǎ-index not including '̃.
All the scalar-potential terms can then be written as

Vi = ⇤i e
�d�⇤'̃�d�̌iǎ�̌

ǎ

,

where �⇤ is the directional derivative of eq. (III.7) and
the coe�cients �̌iǎ are instead defined by the inverse ro-
tation. By definition, the time-evolution of these fields
must be

'̃⇤(t) = '̃1 +
1

d

2

�⇤
ln

t

t1
, (III.11)

with the other fields being constants �̌
ǎ

⇤ = �̌
ǎ

1. This
guarantees again the right scalar-potential evolution and
is at the basis of related considerations in subsec. IVB.
In particular, all the fields �̌ǎ

⇤ can be absorbed into redefi-
nitions of the constants ⇤i, so as to have a total potential
of the form

V = ⇤ e�d�⇤'̃⇤ . (III.12)

Here, we stress that neither the constant ⇤ nor the co-
e�cient �⇤ can be read o↵ simply from the dimensional
reduction of a single dominating term and that this iden-
tity is only true on the field-equation solutions. Evi-
dently, one can also use '̃ to measure time instead of ⌧̃ .
A graphical representation of the field-space trajectory
for scaling solutions is in fig. 6.

�
a

�
a

'̃

�̌
ǎ

✓
a

⇤

FIG. 6. A sketch of the field-space trajectory of scaling cos-
mologies; a rotation in field space always allows one to work
with a single quintessence-like scalar.
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In general not true unless

and
 non-geodesity =0

η = − ·ϵ/(ϵH) = 0

Ω =

Criteria for Cosmic Acceleration

• The proper criterion for acceleration is time variation of Hubble:  

• For scaling solutions, we found an exact relationship of  with the directional derivative:

• Potential gradient norm is often used in Swampland studies:

• Scaling solutions are special   measures potential gradient.

ϵ = − ·H/H2 < 1
ϵ

γ = γ* = 2 ϵ / d − 2 ⇒ ϵ

3

e�cient (�1)2 is additive. In fact, more scalar-potential
terms tend to flatten the total potential, whereas more
scalar fields tend to make it steeper, therefore these con-
siderations are not unexpected. Ultimately, one has to
check the bound in eq. (2) on a case-by-case basis.

Even with all the caveats above, we stress that the
bound applies only to quintessence-like proposals in
which one assumes that we are currently observing an
asymptotic regime of the cosmological evolution. It does
not inform us about inflation since the latter can be real-
ized as a transient solution, rather than as an asymptotic
attractor. As a final comment, we emphasize that the
bound in eq. (2) highlights the di�culty of satisfying the
slow-roll condition in a late-time accelerating phase.

III. PROPERTIES OF SCALING

COSMOLOGIES

Solutions to the cosmological equations where the scale
factor is of power-law form, i.e. scaling solutions, have a
special role: we have shown that, if �2

+  4 (d � 1)/(d �
2), due to eq. (2), at su�ciently late times, the scale
factor is bound from below and from above by power-law
evolution; if �2

+ > 4 (d� 1)/(d� 2), scaling solutions are
inevitable and q is forced to be q = 1/(d� 1).

More generally, the cosmological equations can be ex-
pressed in terms of an autonomous system of di↵erential
equations and scaling solutions correspond to the critical
points of this system. In fact, in general one can always
find scaling solutions of this kind that are perturbatively
stable and therefore perturbative late-time attractors [8].
For instance, for a single exponential term, scaling solu-
tions can be easily seen to be a late-time attractor [9]. For
all these reasons, although it is hard to prove that scal-
ing solutions always capture the inevitable late-time be-
havior of the complete solutions, they deserve a detailed
analysis. Moreover, scaling solutions are also relevant by
themselves because they can be transient solutions that
may describe di↵erent cosmological epochs.

Scaling solutions can be characterized analytically [10].
If the rank of the �ia-matrix matches the number of
terms in the scalar potential, i.e. if rank �ia = m, then
rolling-scalar solutions are general. Given the matrix
Mij = �ia�j

a, rolling-scalar solutions exist of the form

�
a

⇤(t) = �
a

0 +
2

d

 mX

i=1

mX

j=1

�i
a(M�1)ij

�
ln

t

t0
,

with a scale-factor power

q =
4

d� 2

mX

i=1

mX

j=1

(M�1)ij .

It can also be shown that in this case there are no de
Sitter vacua. If the rank of the �ia-matrix is smaller

than the number of terms in the scalar potential, i.e.
if rank �ia < m, then rolling-scalar solutions are not
general. One can see this as a consequence of the fact
that the scalar-potential terms outnumber the scalars
and therefore, generically, they tend to constrain their
dynamics into stationary points. Nevertheless, if they ex-
ist, such rolling solutions are mathematically analogous
to the ones above.
All in all, for a given time t1, let the generic scalar-

field trajectories corresponding to a scaling solution
a(t) = a1(t/t1)q, with q � 1/(d � 1), be parameter-
ized as

�
a

⇤(t) = �
a

1 +
1

d

↵
a ln

t

t1
.

Then, given the unit vector ✓
a

⇤ = ↵
a
/

p
↵b↵b, which fol-

lows the trajectory of the time evolution of the scalar
fields over the moduli space, we can show that the nor-
malized directional derivative of the scalar potential is
related to the expansion rate as

�⇤ = �


1

V (�⇤)
✓
a

⇤
@V

d @�
a
⇤
(�⇤)

�
=

2p
d� 2

p
✏. (4)

This can be proven by exploiting explicitly the analytic
properties of scaling solutions. Therefore, the power-
law scale-factor evolution is accelerated – meaning that
the condition ✏ < 1 holds – only if the directional scalar-
potential coe�cient is bounded as �⇤ < 2/

p
d� 2.

A point that should be emphasized is the follow-
ing: the ✏-parameter measures the rate of acceleration
of the FLRW-metric scale factor and it is defined as
✏ = �Ḣ/H

2. It can be estimated via the gradient of
the potential, i.e.

� =

p
�ab @aV @bV

dV
, (5)

only under the slow-roll approximation, by which one
may approximately write ✏ = �Ḣ/H

2 ' (d� 2) �2
/4.

For instance, for theories with finite �1-coe�cients, as
dictated by eq. (2), and for scaling scenarios, the slow-
roll approximation is generically invalid. For the former,
this is obvious as long as (�1)2 & 4/(d� 2). For the lat-
ter, the terms that should be dropped in the slow-roll
approximation, despite being numerically smaller by a
factor q(d� 1) � 1, decrease over time in the same para-
metric way as the terms that would be kept. Therefore,
the parameter � is not necessarily a meaningful quantity
to describe the expansion rate: in this case, the scalar-
potential shape determines the rate of acceleration via
the parameter �⇤ in eq. (4).
As scaling solutions can be characterized analytically,

we can easily discuss swampland conjectures in theories
of exponential-only scalar potentials.
To start, we highlight the fact that one can always

identify a single scalar field that serves as a measure of
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e�cient (�1)2 is additive. In fact, more scalar-potential
terms tend to flatten the total potential, whereas more
scalar fields tend to make it steeper, therefore these con-
siderations are not unexpected. Ultimately, one has to
check the bound in eq. (2) on a case-by-case basis.

Even with all the caveats above, we stress that the
bound applies only to quintessence-like proposals in
which one assumes that we are currently observing an
asymptotic regime of the cosmological evolution. It does
not inform us about inflation since the latter can be real-
ized as a transient solution, rather than as an asymptotic
attractor. As a final comment, we emphasize that the
bound in eq. (2) highlights the di�culty of satisfying the
slow-roll condition in a late-time accelerating phase.

III. PROPERTIES OF SCALING

COSMOLOGIES

Solutions to the cosmological equations where the scale
factor is of power-law form, i.e. scaling solutions, have a
special role: we have shown that, if �2

+  4 (d � 1)/(d �
2), due to eq. (2), at su�ciently late times, the scale
factor is bound from below and from above by power-law
evolution; if �2

+ > 4 (d� 1)/(d� 2), scaling solutions are
inevitable and q is forced to be q = 1/(d� 1).

More generally, the cosmological equations can be ex-
pressed in terms of an autonomous system of di↵erential
equations and scaling solutions correspond to the critical
points of this system. In fact, in general one can always
find scaling solutions of this kind that are perturbatively
stable and therefore perturbative late-time attractors [8].
For instance, for a single exponential term, scaling solu-
tions can be easily seen to be a late-time attractor [9]. For
all these reasons, although it is hard to prove that scal-
ing solutions always capture the inevitable late-time be-
havior of the complete solutions, they deserve a detailed
analysis. Moreover, scaling solutions are also relevant by
themselves because they can be transient solutions that
may describe di↵erent cosmological epochs.

Scaling solutions can be characterized analytically [10].
If the rank of the �ia-matrix matches the number of
terms in the scalar potential, i.e. if rank �ia = m, then
rolling-scalar solutions are general. Given the matrix
Mij = �ia�j

a, rolling-scalar solutions exist of the form

�
a

⇤(t) = �
a

0 +
2

d

 mX

i=1

mX

j=1

�i
a(M�1)ij

�
ln

t

t0
,

with a scale-factor power

q =
4

d� 2

mX

i=1

mX

j=1

(M�1)ij .

It can also be shown that in this case there are no de
Sitter vacua. If the rank of the �ia-matrix is smaller

than the number of terms in the scalar potential, i.e.
if rank �ia < m, then rolling-scalar solutions are not
general. One can see this as a consequence of the fact
that the scalar-potential terms outnumber the scalars
and therefore, generically, they tend to constrain their
dynamics into stationary points. Nevertheless, if they ex-
ist, such rolling solutions are mathematically analogous
to the ones above.
All in all, for a given time t1, let the generic scalar-

field trajectories corresponding to a scaling solution
a(t) = a1(t/t1)q, with q � 1/(d � 1), be parameter-
ized as

�
a

⇤(t) = �
a

1 +
1

d

↵
a ln

t

t1
.

Then, given the unit vector ✓
a

⇤ = ↵
a
/

p
↵b↵b, which fol-

lows the trajectory of the time evolution of the scalar
fields over the moduli space, we can show that the nor-
malized directional derivative of the scalar potential is
related to the expansion rate as

�⇤ = �


1

V (�⇤)
✓
a

⇤
@V

d @�
a
⇤
(�⇤)

�
=

2p
d� 2

p
✏. (4)

This can be proven by exploiting explicitly the analytic
properties of scaling solutions. Therefore, the power-
law scale-factor evolution is accelerated – meaning that
the condition ✏ < 1 holds – only if the directional scalar-
potential coe�cient is bounded as �⇤ < 2/

p
d� 2.

A point that should be emphasized is the follow-
ing: the ✏-parameter measures the rate of acceleration
of the FLRW-metric scale factor and it is defined as
✏ = �Ḣ/H

2. It can be estimated via the gradient of
the potential, i.e.

� =

p
�ab @aV @bV

dV
, (5)

only under the slow-roll approximation, by which one
may approximately write ✏ = �Ḣ/H

2 ' (d� 2) �2
/4.

For instance, for theories with finite �1-coe�cients, as
dictated by eq. (2), and for scaling scenarios, the slow-
roll approximation is generically invalid. For the former,
this is obvious as long as (�1)2 & 4/(d� 2). For the lat-
ter, the terms that should be dropped in the slow-roll
approximation, despite being numerically smaller by a
factor q(d� 1) � 1, decrease over time in the same para-
metric way as the terms that would be kept. Therefore,
the parameter � is not necessarily a meaningful quantity
to describe the expansion rate: in this case, the scalar-
potential shape determines the rate of acceleration via
the parameter �⇤ in eq. (4).
As scaling solutions can be characterized analytically,

we can easily discuss swampland conjectures in theories
of exponential-only scalar potentials.
To start, we highlight the fact that one can always

identify a single scalar field that serves as a measure of

[GS, Tonioni, Tran, ’23]

Scaling Solutions: Trajectory
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• Field space rotation such that 

• Normalized directional derivative:
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the scalars and identify a single scalar '̃ that evolves over
time: to be able to do so, however, one needs the details
of all the scalar potentials, as reviewed in eq. (III.11).7

As an extra relationship, we also highlight that the
scalar-field pressure p = �̇

a
�̇a/2� V and energy density

⇢ = �̇
a
�̇a/2 + V give the on-shell equation of state

w =
p⇤
⇢⇤

= �1 +
2

(d� 1) q
.

Furthermore, we notice that we can write the scale factor
as a(t) = a1 (t/t1)2/[(d�1)(w+1)].

2. Time-measuring and quintessence-like scalars

One can always identify a single scalar that serves as
a measure of time. As one can see explicitly, each term
in the scalar potential evolves as

Vi

⇥
�
a

⇤(t)
⇤
= ⇤i e

�d�ia�
a
1

⇣
t1
t

⌘2
.

This means that, whatever combination of scalar fields
appears in each Vi-term, this is such as to provide a
�2 ln (t/t1)-behavior. So, for an arbitrary term Vi0 , we
can define a canonically-normalized scalar field via the
redefinition

�̃⌧̃ = �i0a�
a
, (III.8)

where the parameter �̃ and the field ⌧̃ are defined by the
O(n)-rotation for the specific �i0a-coe�cients, and where
the field evolves over time as

⌧̃⇤(t) = ⌧̃1 +
1

d

2

�̃
ln

t

t1
. (III.9)

Indeed, since the action is independent of O(n)-rotations
in the moduli space, this is the only possible behavior
such that the potential Vi0 = ⇤i0 e

�d�̃⌧̃ can evolve in
the right way. In the remaining m � 1 scalar-potential
terms, one generally finds linear combinations of the field
⌧̃ and other n�1 canonically-normalized scalar fields: the
latter evolve with di↵erent slopes, but in such a way that
all contributions to the scalar potential have a (1/t2)-
behavior. As the scalar ⌧̃ provides a measure of time, all
scalar-potential terms evolve with an on-shell behavior
that is captured by t = t1 ed�̃ (⌧̃⇤�⌧̃1)/2. For this reason,
we can also express the Hubble scale as

lH =
1

H
= l1 e

1
2 d�̃⌧̃⇤ , (III.10)

7 Note that all results here in subsubsec. III C 1 apply to both
solutions in eqs. (III.2, III.3) and solutions in eqs. (III.22, III.23).
However, for the latter we do not have a proof that they are
inevitable late-time attractors.

where l1 = (t1/q) e�
1
2 d�̃⌧̃1 is the initial value. It is

important to stress that, although one may always define
a scalar ⌧̃ that appears alone in one scalar-potential term,
all scalar-potential terms participate in the cosmological
evolution as they fall o↵ over time in the same way and
therefore contribute with the same weight to the total
energy density.
Another possible field redefinition that one can make is

that of a scalar '̃ that is aligned with the field trajectory
in the moduli space. Once the trajectories �a

⇤ have been
identified, this can be defined by an O(n)-rotation where
'̃ is parallel to the vector ✓a⇤ and the remaining fields �̌ǎ

are orthogonal to it, with the ǎ-index not including '̃.
All the scalar-potential terms can then be written as

Vi = ⇤i e
�d�⇤'̃�d�̌iǎ�̌

ǎ

,

where �⇤ is the directional derivative of eq. (III.7) and
the coe�cients �̌iǎ are instead defined by the inverse ro-
tation. By definition, the time-evolution of these fields
must be

'̃⇤(t) = '̃1 +
1

d

2

�⇤
ln

t

t1
, (III.11)

with the other fields being constants �̌
ǎ

⇤ = �̌
ǎ

1. This
guarantees again the right scalar-potential evolution and
is at the basis of related considerations in subsec. IVB.
In particular, all the fields �̌ǎ

⇤ can be absorbed into redefi-
nitions of the constants ⇤i, so as to have a total potential
of the form

V = ⇤ e�d�⇤'̃⇤ . (III.12)

Here, we stress that neither the constant ⇤ nor the co-
e�cient �⇤ can be read o↵ simply from the dimensional
reduction of a single dominating term and that this iden-
tity is only true on the field-equation solutions. Evi-
dently, one can also use '̃ to measure time instead of ⌧̃ .
A graphical representation of the field-space trajectory
for scaling solutions is in fig. 6.
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FIG. 6. A sketch of the field-space trajectory of scaling cos-
mologies; a rotation in field space always allows one to work
with a single quintessence-like scalar.
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e�cient (�1)2 is additive. In fact, more scalar-potential
terms tend to flatten the total potential, whereas more
scalar fields tend to make it steeper, therefore these con-
siderations are not unexpected. Ultimately, one has to
check the bound in eq. (2) on a case-by-case basis.

Even with all the caveats above, we stress that the
bound applies only to quintessence-like proposals in
which one assumes that we are currently observing an
asymptotic regime of the cosmological evolution. It does
not inform us about inflation since the latter can be real-
ized as a transient solution, rather than as an asymptotic
attractor. As a final comment, we emphasize that the
bound in eq. (2) highlights the di�culty of satisfying the
slow-roll condition in a late-time accelerating phase.

III. PROPERTIES OF SCALING

COSMOLOGIES

Solutions to the cosmological equations where the scale
factor is of power-law form, i.e. scaling solutions, have a
special role: we have shown that, if �2

+  4 (d � 1)/(d �
2), due to eq. (2), at su�ciently late times, the scale
factor is bound from below and from above by power-law
evolution; if �2

+ > 4 (d� 1)/(d� 2), scaling solutions are
inevitable and q is forced to be q = 1/(d� 1).

More generally, the cosmological equations can be ex-
pressed in terms of an autonomous system of di↵erential
equations and scaling solutions correspond to the critical
points of this system. In fact, in general one can always
find scaling solutions of this kind that are perturbatively
stable and therefore perturbative late-time attractors [8].
For instance, for a single exponential term, scaling solu-
tions can be easily seen to be a late-time attractor [9]. For
all these reasons, although it is hard to prove that scal-
ing solutions always capture the inevitable late-time be-
havior of the complete solutions, they deserve a detailed
analysis. Moreover, scaling solutions are also relevant by
themselves because they can be transient solutions that
may describe di↵erent cosmological epochs.

Scaling solutions can be characterized analytically [10].
If the rank of the �ia-matrix matches the number of
terms in the scalar potential, i.e. if rank �ia = m, then
rolling-scalar solutions are general. Given the matrix
Mij = �ia�j

a, rolling-scalar solutions exist of the form

�
a

⇤(t) = �
a

0 +
2

d

 mX

i=1

mX

j=1

�i
a(M�1)ij

�
ln

t

t0
,

with a scale-factor power

q =
4

d� 2

mX

i=1

mX

j=1

(M�1)ij .

It can also be shown that in this case there are no de
Sitter vacua. If the rank of the �ia-matrix is smaller

than the number of terms in the scalar potential, i.e.
if rank �ia < m, then rolling-scalar solutions are not
general. One can see this as a consequence of the fact
that the scalar-potential terms outnumber the scalars
and therefore, generically, they tend to constrain their
dynamics into stationary points. Nevertheless, if they ex-
ist, such rolling solutions are mathematically analogous
to the ones above.
All in all, for a given time t1, let the generic scalar-

field trajectories corresponding to a scaling solution
a(t) = a1(t/t1)q, with q � 1/(d � 1), be parameter-
ized as

�
a

⇤(t) = �
a

1 +
1

d

↵
a ln

t

t1
.

Then, given the unit vector ✓
a

⇤ = ↵
a
/

p
↵b↵b, which fol-

lows the trajectory of the time evolution of the scalar
fields over the moduli space, we can show that the nor-
malized directional derivative of the scalar potential is
related to the expansion rate as

�⇤ = �


1

V (�⇤)
✓
a

⇤
@V

d @�
a
⇤
(�⇤)

�
=

2p
d� 2

p
✏. (4)

This can be proven by exploiting explicitly the analytic
properties of scaling solutions. Therefore, the power-
law scale-factor evolution is accelerated – meaning that
the condition ✏ < 1 holds – only if the directional scalar-
potential coe�cient is bounded as �⇤ < 2/

p
d� 2.

A point that should be emphasized is the follow-
ing: the ✏-parameter measures the rate of acceleration
of the FLRW-metric scale factor and it is defined as
✏ = �Ḣ/H

2. It can be estimated via the gradient of
the potential, i.e.

� =

p
�ab @aV @bV

dV
, (5)

only under the slow-roll approximation, by which one
may approximately write ✏ = �Ḣ/H

2 ' (d� 2) �2
/4.

For instance, for theories with finite �1-coe�cients, as
dictated by eq. (2), and for scaling scenarios, the slow-
roll approximation is generically invalid. For the former,
this is obvious as long as (�1)2 & 4/(d� 2). For the lat-
ter, the terms that should be dropped in the slow-roll
approximation, despite being numerically smaller by a
factor q(d� 1) � 1, decrease over time in the same para-
metric way as the terms that would be kept. Therefore,
the parameter � is not necessarily a meaningful quantity
to describe the expansion rate: in this case, the scalar-
potential shape determines the rate of acceleration via
the parameter �⇤ in eq. (4).
As scaling solutions can be characterized analytically,

we can easily discuss swampland conjectures in theories
of exponential-only scalar potentials.
To start, we highlight the fact that one can always

identify a single scalar field that serves as a measure of
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Acceleration bound: Physical Interpretation 
• In the optimal basis, the asymptotic potential:

• Fields other than  appear in the exponents 
with both signs and get stabilized.

• Asymptotically, we have effectively a single 
field, single potential on-shell:

which gives

φ̂

Cosmic-acceleration bound: physical interpretation

𝑉 = 2∑𝑖=1 Λ𝑖 e−𝜅𝑑𝛾𝑖𝑎𝜙𝑎
𝜙𝑎 = 𝜙1, 𝜙2𝛾𝑖𝑎 = (𝛾11 𝛾12𝛾21 𝛾22)

𝛾∞1

𝛾∞2

𝜇1
𝛾11

𝛾12

𝜇2

𝛾21

𝛾22 ̂𝛾∞1

̂𝛾∞2
( ̂𝛾∞)2

▶ in the optimal basis: 𝑉 = [ 𝑚∑𝜎=1 Λ𝜎 e−𝜅𝑑�̂�𝜎�̌� ̂𝜙�̌�] e−𝜅𝑑�̂�∞�̂�
- all fields but �̂� have positive exponential potentials with

couplings of both signs and get asymptotically stabilized
- asymptotically, we have the 1-field 1-term potential̂𝑉∞ = Λ̂∞ e−𝜅𝑑�̂�∞�̂�, which gives 𝜖 = 𝑑 − 24 ̂𝛾2∞
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The straight line trajectory of scaling solution solves this 
effective single field problem and saturates the bound.



Coupling Convex Hull

• If the distance vector from the origin to the hyperplane containing the convex hull intersects 
the convex hull, we find analytically the late-time -parameter:

else the potential is truncated, and  is given by the truncated convex hull (proof in 
forthcoming paper [GS, Tonioni, Tran, to appear] which dropped condition 2).

ϵ

ϵ

[GS, Tonioni, Tran, ’23]
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acceleration parameter is speculated to be proportional
to such a distance through the relationship@Gary:
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Flavio

✏CH =
d� 2

4
µ
2
CH. (IV.3)

On the other hand, as an analytic result, we have our
bound in eq. (II.9), for any late-time solution: the ac-
celeration parameter is bounded from below by a num-
ber proportional to the squared length of the vector
constructed with the minimum non-negative exponen-
tial couplings for each of the fields, as optimized through
a possible field-space rotation. By direct inspection, it
turns out that our analytic lower bound for the accelera-
tion parameter is in fact saturated by the conjectured ac-
celeration parameter computed through the convex-hull
distance. In other words, we find that

✏ � d� 2

4
(�1)2 = ✏CH.

Either way, we emphasize that our result is analytic
and not conjectural. As discussed in the comments to
eq. (II.9), we can also characterize the late-time cos-
mology in the presence of negative terms. If, in one or
more directions, the smallest couplings are non-positive,
then the acceleration-parameter constraint comes from
the lower-dimensional parameter space with just positive
coe�cients, but it is still non-trivial. In particular, the
identity [(d� 2)/4] (�1)2 = ✏CH is still valid. If, further-
more, some of the scalar-potential terms are negative-
definite, the above can be generalized through suitable
definitions. A graphical interpretation of the bound for
positive-definite scalar potential terms is depicted in figs.
1, 2 and 4.

2. Alternative acceleration bound

In case the scalars outnumber the scalar-potential
terms, namely if n � m, the bound in eq. (II.10) allows
us to further test analytically the relevance and appli-
cability of the convex-hull formulation of the de Sitter
conjecture. Given the coupling matrix �ia, we have m

n-dimensional vectors (µi)a = �ia. If n � m, the con-
vex hull CH({µi}mi=1) = ⇧ of these m vectors is at most
(n � 1)-dimensional. Moreover, the hyperplane ⇧̃ � ⇧
on which the convex hull lies is also at most (n � 1)-
dimensional. Once ⇧̃ is at most (n� 1)-dimensional, we
can find a unique vector µ̃a that is perpendicular to the
hyperplane ⇧̃ and that extends from the origin to the
hyperplane. By definition, for any vector ⌫a 2 ⇧̃, we can
write the orthogonality condition µ̃a(µ̃a � ⌫

a) = 0, which
can be expressed as ⌫aµ̃

a = (µ̃)2. Since by construction
any of the m vectors (µi)a is orthogonal to the vector
µ̃a, we conclude that the vector is a solution to the defin-
ing equation �ia�

a = (�)2. A graphical interpretation of

the bound for positive-definite scalar potential terms is
depicted in figs. 7 and 8.
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FIG. 7. A graphical representation of the acceleration bound
for a multi-field multi-field scalar potential with positive-
definite coe�cients in which the vector orthogonal to the
convex-hull hyperplane intersects the convex hull itself too.
In this case, it is apparent that µ2

CH = (µ̃)2 � (�̂1)2.

�
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FIG. 8. A graphical representation of the acceleration bound
for a multi-field multi-field scalar potential with positive-
definite coe�cients in which the vector orthogonal to the
convex-hull hyperplane does not intersects the convex hull
itself. In this case, it is apparent that µ2

CH � (µ̃)2.

3. Scaling cosmologies

If the exponential couplings are such that the late-time
solutions are scaling cosmologies, based on the discussion
of subsec. III B, then we can do more as we have ana-
lytic knowledge of the time evolution of each operator.
In particular, let us consider an m-field m-term potential
– that is: we assume m = n. In this case, the (µi)a-
components make up m di↵erent m-dimensional real vec-
tors, i.e. µi 2 Rm for i = 1, . . . ,m, and the corresponding
convex hull is simply the (m�1)-dimensional hyperplane
that passes through each point µi, which is defined by the
equation

CH = ⇧ : �
a
⌫a + ⇢ = 0,
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3. Scaling cosmologies

If the exponential couplings are such that the late-time
solutions are scaling cosmologies, based on the discussion
of subsec. III B, then we can do more as we have ana-
lytic knowledge of the time evolution of each operator.
In particular, let us consider an m-field m-term potential
– that is: we assume m = n. In this case, the (µi)a-
components make up m di↵erent m-dimensional real vec-
tors, i.e. µi 2 Rm for i = 1, . . . ,m, and the corresponding
convex hull is simply the (m�1)-dimensional hyperplane
that passes through each point µi, which is defined by the
equation

CH = ⇧ : �
a
⌫a + ⇢ = 0,

Scaling cosmologies: coupling convex hull

examples:

𝛾∞1

𝛾∞2
𝜇1

𝛾11
𝛾12

𝜇2

𝛾21

𝛾22
( ̂𝛾∞)2

𝜙𝑎 = 𝜙1, 𝜙2𝛾𝑖𝑎 = (𝛾11 𝛾12𝛾21 𝛾22)
𝛾∞1

𝛾∞2
𝜇1

𝛾11
𝛾12

𝜇2
( ̂𝛾∞)2

𝛾21

𝛾22

if distance vector from the origin to the convex-hull coupling hyperplane
intersects convex hull itself too, we analytically find the late-time 𝜖-parameter𝜖 = 𝑑 − 24 ( ̂𝛾∞)2 = 𝑑 − 24 [ 𝑚∑𝑖=1

𝑚∑𝑗=1(𝑀−1)𝑖𝑗]−1
else, the potential is truncated, leaving 𝜖 = 𝑑 − 24 ( ̂𝛾∞)2

[proof in future paper (dropping condition 2.)]
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Living Dangerously
• If a Swampland bound is robust, we ought to find examples that saturate it. For exponential 

potentials, the Trans-Planckian Censorship Conjecture (TCC) [Bedroya, Vafa] bounds .

• Tree-level potential of the -dim. dilaton  saturates this bound. If all other moduli are stabilized, 

• The late-time attractor has  (non-accelerating) but it takes infinite time to reach this attractor 
from an initial  phase (accelerating). [Note  at all time, gives wrong diagnostic].

• This mechanism was recently exploited for  models [Andriot, Tsimpis, Wrase] though this type 
accelerating solutions with no cosmological horizon can be found with .

• The challenge is to stabilize the remaining moduli or else any additional rolling scalars would stop 
acceleration [Hebecker, Schreyer, Venken] as should be clear from our bound [GS, Tonioni, Tran, ’23].

• A string theory model of quintessence is yet to be constructed. Outstanding question for the future.

ϵ ≥ 1

d ̂δ

ϵ = 1
ϵ < 1 ϵV = 1

k = − 1
k = 0

V = Λe
2

d − 2
κd

̂δ ⇒ ϵ = 1



Summary



Summary of Results
• We bound the rate of time variation of the Hubble parameter at late time [GS, Tonioni, Tran, ’23,  STT1] 

The bound provides a useful diagnostic for dark energy models.

• Our bound when applied to string theoretic constructions identifies a generic obstacle to 
acceleration if the -dim. dilation is one of the rolling fields. We also suggest several ways out.

• We prove conditions under which scaling solutions are late-time attractors. Moreover, we 
prove that scaling solutions saturate our bound on  [GS, Tonioni, Tran, ’23, STT2].

• For scaling solutions, we showed w/o assuming that a single 
potential term dominates or whether the kinetic or potential term dominates; in general,  is 
unrelated to acceleration.

• Our results go beyond previous no-goes as we allow for quantum effects and we encompass 
vacua and rolling solutions (irrespective of whether the kinetic term is negligible or not).

• As a spinoff, we derived analogous bounds on ekpyrosis [GS, Tonioni, Tran, ’23, STT3, to appear].

d

ϵ

γ ≡ |∇V | /V = 2 ϵ/(d − 2)
γ

[GS, Tonioni, Tran, ’23 x 3]



Backup



A way out for cosmic acceleration?▶ if the late-time behavior has 𝜖 = 1, it may still take an infinite time to
reach it▶ if the solutions approach the asymptotic value 𝜖 = 1 (not accelerated!)
from below, there is an infinite time where the solutions are at 𝜖 < 1

mechanism recently exploited, if 𝑘 = −1, by Andriot-Tsimpis-Wrase [hep-th/2309.03938]▶ e.g. single-field single-potential theory
analytic solution: 𝑥(𝑡) = 𝑐 + e−𝜑(𝑡)[𝑥(𝑡0) − 𝑐]

𝑡
𝑥(𝑡)1
−1

𝑐 𝑡
𝑥2(𝑡)1

−1
𝑐2

▶ however, we have not found a single string-theoretic potential
such that ( ̂𝛾∞)2 = 4/(𝑑 − 2), which would give 𝜖 = 1!
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