Improving quarkonia invariant mass resolution by measuring the response function of the ALICE muon spectrometer's trajectography chambers

Stanislas Lambert

Under the supervision of : M. Guilbaud & P. Pillot

- Context
- Procedure
- Preliminary results
- Resolutions
- Conclusion & Outlook

Context - Quark-Gluon Plasma (QGP)

Illustration of the phase diagram of QCD matter

- \rightarrow quarks and gluons deconfinement ($\alpha_{\mathcal{S}} <<$ 1)
- \rightarrow net baryon density \simeq 0 (at LHC)
- $\rightarrow k_B T_c \simeq 155 \text{ MeV} (LQCD)$
- $\rightarrow \simeq 10~\text{fm/c}$ (3.10 $^{-23}\text{s})$ (at LHC)

Context - Quarkonia in QGP

suppression & recombination of charmonia in a QGP

- heavy quark weakly bound states $(c\overline{c} \text{ and } b\overline{b})$
- produced at the early stages of the collision
- charmonia/bottomonia as a (hard) probe

 $J/\psi(1S)
ightarrow \mu^+\mu^- (5.961 \pm 0.033)\%$ $\Upsilon(1S)
ightarrow \mu^+\mu^- (2.48 \pm 0.05)\%$

Context - Motivation

invariant mass of J/ψ and $\psi(2S)$, ALICE Run 3

invariant mass resolution of J/ψ for different $p_T^{J/\psi}$ obtained by ALICE

Context - A Large Ion Collider Experiment (ALICE)

 \rightarrow One of the four major experiments at the CERN's LHC \rightarrow Dedicated to the QGP

ALICE detector overview

Context - Muon Spectrometer

Overview of the Muon Spectrometer with the Muon Forward Tracker (MFT)

- $-4 < \eta < -2.5$
- Muon IDentifier : detect μ crossing the iron wall
- Muon CHambers : 5 stations \rightarrow 10 chambers

M2 PSA Internship 2024, Stanislas Lambert

Context - Muon Chambers

Geometry of the Muon Chambers (MCH)

 \rightarrow Each chamber is divided into parts :

- Quadrants (Ch. 1-4)
- Slats (Ch. 5-10)

 \rightarrow Each segmentation (within a part) has a pad arrangement

Context - Inside the Muon Chambers

image from Sanjoy Pal Bending : along with the direction of the magnetic field

- Multi Wire Proportional Chamber (MWPC)
- h : anode-cathode separation distance
- Cathodes planes segmented into pads (Cathode Pad Chamber)
- Bending $\Rightarrow \Delta Y = cste$
- Non Bending $\Rightarrow \Delta X = cste$
- Charge deposition on pads \Rightarrow cluster

Context - Charge distribution properties

 Charge distribution in a MWPC has been shown to follow a Mathieson-Gatti distribution (normalized and centered at μ):

$$\rho(\lambda = \frac{x}{h}) = 2K_1 \frac{1 - tanh^2(K_2(\lambda - \mu))}{1 + K_3 tanh^2(K_2(\lambda - \mu))}$$

due to symmetry, K_1 and $K_2 = f(K_3)$.

• For a cathode plane :

$$\rho(\lambda_X,\lambda_Y) = \rho(\lambda_X)\rho(\lambda_Y) \Rightarrow Cov(X,Y) = 0$$

Context - Clusters & tracks

- Reconstruction of cluster's coordinates by fitting the pad charge distributions with a Mathieson-Gatti function with fixed K_{3X} and K_{3Y}
- Clusters are then combined to reconstruct the muon tracks

ightarrow The plane ZY is the most important one p[GeV/c] = 0.3B[T]
ho[m]

- The shape of the Mathieson-Gatti function used in ALICE software is fixed
- BUT these shapes do not reproduce the measured pad charge distributions
- \bullet Using better shapes \rightarrow improve clusters \rightarrow improve the invariant mass resolution
- From a selection of data \rightarrow extract K_{3Y} and compare the spacial resolution with the previous one

PROCEDURE

Selections :

- Run 3 (2022), p-p $\sqrt{s} = 13.6 \, TeV$
- Track selections :
 - $ightarrow p_{tot} > 10 GeV$
 - ightarrow Tracks within $\eta \in$]–4; –2.5[
 - \rightarrow Must match with the Muon Identifier
 - \rightarrow Reconstructed track close to the primary interaction vertex
- cluster selections :
 - \rightarrow Clusters from chamber's parts that don't have a low HV
 - $\rightarrow \textbf{Single} ~ \mathsf{Cluster}$
 - \rightarrow Bending & non-bending planes hit
 - \rightarrow A charge asymmetry $\left(\left| \frac{Q_B Q_{NB}}{Q_B + Q_{NB}} \right| \right)$ less than 0.5

Informations on the selected clusters of the RUN3

 \rightarrow Most of the selected clusters have a size between 1-3 pads

Use MLS / LS methods for fitting with *Minuit2*/*MIGRAD* as a minimizer:

$$\chi^2(\boldsymbol{ heta}) = \sum_{i=1}^N rac{(q_i - f_i(\boldsymbol{ heta}))^2}{\sigma_i^2}$$

→ $f_i = \mathsf{E}[\mathsf{q}_i]$ and $\theta = \{X, Y, K_{3Y}\}$ estimate parameters → $MLS \equiv \sigma_i = \sqrt{q_i}$ and $LS \equiv \sigma_i = \sqrt{f_i}$ (Poisson distribution)

• It is also possible to estimate the number of total charge withing cathode adding a new parameter to $f_i(\theta) \rightarrow f_i(\theta, Q_{tot})$ (denoted as LS+ and MLS+)

Procedure - Fitting methods

• 2D (classical) : Mix bending and non-bending pads together. Free parameters : $\theta = \{X, Y, K_{3Y}\} / \theta = \{X, Y, K_{3Y}\} \& < Q_{tot} > f_i(\theta) = < Q_{tot} > \int_{\lambda_{X,i}^{min}}^{\lambda_{X,i}^{max}} \int_{\lambda_{Y,i}^{min}}^{\lambda_{Y,i}^{max}} \rho(\lambda; \theta) d\lambda_X d\lambda_Y$

(Implemented in ALICE software with MLS method and $\theta = \{X, Y\}$)

• **1D** : (Only work on the bending plane) project the charges on the Y axis. Free parameters : $\theta = \{Y, K_{3Y}\} / \theta = \{Y, K_{3Y}\}\&Q_{tot,B}$

$$f_i(\boldsymbol{\theta}) = Q_{tot,B} \int_{-\infty}^{+\infty} \int_{\lambda_{Y,i}^{min}}^{\lambda_{Y,i}^{max}} \rho(\boldsymbol{\lambda};\boldsymbol{\theta}) d\lambda_X d\lambda_Y$$

Methods	1D	2D mixing
MLS	3 _B	$3_B + 2_{NB}$
MLS+	$4_B (!)^1$	$3_B + 2_{NB}$
LS+	$4_B (!)^1$	$3_B + 2_{NB}$

¹: only 1% of the selected clusters

PRELIMINARY RESULTS

Preliminary Results - χ^2/n_d selections (2D MLS)

ightarrow Rejection of "bad" χ^2/n_d set to 7.5% for all methods

\rightarrow Pads charge uncertainty

Normalized K_{3V} distribution 2D LS+ vs MLS+ hMLS+ hLS+ 2D LS+ 0.025 Entrie 68752 68374 82.19/59 78.62/59 2D MLS+ 0.02075 + 0.0010 0.2982 + 0.002 0.02 0.08233 ± 0.00142 08349 ± 0.0015 09811+0.00073 0.4271 ± 0.0104 0.4269 + 0.0112 0.1198 ± 0.0038 0.1215 ± 0.0042 0.015 0.0 0.005 0.1 0.2 0.3 0.4 0.5 0.6 0.8 K_{3Y}

Methods	K _{3Y}	$\sigma_{K_{3Y}}$
LS+	0.2962	0.08349
MLS+	0.2982	0.08233

*data fitted with a crystalball function

difference between the MLS+ and LS+ method for 2D

 \rightarrow Total charge $< Q_{tot} >$ is left free or not

Normalized K_{av} distribution 2D MLS+ vs MLS

Methods	K_{3Y}	$\sigma_{K_{3Y}}$
MLS	0.2943	0.08135
MLS+	0.2982	0.08233

*data fitted with a crystalball function

difference between the LS+ and MLS method for 2D

*data fitted with a crystalball function

difference between the 1D and 2D method for MLS

- Consistency between the methods
- Choice between two methods based on :
 - \rightarrow The lowest standard deviation
 - \rightarrow Keep the one with the least free parameters

•	Methods	K _{3Y}	$\sigma_{K_{3Y}}$
	2D MLS	0.2928	0.07962

- Next step : influence of others variables on K_{3Y}
 - \rightarrow total charge in bending plane : $Q_{B,tot}$
 - ightarrow total momentum : p_{tot}
 - \rightarrow fired pads size in bending plane : ΔY
 - \rightarrow angle between the track and the z-axis : φ

Preliminary Results - K_{3Y} vs $Q_{B,tot}$, p_{tot} , ΔY , φ

Preliminary Results - K_{3y} distribution per station ($Q_{B,tot} > 300$ ADC & $\Delta Y < 5$)

0.295

0.080

St. 345

0.584

St. 345

RESOLUTION

Resolution - Residuals & Resolution

- **Residual** :∆(track(y)-cluster(y))
- Spatial Resolution: $\sigma(\Delta(track(y)-cluster(y)))$

example of the extraction of the spatial resolution from the residuals

Resolution - Resolution comparison

- **Blue** points : with the previous values of K_{3Y} .
- Red points : with the new ones.

- K_{3Y} parameters fitted to the data are smaller than the predicted values
- Cluster resolution improved with the new K_{3Y} values : $\sigma_{old} = 326.77 \pm 2.72 \ \mu m \rightarrow \sigma_{new} = 302.79 \pm 2.64 \ \mu m$ \Rightarrow gain : 7.5%
- Results presented at QGP France and at the next ALICE Muon Week
- The next step is to run the ALICE reconstruction software with the new K_{3Y} parameters and see how much it influences the invariant mass resolution of quarkonia $(\sigma(p) \propto \sigma(Y)p^2)$.
- Future studies :
 - \rightarrow same procedure for K_{3X}
 - \rightarrow charge uncertainty on pads
 - ightarrow review of Mathieson & Gatti function to understand the difference

REFERENCES

References

- Quark-Gluon Plasma : From Big Bang to Little Bang, Yagi et al., Cambridge University Press ; 2008
- Statistical Data Analysis, Glen Cowan, Owford Science publications, 1998
- E. Gatti et al., Nucl. Instrum. Methods 163 (1979) 83
- E. Mathieson, Nucl. Instrum. Methods A270 (1988) 602
- ROOT, Minuit 2, https://root.cern.ch/doc/master/Minuit2Page.html
- Addeundum to the ALICE TDR of the dimuon spectrometer, ALICE Collaboration, CERN/LHCC-96-32-LHCC/P3-Addendum 1 1996
- Sébastien Perrin. Study of J/ψ-hadron azimuthal correlations in pp collisions at 13 TeV with ALICE and commissioning of the muon spectrometer. High Energy Physics - Experiment [hep-ex]. Université Paris-Saclay.(2022) tel-03999200
- Rachid Guernane. Optimisation du spectromètre à muons du détecteur ALICE pour l'étude du plasma de quarks et de gluons au LHC. Physique Nucléaire Théorique [nucl-th]. Université Claude Bernard (Lyon, 2001) tel-00001419
- ALICE Collaboration, ALICE upgrades during the LHC Long Shutdown 2, CERN-EP-2023-009 (2023)

BACKUP

June 20th, 2024 32 / 49

Charge pad projected on the Y-axis

Correlation between K_{3x} & K_{3y}

 χ^2/n_d results for the 1D MLS method

K_{3Y} distribution for different cuts

 χ^2/n_d results for the 1D MLS method

K_{3Y} distribution for different cuts

 χ^2/n_d results for the 2D LS+ method

K_{3Y} distribution for different cuts

 χ^2/n_d cut for the 2D LS+ method

 χ^2/n_d results for the 2D MLS+ method

K_{3Y} distribution for different cuts

 χ^2/n_d cut for the 2D MLS+ method

variables distribution

spatial resolution as a function of variable

Residuals St. 1/2/3

Residuals St.4/5 and tot

 R_{AA}

ALI-PERF-568655

