What do large-scale structure have to tell us about spatial curvature?

Julien Larena

from Bel, Larena, Maartens, Marinoni and Pérenon, JCAP 2022 28th of November 2023 String-Cosmo day APC, Paris

Particules, Astroparticules, Cosmologie: Théorie Laboratoire Univers et Particules de Montpellier Université de Montpellier

Introduction

Evidence for spatial curvature?

[Planck 2018 results]

- $\Omega_{K,0} \simeq 0$ is NOT K = 0
- Profound implications
- $\Omega_{K,0}$ nuisance parameter in ACDM

- Planck PS alone favours K > 0
- H₀ tension worsen
- Degenerate with "lensing problem" ($A_L > 1$)
- Goes away with other probes
- But are combinations legit? [Handley, PRD, 2021]

Large-scale structure observables in curved space

Real space power spectrum

$$\mathsf{S}(
u) = rac{1}{2\pi^2} \int \mathrm{d}\Omega^2 \mathrm{d}\chi \xi(\chi) rac{\mathsf{S}_{\mathsf{K}}(\chi) \sin(
u\chi)}{
u}$$

Real space power spectrum

$$\nu = k/H_0 \text{ if } K = 0$$
$$\nu = \sqrt{\frac{k^2}{H_0^2 |\Omega_{K,0}|} - K} \text{ if } K \neq 0$$

$$D(z) \neq D_{K=0}(z)$$

$$\nu^{2}S(\nu) = \underbrace{\frac{\nu(\nu^{2}-4K)^{2}}{\nu^{2}-K}}_{K}T^{k}\left(k,\eta\right)\zeta(k)$$

Clustering observables: Redshift space distortions

Synthetic parameter: $f\sigma_8$

Sensitive to normalisation of power spectrum

Clustering observables: Redshift space distortions

- 2PC function for $K \neq 0$ [Matsubara, ApJ, 2000]
- $\widetilde{f\sigma}_8$ in fiducial cosmology
- Alcock-Paczynski corrections: $\tilde{\xi}_{g}(\tilde{r},\tilde{\mu}) = \xi_{g}(r,\mu)$

Redshift space distortions: Alcock-Paczynski corrections

- $\widetilde{f\sigma}_8 \simeq \left[\frac{5}{7} + \frac{2}{7}\frac{\widetilde{E}(z)\widetilde{D}_A(z)}{E(z)D_A(z)}\right]f\sigma_8 \neq \frac{\widetilde{E}(z)\widetilde{D}_A(z)}{E(z)D_A(z)}f\sigma_8$
- Large compilation of measurements: SDSS-IV, WiggleZ, BOSS DR12, Vipers etc.

Clustering ratio

- $\eta_R(\mathbf{r}) = \frac{\xi_R^{(0)}(\mathbf{r})}{\sigma_R^2}$
- Sensitive to shape of PS

Clustering ratio

Insensitive to galaxy bias and large-scale RSD

[Zennaro et al, MNRAS, 2018]

- Simple Alcock-Paczynski corrections: $\tilde{\eta}_{\tilde{R}}(\tilde{r}) = \eta_{\alpha \tilde{R}}(\alpha \tilde{r})$
- Determined using BOSS DR7 and DR12

Results

Parameters and priors

- Simple power-law primordial PS
- 7 cosmological parameters: $\{\Omega_{b,0}h^2, \Omega_{c,0}h^2, H_0, \tau, \ln(10^{10}A_s), n_s, \Omega_{K,0}\}$
- BBN prior on $\Omega_{b,0}h^2$ to get CMB-independent results

Parameter	Prior
$\Omega_{\mathrm{b},0}h^2$	[0, 100]
$\Omega_{ m c,0} h^2$	[0, 100]
H_0	[40, 100]
au	[0, 0.2]
$\ln(10^{10}A_{\rm s})$	[0, 100]
$n_{ m s}$	[0.9, 1]
$\Omega_{K,0}$	[-0.2, 0.6]
$\Omega_{\mathrm{b},0}h^2$	$\mathcal{N}(0.0222, 0.0005^2)$
$\sigma_{8,0}$	[0.6, 1]
$\Omega_{\mathrm{m,0}}$	[0,1]
	$\begin{array}{c} {\rm Parameter} \\ \Omega_{{\rm b},0}h^2 \\ \Omega_{c,0}h^2 \\ H_0 \\ \tau \\ \ln(10^{10}A_{\rm s}) \\ n_{\rm s} \\ \Omega_{K,0} \\ \hline \\ \Omega_{{\rm b},0}h^2 \\ \sigma_{8,0} \\ \Omega_{{\rm m},0} \end{array}$

Geometric probes

• $A_L = 1$ (degenerate with curvature and not physical)

Datasets: Consistency in KACDM

- Which datasets can be combined?
- Deviance Information Criterion

$K\Lambda CDM model$			
Comparison	$\log_{10} I$	Agreement/Disagreement	
CR + BBN vs RSD + BBN	1.35	strong agreement	
SNIa vs RSD + BBN	0.48	inconclusive	
SNIa vs CR + BBN	0.14	inconclusive	
BAO vs CR + BBN	0.07	inconclusive	
BAO vs RSD + BBN	0.04	inconclusive	
CMB vs CR + BBN	-0.28	inconclusive	
CMB vs SNIa	-0.7	substantial	
CMB vs BAO	-2.14	decisive disagreement	
CMB vs RSD + BBN	-2.75	decisive disagreement	

Clustering alone at z < 2

- *H*₀ > 62 km/s/Mpc
- CR x RSD
- $\Omega_{m,0} = 0.26 \pm 0.04$ even without BBN prior on $\Omega_{b,0}h^2$

$\Omega_{K,0}$ unconstrained

- CR sensitive to shape of PS but sampled scales too small
- RSD: degeneracy shift in PS/As

Clustering + Geometric probes

Flat ACDM okay without CMB

• H₀ tension persists

Clustering + Geometric probes

- CR + RSD
- Only BAO with r_d free param
- CMB independent estimate of sound horizon scale
- Strongly depends on BBN prior on $\Omega_{b,0}h^2$

 $r_d = 144.50^{+2.33}_{-2.35}$ Mpc

Agrees with base ACDM

$K\Lambda CDM model$			
Comparison	$\log_{10} I$	Agreement/Disagreement	
CR + BBN vs RSD + BBN	1.35	strong agreement	
SNIa vs RSD + BBN	0.48	inconclusive	
SNIa vs CR + BBN	0.14	inconclusive	
BAO vs CR + BBN	0.07	inconclusive	
BAO vs RSD + BBN	0.04	inconclusive	
CMB vs CR + BBN	-0.28	inconclusive	
CMB vs SNIa	-0.7	substantial	
CMB vs BAO	-2.14	decisive disagreement	
$\mathrm{CMB} \ \mathrm{vs} \ \mathrm{RSD} + \mathrm{BBN}$	-2.75	decisive disagreement	

- Only CR compatible with CMB
- $\Omega_{\text{K},0} = -0.023 \pm 0.010$
- CR brings K = 0 into agreement with CMB at 2σ

Conclusion

Conclusion

- New, theoretically motivated Alcock-Paczynki prescription for RSD and CR in curved space
- Low-z clustering alone to constrain background params:
 - *H*₀ > 62 km/s/Mpc
 - $\Omega_{m,0} = 0.26 \pm 0.04$
- CMB-independent test of flatness:

 $\Omega_{\text{K},0} = 0.0041^{+0.0500}_{-0.0504}$.

• CR + CMB compatible with K = 0