RE-INTERPRETATION OF SEARCHES FOR LONG LIVED PARTICLES

Supervised by GOUDELIS Andreas & CORPE Louie MILLOT Louise – Master's internship presentation- June, 19th 2024

Re-interpretation of searches for long-lived particles (LLP)

Contents: Elements of introduction, context Exploiting the ATLAS search: Closure tests Theory side: model used for LLP search in ATLAS Results obtained Perspectives & Conclusion

Elements of introduction

What is LHC (Large Hadron Collider) & ATLAS (A Toroidal LHC ApparatuS) collaboration ?

New Small Wheel (NSW) barrel barrel toroid magnet muon chambers muon chambers endcap muon chambers inner detectors endcap toroid magnet endcap calorimeters barrel electromagnetic calorimeter solenoid magnet barrel hadronic calorimeter

The pre-accelerator system, the collider and the main LHC experiments.

https://indico.cern.ch/event/797767/contributions/3682915/att achments/1965781/3268753/QEIC_SunilBansal.pdf The inner structure of the ATLAS detector https://arxiv.org/abs/2305.16623

Reinterpretation of searches for long-lived particles (LLPs)

What is a LLP ? particle whose lifetime is long enough for its decay to be significantly distant from the interaction point.

Reinterpretation of searches for long-lived particles (LLPs)

Motivations for LLP ?

Involved in BSM physics : appear in dark-matter models, M/A asymmetry, neutrinos masses... Blind spot for ATLAS until recent years : many searches on

LLPs

My work: re-use a search on LLP especially on 'displaced jets' **Why this search ?** Re-interpretation

Search for neutral long-lived particles in ppcollisions at $\sqrt{s} = 13$ TeV that decay into displaced hadronic jets in the ATLAS calorimeter

The ATLAS Collaboration

The ATLAS Collaboration

hadronic jets in the ATLAS calorimeter

Reinterpretation of searches for long-lived particles (LLP)

Monte Carlo Event Generator + time-consuming analysis

Problem: Extract the constraints on a new model ? Create another model ?

Solution : Find a re-interpretation tool. Using existing published results, (ATLAS, CMS, or LHCb) to test a model that was not considered in the original study « recycling » data

Straightforward? Not for external users

Context:

6

- How? Analysis preservation -> publish methods to estimate signal efficiencies, allowing statistical analysisOtherwise : analysis remains a single-use result
- Why?: It is impossible to test all the models during the lifetime of the LHC. Performing single-use searches is an unbearable waste of human (and financial) resources. If PhD student involved into an analysis -> spend all his time on it

Exploiting the ATLAS search: Closure tests

Steps of the analysis using re-interpretation tool: efficiency map

How is done event generation ?

Symbol	Description			
	Output from FeynRules			
	Event generation			
	Hadronization			
	Output files			
	Analysis work			

Flowchart from FeynRules UFO files to analysis work

Samples generated with MG

\ \			
\longrightarrow	m_{ϕ} in GeV	m_s in GeV	Nb events
Other 5	200	100	5000
benchmarks	200	100	15000
Γ	125	55	10000
	200	50	10000
ATLAS 🚽	400	100	10000
	600	150	10000
	1000	275	10000

Structure of the efficiency map

Bin ouput: **probability** of an event being selected (in a specific region) for a pair of LLPs

The sum of the output across a sample $\, \sim \,$ total number of events passing the selection

Nb events

Theory side

The Hidden Abelian Higgs model (HAHM)

Extension of the SM : HAHM

How to Find a Hidden World at the Large Hadron Collider

James D. Wells

MCTP, University of Michigan, Ann Arbor, MI 48109 CERN, Theory Division, CH-1211 Geneva 23, Switzerland

. . .

. . .

Indeed, both of these operators can be exploited in the above-stated way to explore the simplest, non-trivial hidden sector that couples to $B_{\mu\nu}$ and $|\Phi_{SM}|^2$: $U(1)_X$ gauge theory with a complex Higgs boson Φ_H that breaks the symmetry upon condensation. We call this simple model the "Hidden Abelian Higgs Model" or HAHM, and explore the rich phenomenology that it implies for the LHC.

arXiv:0803.1243

that it implies for the LHC.

model the "Hidden Abelian Higgs Model" or HAHM, and explore the rich phenomenology

Add an extra U(1) group:

- \succ introduces new associated gauge boson: Z '
- > requires a new complex singlet scalar field Φ_H to break the extra symmetry (0)

> Two scalar fields:
$$\Phi_{SM} = \left(\frac{v + \phi_{SM}}{\sqrt{2}}\right), \Phi_H = \left(\frac{\xi + \phi_H}{\sqrt{2}}\right)$$

The Lagrangian in the Higgs sector:

$$\mathcal{L}_{Higgs} = |D_{\mu} \Phi_{SM}|^{2} + |D_{\mu} \Phi_{H}|^{2} + m_{\Phi SM}^{2} |\Phi_{SM}|^{2} + m_{\Phi H}^{2} |\Phi_{H}|^{2} - \lambda |\Phi_{SM}|^{4} - \rho |\Phi_{H}|^{4} -\kappa |\Phi_{SM}|^{2} |\Phi_{H}|^{2}$$

Mixing after symmetry breaking:

Through the mixing between φ_{SM} and φ_{H} , the LLPs interact with SM fermions in a Yukawa-like manner

Implementation of the HAHM for experimental physics

The HAHM has been encoded in the Universal FeynRules Output (UFO) format by David Curtin FeynRules is a Mathematica® package -> the calculation of Feynman rules for any QFT physics model.

- requires modifications to build a fully self-consistent MadGraph model using FeynRules2.3
 - effective field theory (EFT): gluon fusion induced mediator production. The process that generates the SM Higgs via the **top loop** is reduced to an **effective operator**.

Simplified version of the HAHM

contains ingredients which are irrelevant for the displaced jet searches

Simplified version:

- keeping what was necessary for my study (scalar part instead of the gauge part)
- Some parameters of the initial model are linked to the gauge part -> Z'
- Rethink the way I was addressing these parameters

Why ? More user-friendly model

Implemented in FeynRules:

Université de Strasbourg

Results

Validation of the simplified model using the map

Pericules plantas univers

Université de Strasbourg

MILLOT Louise - Master's internship presentation-June, 19th

 10^{2}

10²

Validation of the simplified model using the map

With the same masses used in the ATLAS article

18

 10^{-1}

cτ [m]

- Ratio ~ 1
- \blacktriangleright Less oscillation for High- E_T
- Oscillations observed at low
 cτ and high cτ :

uncertainties on the map -> when low numbers of events are passing the selection, data become more sensitive to statistical fluctuations of the remaining events.

Université de Strasbourg MILLOT Los

10²

10²

10²

Perspectives & Conclusion

What remains to be done/ ongoing work

A simplified model that can give rise to such an "asymmetric" decay is currently under development
 Goal: emphasize ease of use and easy incorporation in experimental analysis, rather than theoretical aspects

What are the constraints we obtained on the LLP from this displaced jet search that is performed by ATLAS ?

Conclusion

- The main objective : to understand and explore the **method of reinterpreting** experimental data in the field of particle physics.
 - ⇒ Focusing on the validation and analysis of results obtained from previous simulations and research
 - ⇒ Using tools such as Monte Carlo Event Generators & FeynRules

Focused on the implementation of the HAHM in the context of particle physics and on the comparison between a simplified version of the model and the original version used by the ATLAS experiment.
 The aim was to understand and analyse the experimental constraints associated on the HAHM model, focusing on the production of LLP through a scalar mediator.

- > The prospects for the rest of the internship involve the development of a **new 'asymmetric'** model.
 - ⇒ Building the model **from scratch** and imposing the relevant experimental constraints.
 - ⇒ Both **theoretical & experimental aspects**: from model development to statistical analysis.

Thank you !

Backups

Experimental particle physics lectures

Experimental consequences of boost

Particle	Lifetime $ au$ (s)	Decay length c $ au$ (m)	Mass (GeV)	$\gamma={}^p/_m$ (p=10GeV)	γcτ (m)	Comments
Neutron	878.4	2.63×10^{11}				
Muon	2.2×10^{-6}	600	0.106	94	56 400	Stable at detector level
Charged pion	2.6×10^{-8}	7.8	0.140	71	553	Stable at detector level
Neutral pion	8.6×10^{-17}	2.5×10^{-9}	0.135	74	1.85×10^{-7}	Prompt decay
Tau lepton	2.9×10^{-13}	8.7×10^{-5}	1.78	5.6	4.87×10^{-4}	13% displaced by more than 1 mm but the probability to reach the first layer (3cm) is $\sim 1 \times 10^{-27}$

Experimental particle physics lectures

In special relativity, time dilation is described by the formula : $t = \gamma t_0$

t is the time measured by an observer stationary relative to the particle

 t_0 is the proper lifetime measured in the particle's reference frame, i.e. where the particle is at rest

 γ is the Lorentz factor, given by: $rac{1}{\sqrt{1-rac{v^2}{c^2}}}$

LLP & BSM

How can long lived signatures point out new physics ?

A given particle is long-lived when:

- > The relevant coupling is small;
- > The decay is suppressed by some large scale or heavy mediator;
- The allowed final state phase space is small

Cross section computation

Analytically

Process ➡ Feynman ➡ Frame & ➡ M_{fi} ➡ dσ/dΩ ➡ σ

- 1. Define the process of interest
- Draw the LO Feynman diagram for the process of interest
- 3. Define a **frame** and choice notation of the 4-momenta
- 4. Apply Feynman rules to compute the matrix element
- Inject the matrix element in the differential cross section formula
- 6. Integrate to obtain the total cross section

Madgraph

L	<pre>import model /users/divers/atlas/millot/home2/MG5_aMC_v3_4_2/HAHM_MG5model_v3/HAHM_gluons_UFO</pre>
	define f = u c d s u~ c~ d~ s~ b b~ e+ e- mu+ mu- ta+ ta- t t~
	generate g g > h HIG=1 HIW=0 QED=0 QCD=0, (h > h2 h2, h2 > f f)
	output Script_mH200_mS50
	launch Script_mH200_mS50
	shower=Pythia8
	0
	set nevents = 10000
	set mhsinput 50
	set mhinput 200
	set xi 83
	set kap 1e-4

LHE file which contains all the kinematic information for each event:

	21	-1	0	0	504	503	+0.0000000000e+00	+0.0000000000e+00	+1.2243025452e+02	1.2243025452e+02	0.00000000000e+00	0.0000e+00	-1.0000e+00
	21	-1	0	0	503	504	-0.000000000e+00	-0.000000000e+00	-4.5708761803e+01	4.5708761803e+01	0.0000000000e+00	0.0000e+00	-1.0000e+00
	25	2	1	2	0	0	+0.000000000e+00	-7.1054273576e-15	+7.6721492716e+01	1.6813901632e+02	1.4961464288e+02	3.3785e-15	0.0000e+00
	35	2	3	3	0	0	+2.1685712142e+01	+4.3563450737e+01	+3.4317158956e+00	6.8092289762e+01	4.7505146036e+01	2.9445e-14	0.0000e+00
	35	2	3	3	0	0	-2.1685712142e+01	-4.3563450737e+01	+7.3289776820e+01	1.0004672656e+02	4.7643590942e+01	5.7367e-14	0.0000e+00
	4	1	4	4	501	0	-2.5699872788e+00	+2.7339367104e+00	-1.6196041490e+01	1.6685544777e+01	1.4200000000e+00	0.0000e+00	1.0000e+00
	-4	1	4	4	0	501	+2.4255699421e+01	+4.0829514026e+01	+1.9627757386e+01	5.1406744985e+01	1.4200000000e+00	0.0000e+00	1.0000e+00
	5	1	5	5	502	0	-1.1445196568e+01	+3.3690552427e+00	+3.8417273930e+01	4.0500864113e+01	4.7000000000e+00	0.0000e+00	1.0000e+00
	-5	1	5	5	0	502	-1.0240515574e+01	-4.6932505979e+01	+3.4872502890e+01	5.9545862447e+01	4.700000000e+00	0.0000e+00	1.0000e+00
	4	•	K	1	k	1	A	↑		†	^	↑	↑
				/		\int	Px(GeV)	Pv(GeV)	Pz(GeV)	E(GeV)	m(GeV)	distance	helicity
P	DG ID		pare	ents	col	or fl	ow	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(<i>)</i>	()		travolod	/
						-	-					llaveleu	
												(mm)	
Status	· -1 inc	omi	σ 1 ∩	utor	ning	2 in	termediate						
Status	. I IIIC		5, I U	urg.	en e	,							

Université de Strasbourg

Numerically

Displaced jets

J. Antonelli's presentation at ICHEP 2016

In particle physics, a 'displaced jet' refers to a phenomenon where a jet of particles, appears displaced from the point of origin of the main collision. This offset indicates that the particles responsible for forming the jet have travelled a certain distance before decaying into detectable particles.

The SM fermions from the LLP decay result in jets whose origins may be far from the interaction point (IP) of the colliding protons, leading to so-called displaced vertices or displaced jets.

If the LLP decay occurs in the calorimeters, the decay products are collimated enough to be reconstructed as a single jet which is narrow, trackless and with an unusually high proportion of its energy in the hadronic calorimeter.

External/ internal parameters

External	Internal
$MH_{\rm input}^2$	$\mu_{\Phi SM}^2$
MHS_{input}^2	$\mu^2_{\Phi \mathrm{H}}$
mW^{1}	λ
ξ	ρ
κ	th
α_{XM1}	ch
α_{EWM1}	sh
$\mathbf{G}\mathbf{f}$	v
α_S	yl
ymc	yu
\mathbf{ymb}	yd
\mathbf{ymt}	AH
ymu	GH
\mathbf{ymd}	α_{EW}
yms	ee
\mathbf{ymel}	α_X
ymmu	gX
ymtau	

$$\mu_{\Phi SM}^2 = \lambda v^2 + \frac{\kappa \xi^2}{2}$$
$$\mu_{\Phi H}^2 = \rho \xi^2 + \frac{\kappa v^2}{2}$$

FeynRules and Mathematica

FeynRules is a Mathematica[®] package \rightarrow the calculation of Feynman rules for any QFT physics model.

- provide FeynRules with the **minimal information required** to describe the new model (model-file)
- This information is then used to calculate the set of Feynman rules associated with the Lagrangian.
- The Feynman rules calculated by the code can then be used to implement new physics model into other existing tools (outputs them to a form appropriate for various programs such as CalcHep, FeynArts, MadGraph, Sherpa and Whizard)

FeynRules and Mathematica: Exemple with SM file

Hadronisation & jets

Jet : experimental signatures of **quarks** and **gluons**. As quark and gluons have a net colour charge and cannot exist freely dur to colour confinement, they are not directly observed in nature. Instead, they come together to form colour-neutral hadrons, a process called hadronization that leads to a collimated spray of hadrons called jet

- PYTHIA8: program for the generation of high-energy physics collision events,
- ➤ Hadron ?

Feynman Diagrams

Experimental particle physics lectures

★ Particle interactions described in terms of Feynman diagrams

★ IMPORTANT POINTS TO REMEMBER:

- "time" runs from left right, only in the sense that:
 - LHS of diagram is initial state
 - RHS of diagram is final state
 - Middle is "how it happened"
- anti-particle arrows in -ve "time" direction
- Energy, momentum, angular momentum, etc. conserved at all interaction vertices
- All intermediate particles are "virtual"

Feynman Rules (QED)

External lines

 \rightarrow Real particles

spin 1/2

→ Dirac Spinor

spin 1

Internal lines (propagators)

UV standpoint

Ultraviolet (UV) dependence: physical quantities (such as coupling constants, particle masses, etc.) vary as a function of very high energies (or small length scales).

In **QFT**: calculations often involve **integrals** over all possible particle energies. Some of these integrals can diverge when they include contributions from very high energies (high frequencies, hence the term "ultraviolet").

⇒ renormalisation technique is used: This allows the physical quantities to be 'renormalised' to make the theory's predictions finite and physically meaningful.

The UV dependence then refers to the way in which the parameters of the theory (such as the coupling constants) must be adjusted as a function of the energy scale (or UV 'cut-off') to maintain the coherence of the theory.

Asymmetric model: The goal is to emphasize ease of use and easy incorporation in experimental analyses, rather than theoretical aspects which, from a UV standpoint, can be highly model-dependent.
 Lagrangian: Gauge eigenstates/mass eigenstates, not gauge invariance, not renormalizable

SM

https://fr.wikipedia.org/wiki/Modèle standard de la physique des particules

