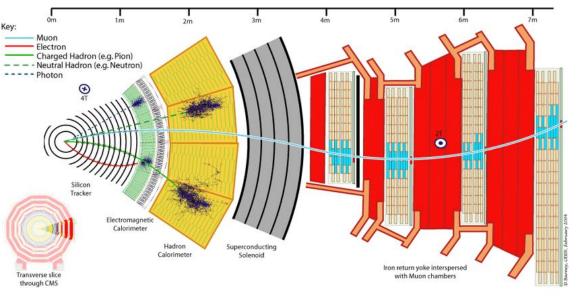
<u>cea</u> iriu

PCiFacultéde physique et ingénierieUniversité de Strasbourg

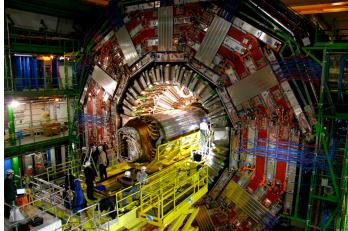
Study of Higgs boson pair production in the bbtt channel with CMS Experiment

Léa-Maria Rabour

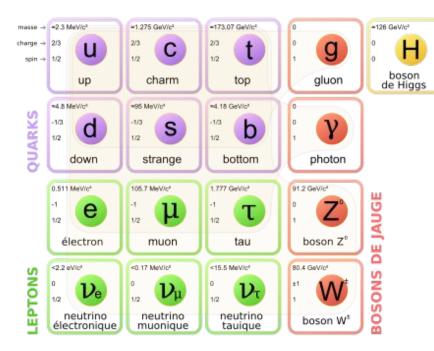

Under the supervision of Louis Portales

20/06/2024

Outline


- I. Introduction : LHC, di-Higgs and bbtt
- II. Impact study of Powheg bug on Run 2 analysis
- III. Trigger selection for Run 3 analysis

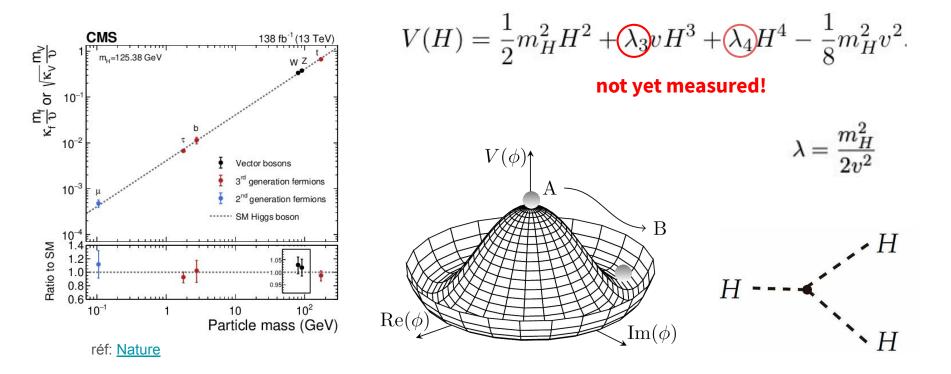
Introduction


CMS Experiment at LHC

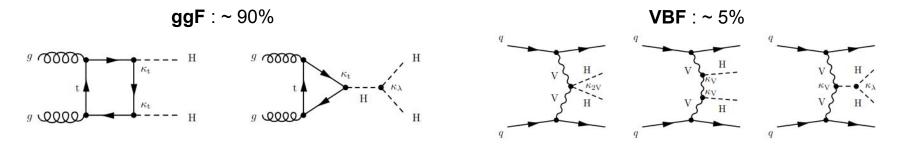
CMS : 22x15x15 m, 14000 t

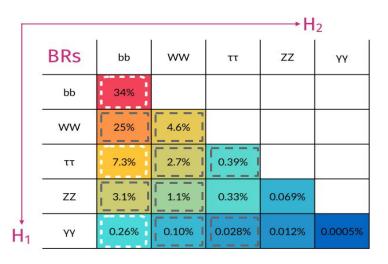
Higgs boson : discovered in 2012 and studied since

Higgs mechanism explains how elementary particles acquire their mass



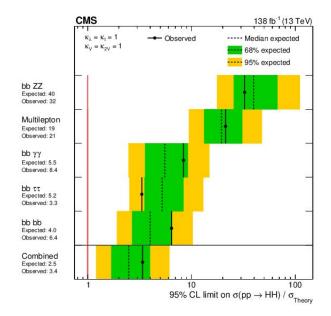
Cham, Jorge, PhD Comics




Higgs potential and self coupling

Higgs boson pair production at LHC

 $\sigma(HH)$ ~30 fb 1000x lower than $\sigma(H)$ ~40 pb : very rare process never measured!



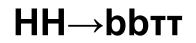
Mainly:

- ★ bbbb : largest branching ratio but large QCD background
- ★ bbyy : excellent resolution on diphoton H mass but very low branching ratio
- **bb***r***r** : intermediate branching ratio and background

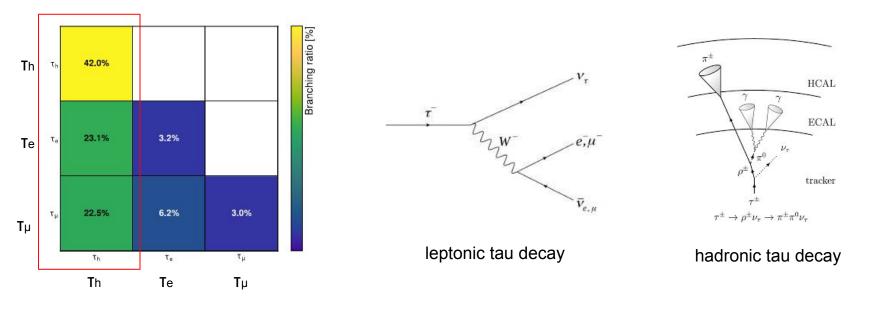
 $\kappa_{\lambda} = \frac{\lambda}{\lambda^{SM}}$

Status of HH analyses

We are now starting Run 3 (2022-2025) analysis, and we plan to combine it to Run 2 (2015-2018) for better statistics


Current CMS limits 95%CL :

 $\sigma/\sigma_{\text{SM}} < 3.4$ (expected $\sigma/\sigma_{\text{SM}} < 2.5$)


-1.24 < κ_λ < 6.49

2 ways to improve statistics :

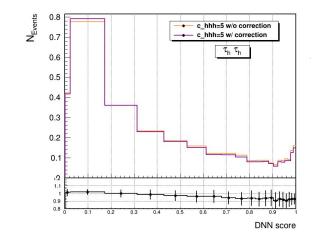
- take more data
- improve data selection →triggers

3 channels considered for diTau decays : **et** ($T_e T_h$), **µt** ($T_µ T_h$) & **tt** ($T_h T_h$) (87.6% of all diTau decays)

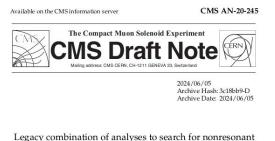
Impact study of Powheg bug on Run 2 HH→bbττ analysis

Impact study of Powheg bug

Monte Carlo events generators produce simulations used in the analyses


Bug on MC generator POWHEG for ggHH events, used in both CMS and ATLAS Run 2 HH analyses **already published**

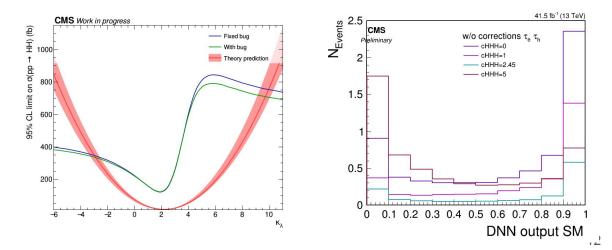
\rightarrow necessity to study the impact on Run 2 bbtt analysis


Impact on the yield

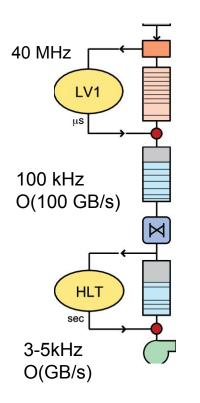
Impact study on several variables for κλ=2.45 and κλ=5 comparing histograms with and without correction factors in the 3 channels : eτ, μτ, ττ. One of these variables is the score of the DNN used to discriminate signal from background

	Кλ=2.45	К≀=2	
ет	1.4%	1.3%	
μτ	1.1%	1.2%	
ττ	2.3%	2.6%	

Impact study of Powheg bug


Legacy combination of analyses to search for nonresonant production of Higgs boson pairs in proton proton collisions at $\sqrt{s} = 13$ TeV

15 University of Maryland, College Park, MD (US)


Results

- Effect on the cross section and kl constraints of less than 3% : negligible
- Study added to an analysis note on HH Run 2 combination
- Proportion of high DNN score for κ_{λ} =5 lower than expected since DNN is trained for SM \rightarrow to be improved for Run 3

Trigger selection for Run 3 analysis

Triggers

Too many data to save all events at LHC : 40M BX/s and 1BX ~ 1MB \rightarrow O(40TB/s) In one year ~200 ZB ie 10^9 TB...

 \rightarrow Triggers needed to realise a first selection online (reconstruction more limited than during the analysis)

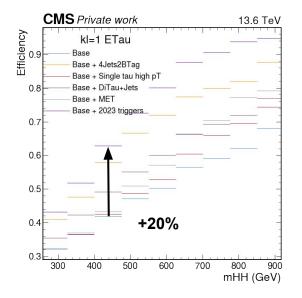
HLT : OR logic →more triggers = more data

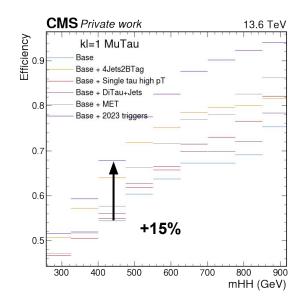
3 Baselines (triggers we used in Run 2 and will continue using in Run 3):

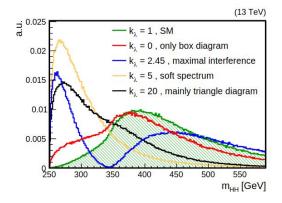
- **eτ** : isolated e, pT>32 GeV OR isolated e, pT>24 GeV, |η|<2.1 && tau, pT>30 GeV, |η|<2.1
- $\mu \tau$: isolated $\mu,\,pT>24~GeV$ OR isolated $\mu,\,pT>20~GeV,\,|\eta|<\!2.1$ && tau, pT>20 GeV, $|\eta|<\!2.1$
- **ττ** : 2 taus, pT>35 GeV, |η|<2.1

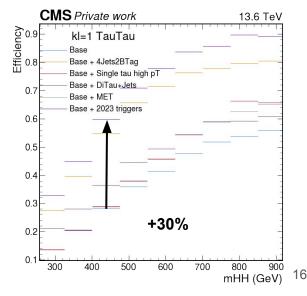
Gain study

New triggers used in Run 3 : study of the improvement on the selection for $\kappa_{\lambda}=0$ and $\kappa_{\lambda}=1$ with 2023 samples


- 4 jets among which 2 tagged as b jets (4jets2b)
- single hadronic tau with high pT (single tau)
- a pair of hadronic taus and a jet (diTau+jet)
- missing transverse energy (**MET**)


$$gain = \frac{\text{Trigger OR baseline}}{\text{baseline}} - 1$$


κ _λ =0	etau	mutau	tautau	κλ=1	etau	mutau	tautau
4jets2b	0.35	0.16	0.82	4jets2b	0.37	0.16	0.80
single tau	0.03	0.02	0.05	single tau	0.04	0.03	0.07
diTau+jet	0.16	0.03	0.26	diTau+jet	0.17	0.03	0.25
MET	0.07	0.08	0.06	MET	0.08	0.08	0.07
all	0.48	0.23	1.01	all	0.50	0.25	0.98


Acceptance study depending on mHH

$$\varepsilon = \frac{\text{Trigger AND Selection}}{\text{Selection}}$$

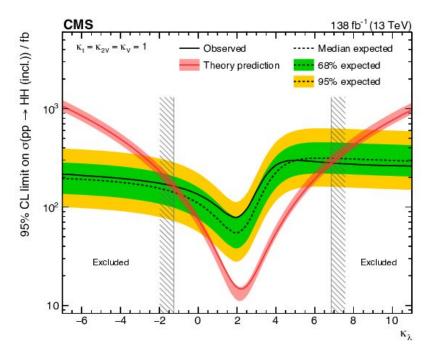
Summary

Impact study of Powheg bug

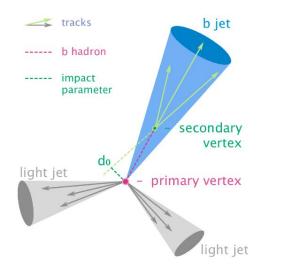
- Effect on the cross section and kl constraints of less than $3\% \rightarrow impact negligible$
- Study added to an analysis note on HH Run 2 legacy combination
- Proportion of high DNN score for kl=5 lower than expected \rightarrow to be improved for Run 3

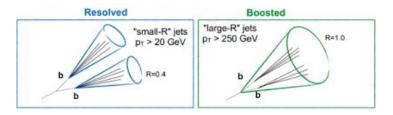
Efficiency study of Run 3 triggers

- Gain up to 80% for 4jets2b trigger
- Overall gain of 100% and +30% absolute efficiency in $\tau\tau$ channel \rightarrow clear improvement for Run 3 analysis!

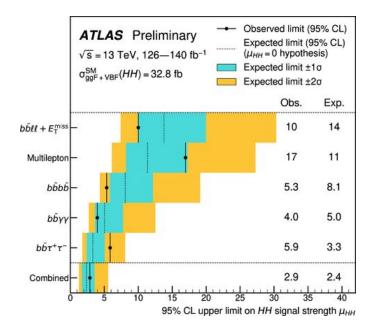

Remaining work :

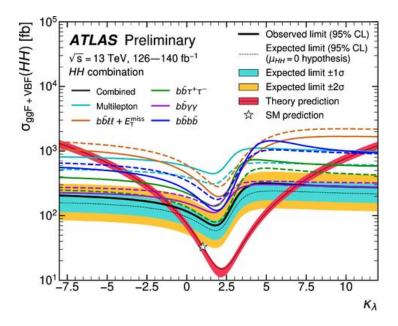
- Overlaps to be studied
- VBF triggers to be studied
- Implementation in the analysis

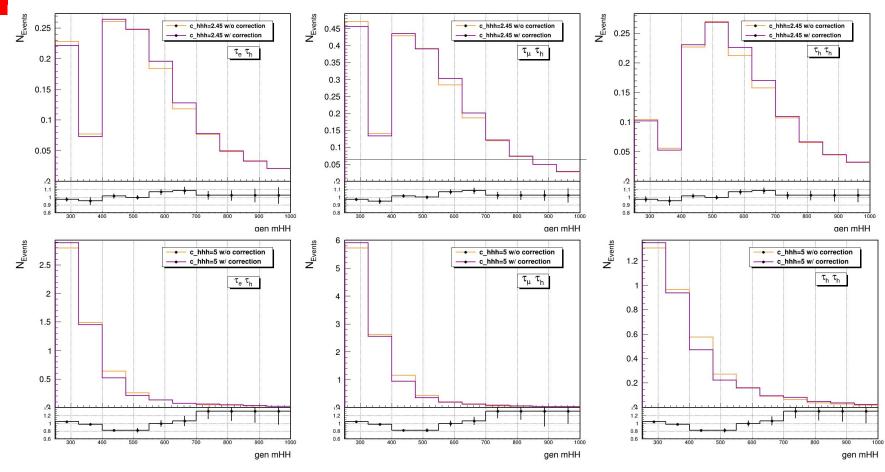

Constraints on lambda



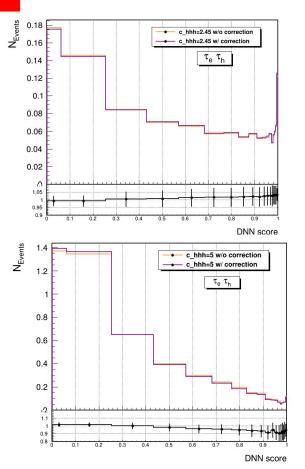
Cuts

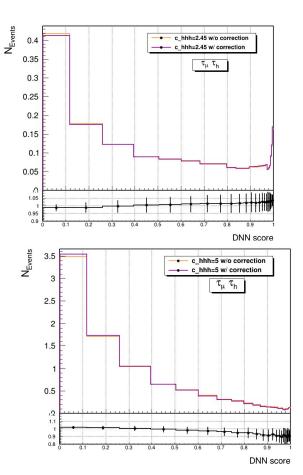

- Electron : pT>10 GeV, $|\eta|<2.5$, $\Delta R(e, tau)<0.5$
- Muon : pT>15 GeV, $|\eta|<2.4$, $\Delta R(mu, tau)<0.5$, dR<0.15
- Tau : pT>20 GeV, |η|<2.3, DeepTauVSJet >5
- b jets : 2 jets w/ pT>20 GeV, $|\eta|$ <2.4 (not yet identified as b)

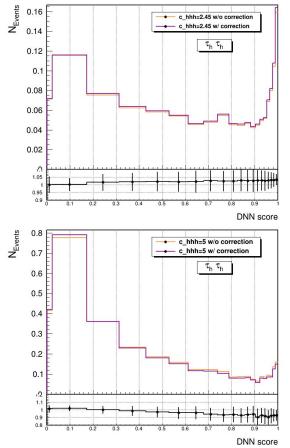

b tagging



ATLAS limits




generated HH mass



25

DNN score

26

Efficiency study

κλ=0	etau	mutau	tautau	κ _λ =	1	1 etau	1 etau mutau
4jets2b	0.34	0.24	0.38	4jets2	2b	2b 0.37	2b 0.37 0.28
single tau	0.03	0.02	0.03	single	e tau	e tau 0.04	e tau 0.04 0.03
diTau+jet	0.28	0.03	0.34	diTau	ı+jet	ı+jet 0.31	ı+jet 0.31 0.03
MET	0.05	0.21	0.02	MET		0.06	0.06 0.21
all	0.43	0.55	0.28	all		0.44	0.44 0.57