Structure and shape evolution in neutron-rich Zn and Ga isotopes towards the N=50 shell closure : data analysis

Tristan GUEBHART

June 20, 2024

Table of contents

- I. Introduction
- II. Scientific background
- III. Methods
- IV. Results
- V. Conclusion and perspectives

I) Introduction

- Preliminary work for the study of exotic ₃₀Zn and ₃₁Ga isotopes
- Create the tools necessary for the data analysis
- Implementation of *add-back* and *Compton suppression* techniques

II) Theoretical motivations

• Investigate shape transition in exotic ₃₀Zn and ₃₁Ga nuclei

• ₃₀Zn and ₃₁Ga isotopes part of the astrophysical r-process

II) Theoretical motivations

Gain information on the doubly-magic ⁷⁸Ni (Z = 28)

Measured energies of the first 5+, 6+ and 7+ excited states in N = 50 isotones

II) Theoretical motivations

- Gain information on the doubly-magic ⁷⁸Ni
- First 5+, 6+ and 7+ states in ⁸⁰Zn : excite neutrons above N = 50

Measured energies of the first 5+, 6+ and 7+ excited states in N = 50 isotones

Schmidt et al. PR Special Topics 10. 014701 (2007)

II) Fusion-fission reaction

- $_{30}$ Zn and $_{31}$ Ga nuclei produced by the fusion-fission reaction n + 238 U \rightarrow FF + xn
- ₃₀Zn and ₃₁Ga have a very low production yield
- 200 different nuclei created
 → contaminant gamma-rays

Produced nuclei from the fission of ²³⁸U

II) Experimental setup - nuball

• HPGe for energy resolution, LaBr₃ for time resolution

Laboratoire de Physique des 2 Infinis

Single HPGe crystal and 4 crystals in a clover

 BGO shields to reduce the Compton background

The BGO shield of the clover next to it

II) Experimental setup - nuball

- 2 rings of 12 clovers each
- 2 rings of 10 LaBr₃ each

Upstream view

Downstream view

II) Experimental setup - nuball

- 2 rings of 12 clovers each
- 2 rings of 10 LaBr₃ each

LaBr₃ rings

Clover rings

III) BGO shielding

- Two main interactions :
- photoelectric effect dominates until 140 keV
- Compton scattering dominates beyond

- Use of BGO shields to reduce the Compton background
- \rightarrow discard photons having a BGO hit

2 photon interactions in a Compton-shielded clover

- Flag system : when both HPGe and BGO hit were registered in
- the same detector : flag 3 not clean

- Flag system : when both HPGe and BGO hit were registered in
- the same detector : flag 3 not clean
- 2 neighboring detectors : flag 2 maybe clean

- Flag system : when both HPGe and BGO hit were registered in
- the same detector : flag 3 not clean
- 2 neighboring detectors : flag 2 maybe clean
- 2 non-neighboring detectors : flag 1 clean

• Add-back method to recover the total energy of the photon

- In the sorted data tree :
- energy
- flag
- Reaction runs :
- 78% flag 1
- 11% flag 2
- 11% flag 3

https://cubix.in2p3.fr, Jérémie Dudouet

• Build 2D and 3D gamma coincidence matrices

• Build 2D and 3D gamma coincidence matrices

https://cubix.in2p3.fr, Jérémie Dudouet

Part of a level scheme with 4 transitions

Filling (middle) and total projection (right) of a 2D gamma coincidence matrix

• Use one or multiple *gates* to identify gamma in coincidence

Choice of a gate (middle) and projection of the 2D matrix along that gate (right)

Total projection (top) and projection along a gate (bottom) of a 2D gamma coincidence matrix

IV) Event classification results

- Effects of anti-Compton :
- photopeak area : -4.2 %

⁶⁰Co gamma spectrum without add-back

IV) Event classification results

- Effects of add-back :
- photopeak area : +40 %
- background area : -23 %

IV) Event classification results

- Goal : reproduce literature results with 2D matrices
- Built with reaction data

Counts per keV 0 1300 140 E_x (keV)

Total projection of a gamma-gamma coincidence matrix

- Goal : reproduce literature results with 2D matrices
- Built with reaction data
- Gate to identify a fission fragments pair

Total projection of a gamma-gamma coincidence matrix

- Goal : reproduce literature results with 2D matrices
- Built with reaction data
- Gate to identify a fission fragments pair
- → too many contaminant nuclei in 2D

Counts per keV 1300 140 E_x (keV)

Total projection of a gamma-gamma coincidence matrix

• Triple gamma coincidences techniques

 ¹⁴⁰Xe - ⁹⁶Sr FF pair as a benchmark case : well produced and known in the literature

• Use of multiple *gates* to identify gamma transitions

• Double X-axis gates on two ¹⁴⁰Xe peaks

 \rightarrow increased statistics but risk of contamination

- Single X-axis gate on ¹⁴⁰Xe and double Y-axis gates on ⁹⁶Sr
- \rightarrow lower statistics but cleaner spectrum

- Green arrows : ¹⁴⁰Xe
- \rightarrow 15 gamma transitions

• Red arrows : ⁹⁶Sr

→ 16 gamma transitions identified with a triple coincidence matrix

V) Conclusion

- Sorting code with the anti-Compton and add-back techniques combining :
- a Compton background reduction of 71 %
- a total absorption peak area increase of 34 %

 Identification of transitions from the ¹⁴⁰Xe - ⁹⁶Sr fission fragments pair validating triple-coincidence techniques

- Next step : reproduce the level scheme of the ¹⁴⁰Xe - ⁹⁶Sr pair
- Identify Zn nuclei and construct their level schemes

Thank you for your attention !

Shell model

Fission fragments mass number distribution

• Two peaks : A = 100 and A = 140

II) LICORNE

- Inverse kinematics reaction p (⁷Li, ⁷Be) n offers a natural focusing of the beam (at forward angles)
- Advantages :
- neutron flux increased by a factor 25 100
- neutron background reduced at most angles
- possibility to place detectors adjacent to the neutron source

LICORNE beam with one ring of HPGe detectors

HPGe crystal

represents electrical contact surface

The closed-ended coaxial bulletized HPGe used in the experiment

• Event = set of photons, hit = interaction of a photon in a detector

Photon	HPGe hit	BGO hit	Clean ?
1	~	×	Yes
2	~	×	Yes
3	~	×	Yes
4	~	~	No
5	~	×	Yes
6	×	~	No

Gate choice

V) Perspectives

• Limit : no way of discarding photons doing only Compton scattering

- Improvement to the flag system :
- before : hit 1 not clean, hit 3 possibly clean
- after : hit 1 not clean, hit 3 clean

Three hits in two adjacent clovers