Master 2 Internship Oral Presentation

Development of Monte Carlo tool for Radiation Protection

Under the supervision of J. THOMANN & N.ARBOR

FLAESCH Théo M2PSA

20/06/2024

Table of contents

I. Introduction

II. Materials & Methods

III. Variance Reduction Techniques (VRTs)

IV. Application of the VRTs

V. Conclusion

I. Introduction

I. Introduction : Context and Smartium work

Need for radionuclide in medical sector (production, manipulation and storage)

Laboratory front panel [1]

Lead wall

Working stations

Measurement system

Spin-off from IPHC's works Created in 2021 **Develops numerical solutions for radiation protection** and nuclear measurements

I. Introduction : Context and Smartium work

Need for radionuclide in medical sector (production, manipulation and storage)

Laboratory front panel [1]

Smartium work using MC simulations:

1) **Relationship** between **probe** and **staff** exposition to define warning threshold.

2) Radiological **exposure** as a function of the **position** for better probe placement.

3

I. Introduction : Context and Smartium work

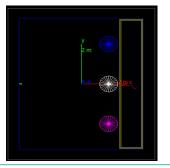
Need for radionuclide in medical sector (production, manipulation and storage)

Laboratory front panel [1]

Smartium work using MC simulations:

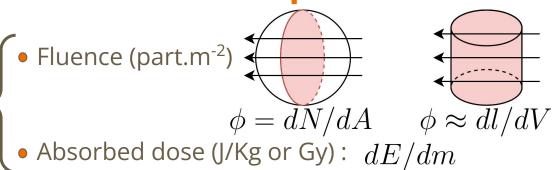
1) **Relationship** between **probe** and **staff** exposition to define warning threshold.

2) Radiological **exposure** as a function of the **position** for better probe placement.


Internship targets :

Make a MC simulation of a laboratory front panel

Find and implement **Variance Reduction Techniques** (VRTs) to **reduce as much as possible** the computation **time** while **limiting the impact** on the **result**


II. Materials & Methods

 $x = \bar{x} \pm \sigma_{\mathcal{X}}$

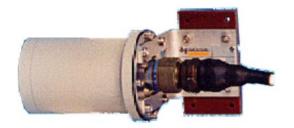
Physical quantities Measurable

Physical quantities Measurable

Protective quantities Not measurable

- Fluence (part.m⁻²) $\phi = dN/dA$ $\phi \approx dl/dV$ • Absorbed dose (J/Kg or Gy): dE/dm
- Equivalent dose for an organ T (Sv) : $H_T = D_{T,R}W_R$ Takes into account the effect of a given radiation on tissues.
- Effective dose for the body (Sv): $E = \sum_{Takes into account the organs sensibilities} H_T W_T$

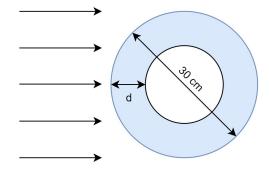
Physical quantities Measurable


Protective quantities Not measurable

- Fluence (part.m⁻²) $\phi = dN/dA$ $\phi \approx dl/dV$ • Absorbed dose (J/Kg or Gy): dE/dm
- Equivalent dose for an organ T (Sv) : $H_T = D_{T,R}W_R$ Takes into account the effect of a given radiation on tissues.
- Effective dose for the body (Sv): $E = \sum H_T W_T$ Takes into account the organs sensibilities

Protective quantities are not measurable : Introduce **operational quantities** Measurable **approximations** of protective quantities

Operational quantity : Measurable approximations of protective quantities Use for calibration of measurement system

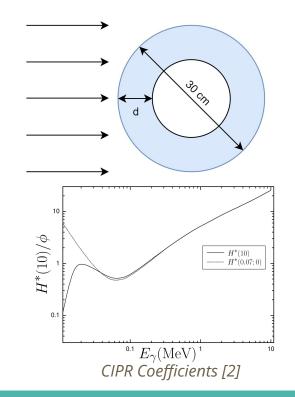

Probe

Personal dosimeter

Operational quantity : Measurable approximations of protective quantities

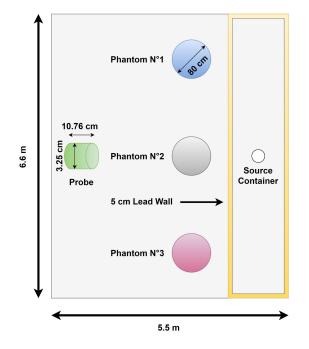
The ambient dose equivalent : $H^*(d)$

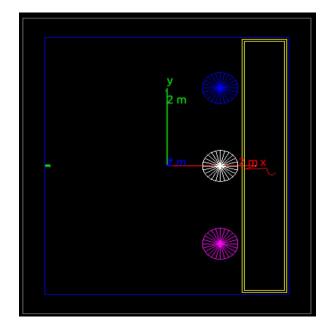
Dose equivalent produced by radiation field in the ICRU sphere of density 1 g/cm³ at a depth d.

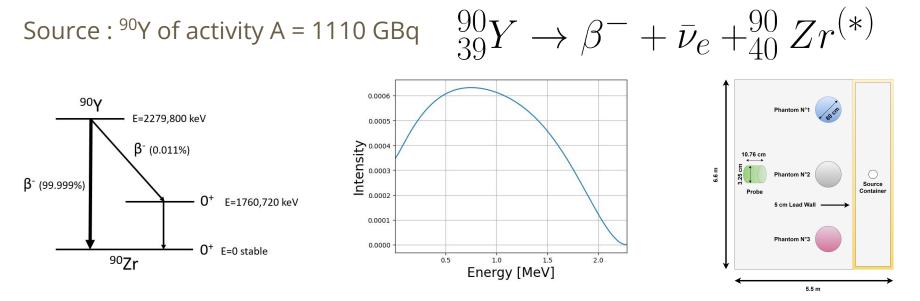

Operational quantity : Measurable approximations of protective quantities

The ambient dose equivalent : $H^*(d)$

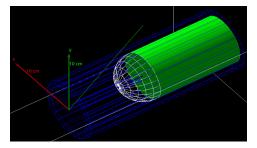
Dose equivalent produced by radiation field in the ICRU sphere of density 1 g/cm³ at a depth d.


In this work we compute :


$$\dot{H}^*(10) = \dot{\phi} \sum_i CIPR_i I_i$$



First work carried out : Learn the GATE software Modelisation of the laboratory

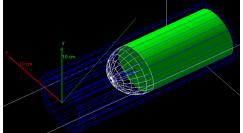

Decay scheme and spectrum data from [3]

 β^{-} slowed in lead wall \rightarrow **Bremsstrahlung photon irradiation**

Probe:

- Cylindrical shape
- Aligned with phantom N°2 and source
- Silicon : semiconductor
- Detection range : [0.01 μSv/h ; 1000 Sv/h]



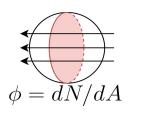

SG/Si 11 probe

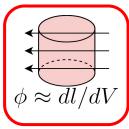
Probe model

Probe:

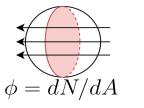
- Cylindrical shape
- Aligned with phantom N°2 and source
- Silicon : semiconductor
- Detection range : [0.01 μSv/h ; 1000 Sv/h]

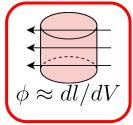
SG/Si 11 probe

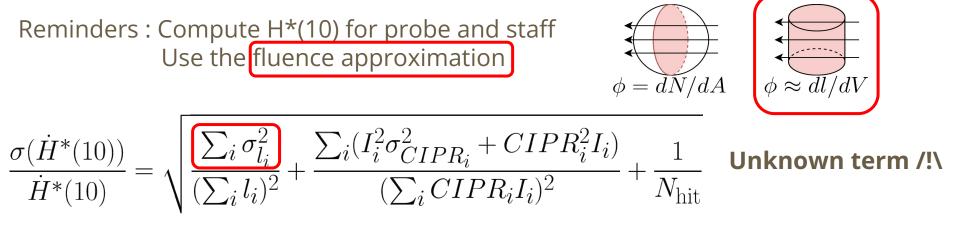

Probe model


To **ensure** the **accuracy** of the probe Monte Carlo modeling : **comparison** with **experimental** data.

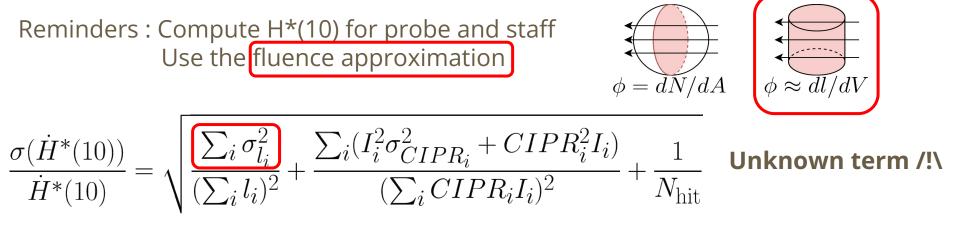
$$^{137}_{55}Cs \to \beta^- + \bar{\nu}_e + ^{137}_{56}Ba$$

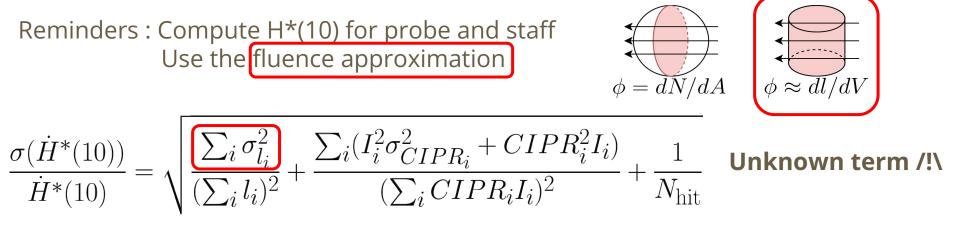

Relative error ~1.5% **Validation** of the modeling

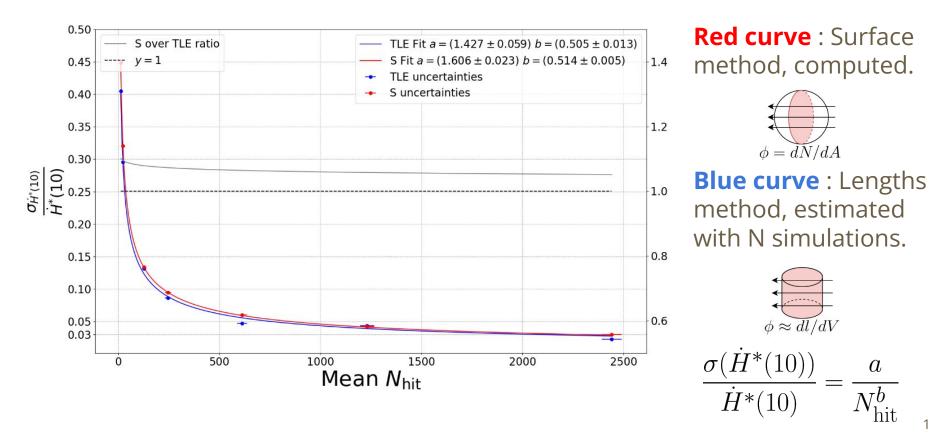

Reminders : Compute H*(10) for probe and staff Use the fluence approximation



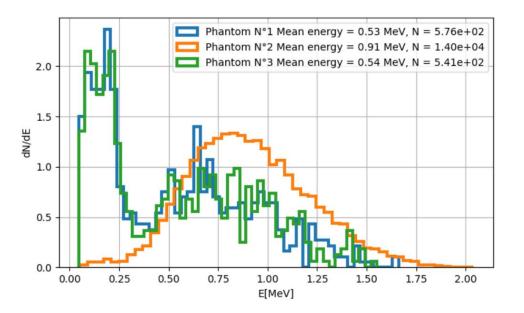
Reminders : Compute H*(10) for probe and staff Use the fluence approximation



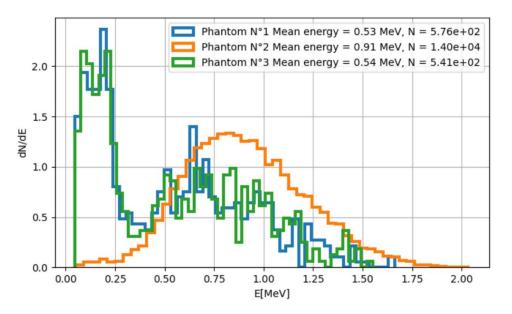

$$\frac{\sigma(\dot{H}^*(10))}{\dot{H}^*(10)} = \sqrt{\frac{\sum_i \sigma_{l_i}^2}{(\sum_i l_i)^2}} + \frac{\sum_i (I_i^2 \sigma_{CIPR_i}^2 + CIPR_i^2 I_i)}{(\sum_i CIPR_i I_i)^2}} + \frac{1}{N_{\text{hit}}} \quad \text{Unknown term /!} \wedge \frac{1}{(\sum_i CIPR_i I_i)^2} + \frac{1}{N_{\text{hit}}} = \frac{$$


1) **Compute** the relative uncertainty using the **classical definition**.

- 1) **Compute** the relative uncertainty using the **classical definition**.
- 2) **Estimate** the standard deviation of the **approximation** with **several simulations**

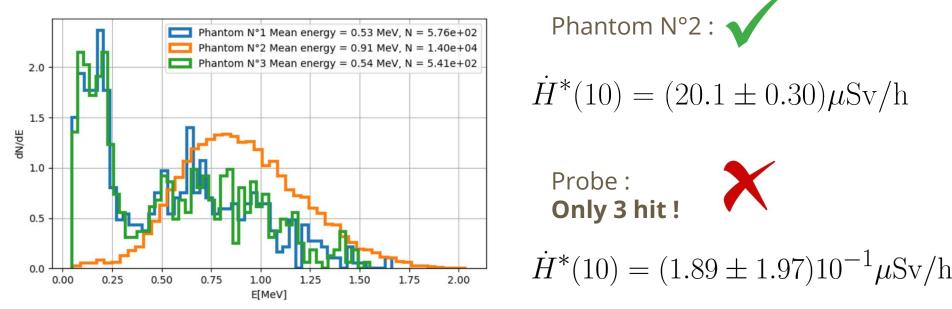


- 1) **Compute** the relative uncertainty using the **classical definition**.
- 2) **Estimate** the standard deviation of the **approximation** with **several simulations**
- 3) **Compare** the standard deviation of the approximation to the computed relative uncertainty of the classical definition

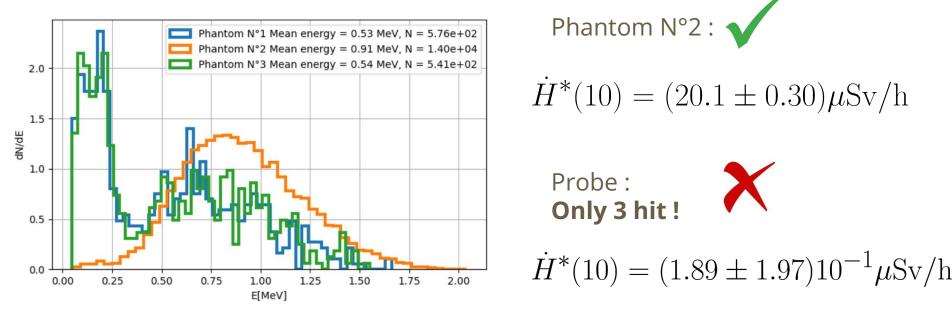


10

Simulation results : $N_{sim} = 10^9$, $\Delta T = 23 h 35 min$

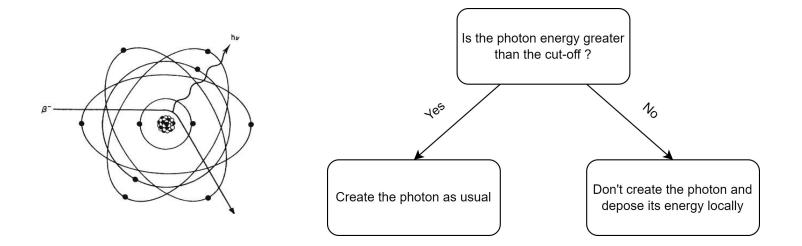

Simulation results : $N_{sim} = 10^9$, $\Delta T = 23 h 35$ min

Phantom N°2 : 🗸


 $\dot{H}^*(10) = (20.1 \pm 0.30) \mu \text{Sv/h}$

Simulation results : $N_{sim} = 10^9$, $\Delta T = 23 h 35$ min

104% relative uncertainty for the probe : no reference value


Simulation results : $N_{sim} = 10^9$, $\Delta T = 23 h 35$ min

To have **5% error on the probe** : 9.65x10³ hours or **1 year**, 1 month and 8 days /!\ Low N_{hit}, only an approximation /!\

III. Variance Reduction Techniques (VRTs) (\overbrace{f})

In GEANT4 the cut-off is expressed in **distance** unit which corresponds to the **mean free path**.

Save time by increasing the cut-off (less particle to simulate)

For $N_{sim} = 2E8$

Electron and Photon cut-off	$\dot{H}^{*}(10)~(\mu{ m Sv/h})$	ΔT	Volume
1 mm and 1 mm	$(2.02 \pm 0.05)10^{+1}$	26 h 51 m 36 s	Phantom 2
10 mm and 10 mm	$(1.98 \pm 0.06)10^{+1}$	4 h 43 min 12 s	Phantom 2
400 mm and 30 mm	$(1.99 \pm 0.06)10^{+1}$	3 h 21 m 36 s	Phantom 2

For $N_{sim} = 2E8$

Electron and Photon cut-off	$\dot{H}^*(10)~(\mu{ m Sv/h})$	ΔT	Volume
1 mm and 1 mm	$(2.02 \pm 0.05)10^{+1}$	26 h 51 m 36 s	Phantom 2
10 mm and 10 mm	$(1.98 \pm 0.06)10^{+1}$	4 h 43 min 12 s	Phantom 2
400 mm and 30 mm	$(1.99 \pm 0.06)10^{+1}$	3 h 21 m 36 s	Phantom 2

Coherent results

For $N_{sim} = 2E8$

Electron and Photon cut-off	$\dot{H}^{*}(10)~(\mu{ m Sv/h})$	ΔT	Volume
1 mm and 1 mm	$(2.02 \pm 0.05)10^{+1}$	26 h 51 m 36 s	Phantom 2
10 mm and 10 mm	$(1.98 \pm 0.06)10^{+1}$	4 h 43 min 12 s	Phantom 2
400 mm and 30 mm	$(1.99 \pm 0.06)10^{+1}$	3 h 21 m 36 s	Phantom 2

Coherent results **Reduction of the computation time**

For $N_{sim} = 2E8$

Electron and Photon cut-off	$\dot{H}^*(10)~(\mu{ m Sv/h})$	ΔT	Volume
1 mm and 1 mm	$(2.02 \pm 0.05)10^{+1}$	26 h 51 m 36 s	Phantom 2
10 mm and 10 mm	$(1.98 \pm 0.06)10^{+1}$	4 h 43 min 12 s	Phantom 2
400 mm and 30 mm	$(1.99 \pm 0.06)10^{+1}$	3 h 21 m 36 s	Phantom 2

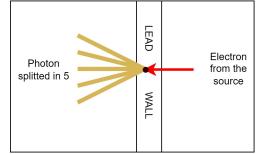
Coherent results Reduction of the computation time **Initially : 10 mm**

For $N_{sim} = 2E8$

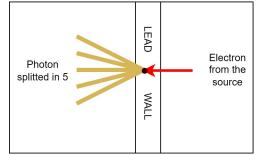
Electron and Photon cut-off	$\dot{H}^{*}(10)~(\mu{ m Sv/h})$	ΔT	Volume
1 mm and 1 mm	$(2.02 \pm 0.05)10^{+1}$	26 h 51 m 36 s	Phantom 2
10 mm and 10 mm	$(1.98 \pm 0.06)10^{+1}$	4 h 43 min 12 s	Phantom 2
400 mm and 30 mm	$(1.99 \pm 0.06)10^{+1}$	3 h 21 m 36 s	Phantom 2

Coherent results Reduction of the computation time Initially : 10 mm **Results valid to (400, 30) mm**

For $N_{sim} = 2E8$

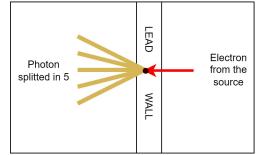

Electron and Photon cut-off	$\dot{H}^*(10)~(\mu{ m Sv/h})$	ΔT	Volume
1 mm and 1 mm	$(2.02 \pm 0.05)10^{+1}$	26 h 51 m 36 s	Phantom 2
10 mm and 10 mm	$(1.98 \pm 0.06)10^{+1}$	4 h 43 min 12 s	Phantom 2
400 mm and 30 mm	$(1.99 \pm 0.06)10^{+1}$	3 h 21 m 36 s	Phantom 2

Coherent results Reduction of the computation time Initially : 10 mm **Results valid to (400, 30) mm**


Conclusion : 1.4 times faster, no bias

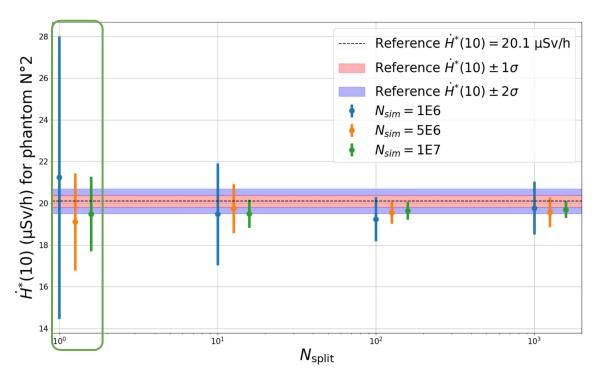
III. VRT : Uniform Bremsstrahlung Splitting (UBS)

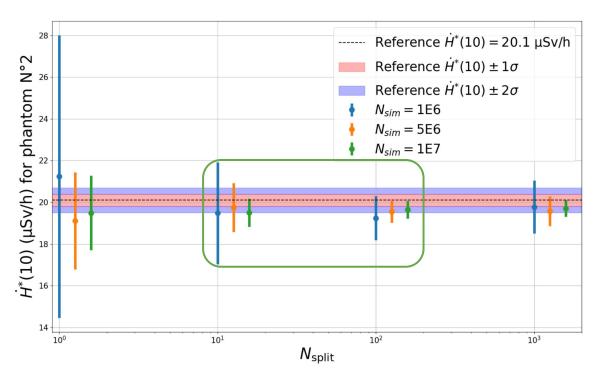
Instead of creating 1 photon, generate N_{split} **independent** photons with a statistical weight **w = 1 / N_{split**} to propagate through the results.

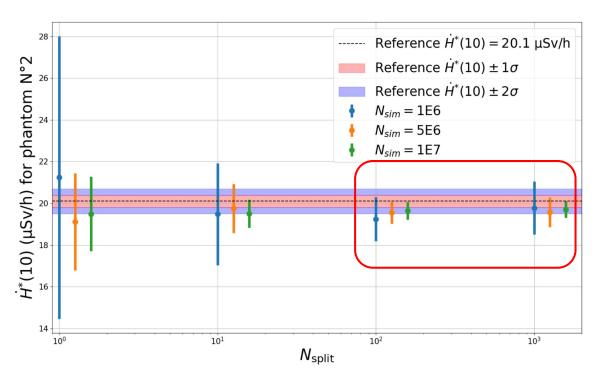


Instead of creating 1 photon, generate N_{split} **independent** photons with a statistical weight **w = 1 / N_{split}** to propagate through the results.

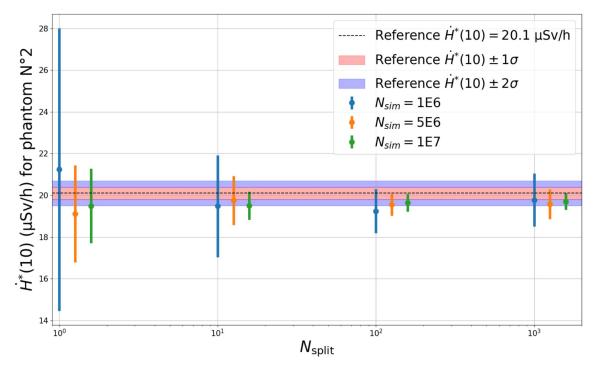
Theoretical evolution of the uncertainty: $R = \frac{\sigma_{\dot{H}^*(10)}}{\dot{H}^*(10)}$ $R \sim 1/\sqrt{N_{\text{hit}}}$ $R \rightarrow R_{\text{split}} = \frac{R}{\sqrt{N_{\text{split}}}}$

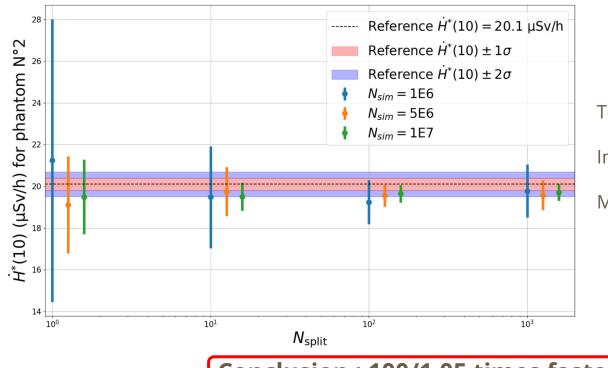

Instead of creating 1 photon, generate N_{split} **independent** photons with a statistical weight **w = 1 / N_{split}** to propagate through the results.




Theoretical evolution of the uncertainty: $R = \frac{\sigma_{\dot{H}^*(10)}}{\dot{H}^*(10)}$ $R \sim 1/\sqrt{N_{\text{hit}}}$ $R \rightarrow R_{\text{split}} = \frac{R}{\sqrt{N_{\text{split}}}}$ $\ln(R_{\text{split}}) = \ln(R) - \frac{1}{2}\ln(N_{\text{split}})$

LEAD Instead of creating 1 photon, generate N_{split} **independent** photons with a statistical weight Electron Photon from the splitted in 5 source **w** = **1** / **N**_{split} to propagate through the results. WALL **Theoretical** evolution of the uncertainty : $R = \frac{\sigma_{\dot{H}^*(10)}}{\dot{H}^*(10)}$ $R \sim 1/\sqrt{N_{\rm hit}}$ $R \to R_{\rm split} = \frac{n}{\sqrt{N_{\rm split}}}$ N_{sim} = 5E6 $N_{sim} = 1E7$ $N_{sim} = 5E7$ $N_{sim} = 1E8$ $\ln(R_{\text{split}}) = \ln(R) - \frac{1}{2}\ln(N_{\text{split}})$ <u>AH*(10)</u> H*(10) 10¹ 10 Nsplit


LEAD Instead of creating 1 photon, generate N_{split} **independent** photons with a statistical weight Electron Photon from the splitted in 5 source **w** = **1** / **N**_{split} to propagate through the results. WALL **Theoretical** evolution of the uncertainty : $R = \frac{\sigma_{\dot{H}^*(10)}}{\dot{H}^*(10)}$ $R \sim 1/\sqrt{N_{\rm hit}}$ $R \to R_{\rm split} = \frac{\kappa}{\sqrt{N_{\rm split}}}$ N_{sim} = 5E6 $N_{sim} = 1E7$ $N_{sim} = 5E7$ $N_{sim} = 1E8$ $\ln(R_{\rm split}) = \ln(R) - \frac{1}{2} \ln(N_{\rm split})$ <u>AH*(10)</u> H*(10) Mean leading coefficient : $0.502 \pm 1.93 \ 10^{-3} \%$ Theoretical uncertainty evolves as expected 10¹ Nsplit


Bias study on H*(10) and uncertainties

Increase computation time by 5%.

Multiply number of hit by N_{split}.

Bias study on H*(10) and uncertainties

To avoid bias : $N_{split} = 100$ when $N_{sim} > 10^7$

Increase computation time by 5%.

Multiply number of hit by N_{split}.

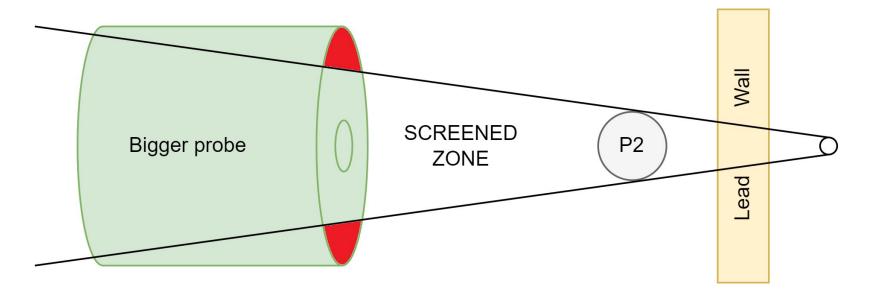
Conclusion : 100/1.05 times faster, no bias

 $\dot{H}^*(10) = \dot{\phi} \sum_i CIPR_i I_i$ \overline{i}

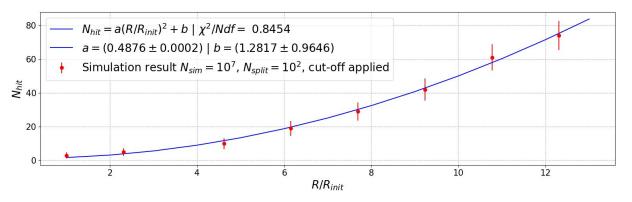
$$\dot{H}^*(10) = \dot{\phi} \sum CIPR_i I_i$$

2

Invariant by the changing the radius **for the probe** under some assumptions :

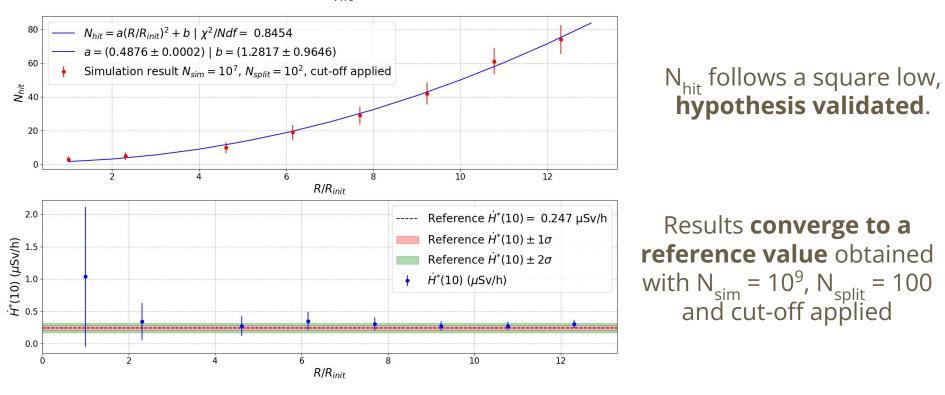

Unidirectional and Homogeneous radiation field, invariant energy distribution.

$$\dot{H}^*(10) = \dot{\phi} \sum CIPR_i I_i$$

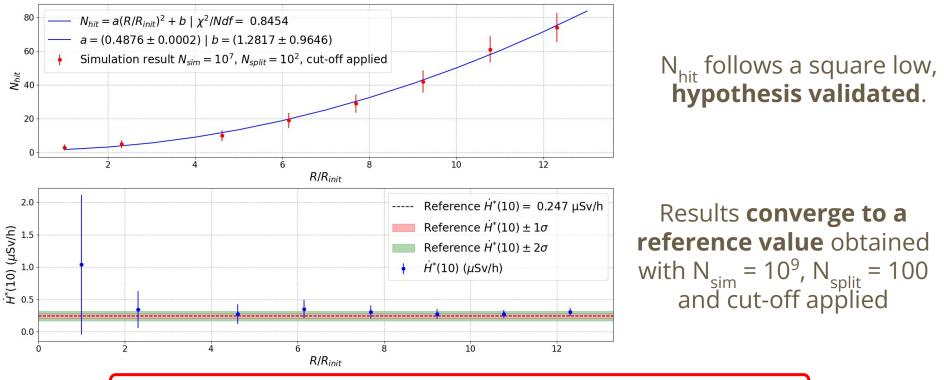

2

Invariant by the changing the radius **for the probe** under some assumptions :

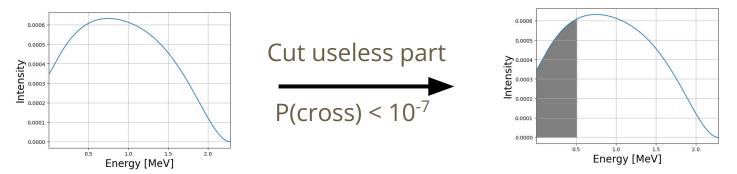
Unidirectional and Homogeneous radiation field, invariant energy distribution.

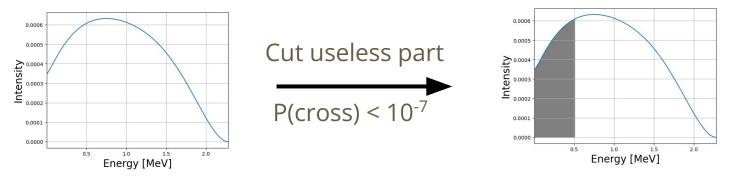


Under these assumptions N_{hit} should follow a square low.

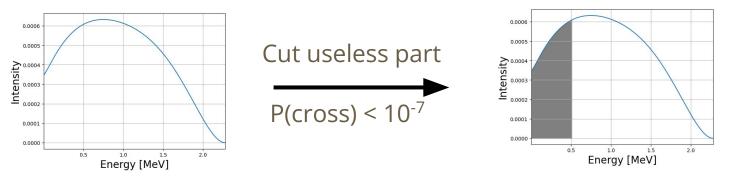


N_{hit} follows a square low, **hypothesis validated**.

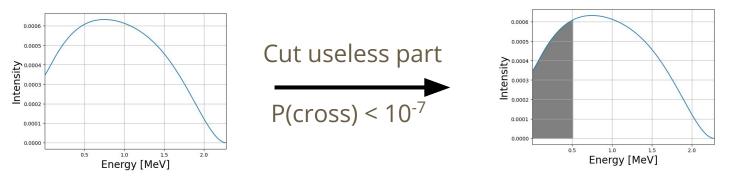

Under these assumptions N_{hit} should follow a square low.



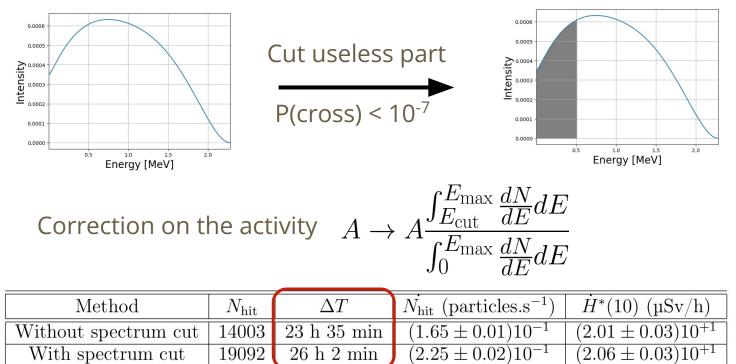
Under these assumptions N_{hit} should follow a square low.

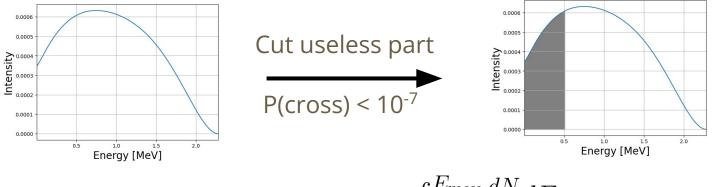


Conclusion : 150 times faster, no bias, radius set to 40 cm

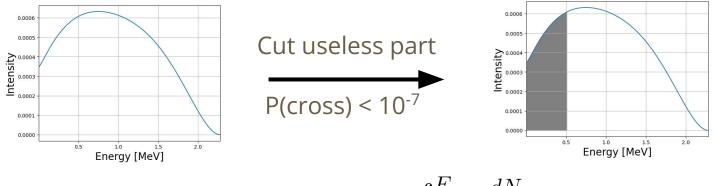


Correction on the activity
$$A \to A \frac{\int_{E_{\text{cut}}}^{E_{\text{max}}} \frac{dN}{dE} dE}{\int_{0}^{E_{\text{max}}} \frac{dN}{dE} dE}$$

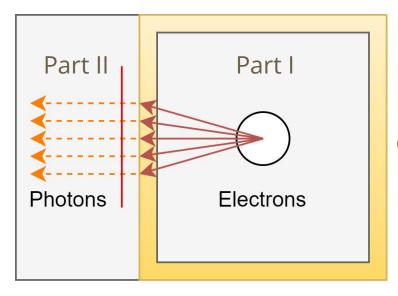

Correction on the activity
$$A \to A \frac{\int_{E_{\text{cut}}}^{E_{\text{max}}} \frac{dN}{dE} dE}{\int_{0}^{E_{\text{max}}} \frac{dN}{dE} dE}$$

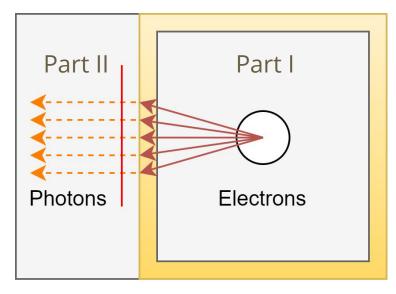

Method	$N_{ m hit}$	ΔT	$\dot{N}_{\rm hit} \ ({\rm particles.s^{-1}})$	$\dot{H}^*(10)~(\mu{ m Sv/h})$
Without spectrum cut	14003	23 h 35 min	$(1.65 \pm 0.01)10^{-1}$	$(2.01 \pm 0.03)10^{+1}$
With spectrum cut	19092	26 h 2 min	$(2.25 \pm 0.02)10^{-1}$	$(2.06 \pm 0.03)10^{+1}$

Correction on the activity
$$A \to A \frac{\int_{E_{\text{cut}}}^{E_{\text{max}}} \frac{dN}{dE} dE}{\int_{0}^{E_{\text{max}}} \frac{dN}{dE} dE}$$


Method	$N_{\rm hit}$	ΔT	$\dot{N}_{\rm hit}$ (particles.s ⁻¹)	$\dot{H}^*(10)~(\mu{ m Sv/h})$
Without spectrum cut	14003	23 h 35 min	$(1.65 \pm 0.01)10^{-1}$	$(2.01 \pm 0.03)10^{+1}$
With spectrum cut	19092	26 h 2 min	$(2.25 \pm 0.02)10^{-1}$	$(2.06 \pm 0.03)10^{+1}$

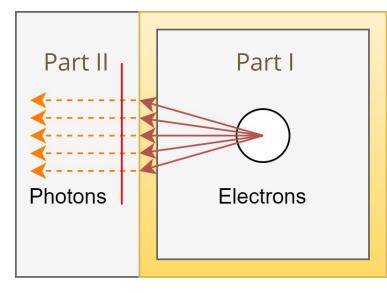
Correction on the activity	$A \longrightarrow A \frac{\int_{E_{\text{cut}}}^{E_{\text{max}}} \frac{dN}{dE} dE}{\int_{E_{\text{cut}}}^{E_{\text{max}}} \frac{dN}{dE} dE}$
Correction on the activity	$A \rightarrow A \overline{\int_0^{E_{\text{max}}} \frac{dN}{dE} dE}$


Method	$N_{\rm hit}$	ΔT	$\dot{N}_{\rm hit} \ ({\rm particles.s^{-1}})$	$\dot{H}^*(10)~(\mu{ m Sv/h})$
Without spectrum cut	14003	23 h 35 min	$(1.65 \pm 0.01)10^{-1}$	$(2.01 \pm 0.03)10^{+1}$
With spectrum cut	19092	26 h 2 min	$(2.25 \pm 0.02)10^{-1}$	$(2.06 \pm 0.03)10^{+1}$


Correction on the activity
$$A \to A \frac{\int_{E_{\text{cut}}}^{E_{\text{max}}} \frac{dN}{dE} dE}{\int_{0}^{E_{\text{max}}} \frac{dN}{dE} dE}$$

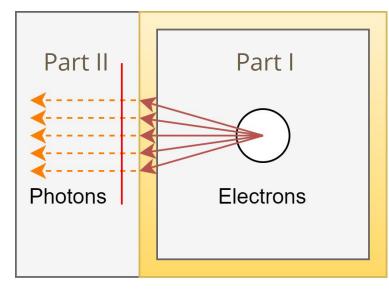
Method	$N_{\rm hit}$	ΔT	$\dot{N}_{\rm hit} \ ({\rm particles.s^{-1}})$	$\dot{H}^*(10)~(\mu{ m Sv/h})$
Without spectrum cut	14003	23 h 35 min	$(1.65 \pm 0.01)10^{-1}$	$(2.01 \pm 0.03)10^{+1}$
With spectrum cut	19092	26 h 2 min	$(2.25 \pm 0.02)10^{-1}$	$(2.06 \pm 0.03)10^{+1}$

Conclusion : For same N_{hit}, (1.24 ± 0.01) faster, no bias



Only need to simulate part II for different configurations

New uncertainty term :


$$\frac{\sigma_{\dot{H}^*(10)}}{\dot{H}^*(10)} = \sqrt{\frac{\sum_i \sigma_{l_i}^2}{(\sum_i l_i)^2} + \frac{\sum_i \left(I_i^2 \sigma_{CIPR_i}^2 + CIPR_i^2 I_i\right)}{(\sum_i CIPR_i I_i)^2} + \frac{1}{N_{\text{hit}}} + \frac{2}{N_{\gamma}}}$$

New uncertainty term :

$$\frac{\sigma_{\dot{H}^*(10)}}{\dot{H}^*(10)} = \sqrt{\frac{\sum_i \sigma_{l_i}^2}{(\sum_i l_i)^2} + \frac{\sum_i \left(I_i^2 \sigma_{CIPR_i}^2 + CIPR_i^2 I_i\right)}{(\sum_i CIPR_i I_i)^2} + \frac{1}{N_{\text{hit}}} + \frac{2}{N_{\gamma}}}$$

Method	$\dot{H}^*(10)~(\mu{ m Sv}/{ m h})$	ΔT
Without phase space	$(2.47 \pm 0.37)10^{-1}$	24 h 45 min
With phase space	$(2.70 \pm 0.39)10^{-1}$	34 s

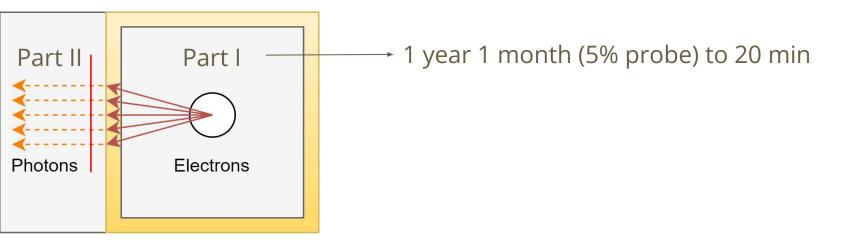
New uncertainty term :

$$\frac{\sigma_{\dot{H}^*(10)}}{\dot{H}^*(10)} = \sqrt{\frac{\sum_i \sigma_{l_i}^2}{(\sum_i l_i)^2} + \frac{\sum_i \left(I_i^2 \sigma_{CIPR_i}^2 + CIPR_i^2 I_i\right)}{(\sum_i CIPR_i I_i)^2} + \frac{1}{N_{\text{hit}}} + \frac{2}{N_{\gamma}}}$$

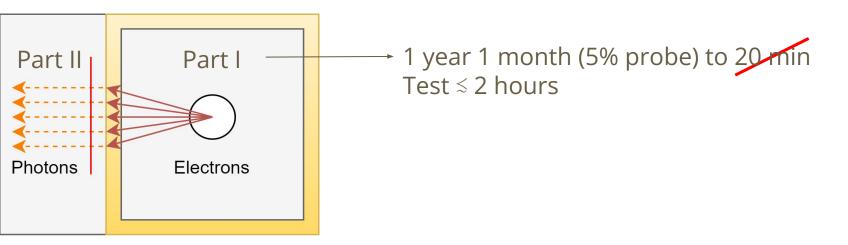
Method	$\dot{H}^*(10)~(\mu{ m Sv}/{ m h})$	ΔT
Without phase space	$(2.47 \pm 0.37)10^{-1}$	24 h 45 min
With phase space	$(2.70 \pm 0.39)10^{-1}$	34 s

Conclusion : 2.6 10³ times faster, no visible bias Only possible after a first simulation

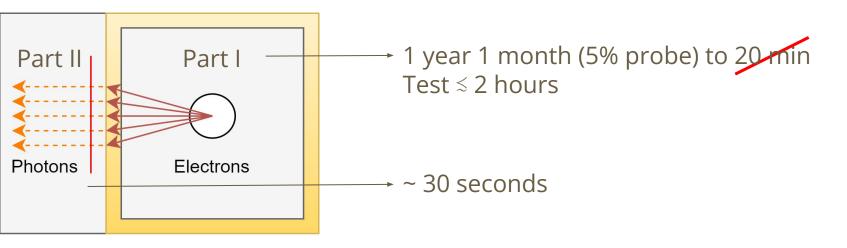
Secondary particles cut-off : g(Cut-Off) = 1.4


Secondary particles cut-off : g(Cut-Off) = 1.4 Uniform Bremsstrahlung splitting : g(UBS) = 100/1.05

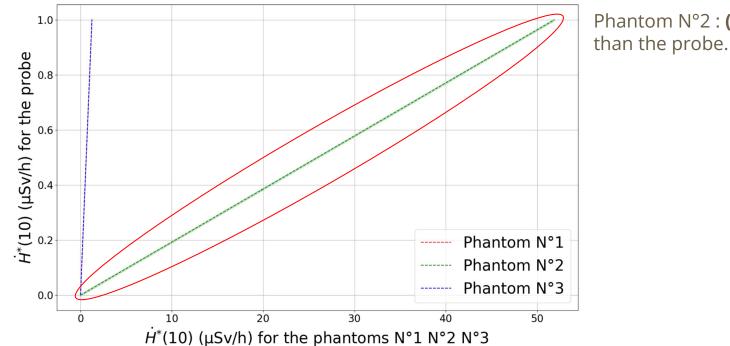
Secondary particles cut-off : g(Cut-Off) = 1.4 Uniform Bremsstrahlung splitting : g(UBS) = 100/1.05 **Probe radius variation : g(Radius) = 151.48**

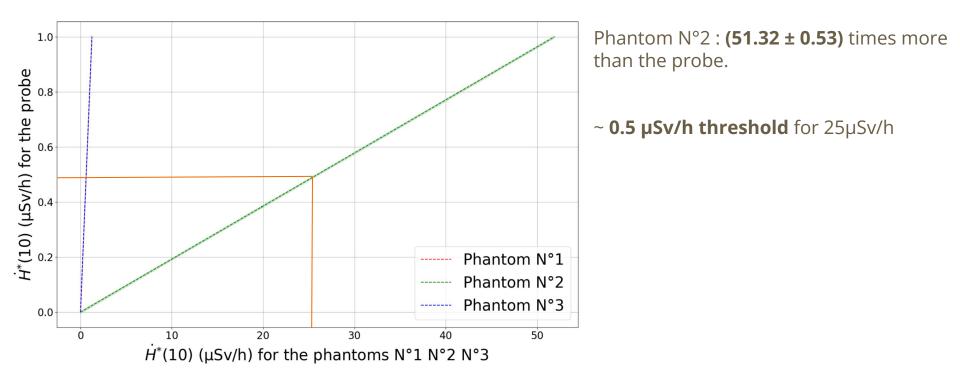

Secondary particles cut-off : g(Cut-Off) = 1.4 Uniform Bremsstrahlung splitting : g(UBS) = 100/1.05 Probe radius variation : g(Radius) = 151.48 **Energy spectrum cut : g(Spectrum) = 1.24 ± 0.01**

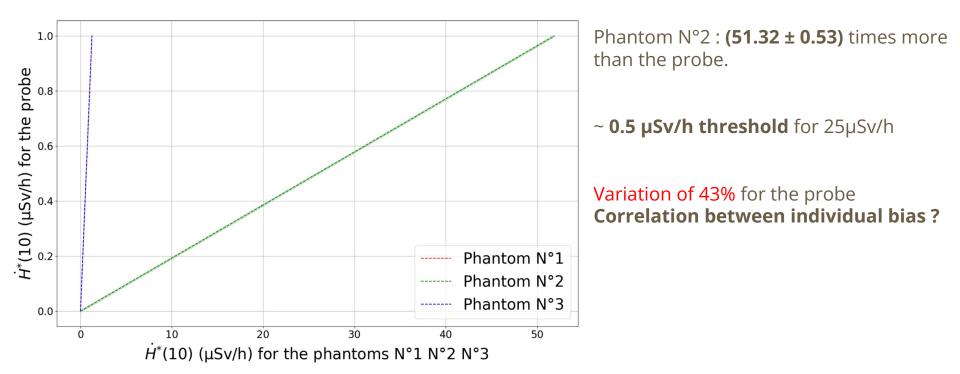
Secondary particles cut-off : g(Cut-Off) = 1.4 Uniform Bremsstrahlung splitting : g(UBS) = 100/1.05 Probe radius variation : g(Radius) = 150 **Energy spectrum cut : g(Spectrum) = 1.24 ± 0.01**


Secondary particles cut-off : g(Cut-Off) = 1.4 Uniform Bremsstrahlung splitting : g(UBS) = 100/1.05 Probe radius variation : g(Radius) = 151.48 **Energy spectrum cut : g(Spectrum) = 1.24 ± 0.01**

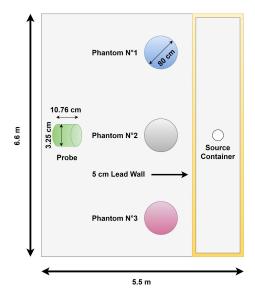
Secondary particles cut-off : g(Cut-Off) = 1.4 Uniform Bremsstrahlung splitting : g(UBS) = 100/1.05 Probe radius variation : g(Radius) = 151.48 **Energy spectrum cut : g(Spectrum) = 1.24 ± 0.01**


Secondary particles cut-off : g(Cut-Off) = 1.4 Uniform Bremsstrahlung splitting : g(UBS) = 100/1.05 Probe radius variation : g(Radius) = 151.48 **Energy spectrum cut : g(Spectrum) = 1.24 ± 0.01**

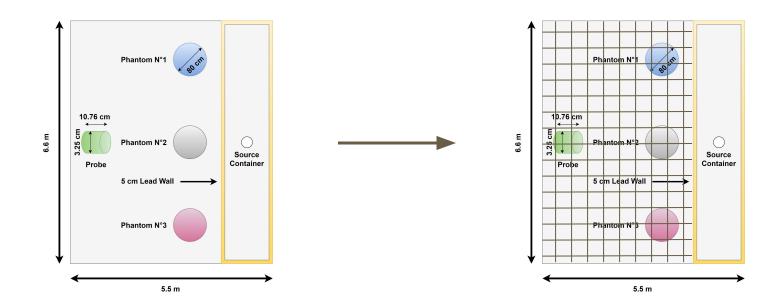




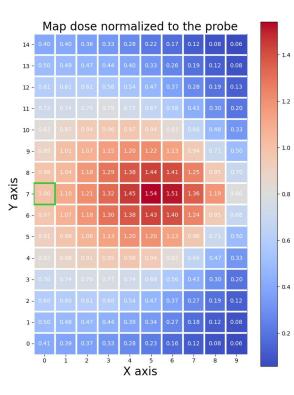
 $N_{sim} = 3 \ 10^9$, $N_{split} = 10^2$, $R_{probe} = 40 \text{ cm}$, Cut-Off applied, Energy spectrum cut :

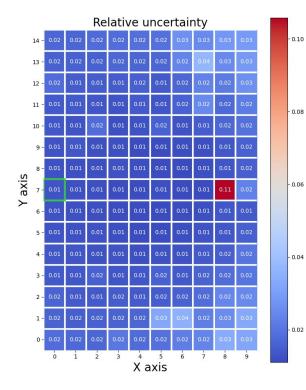


Phantom N°2 : **(51.32 ± 0.53)** times more than the probe.



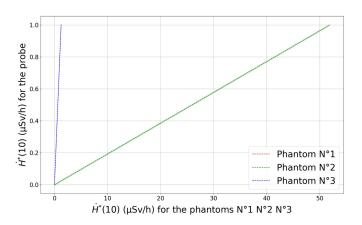
IV.B Optimization of probe placement

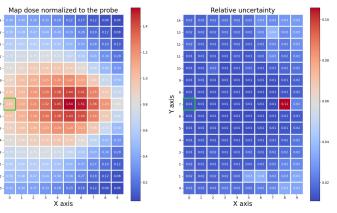



IV.B Optimization of probe placement

IV.B Optimization of probe placement

 $N_{sim} = 3 \ 10^9$, $N_{split} = 10^2$, $R_{probe} = 40 \text{ cm}$, Cut-Off applied, Energy spectrum cut :




Possibility to increase the signal by a factor (1.54 ± 0.02)

- Simulation of laboratory front panel
- Uncertainty calculation \rightarrow More than a year for good statistical results
- Introduction VRTs \rightarrow 2 hours to generate a phase space
- Using phase space \rightarrow ~ 30 seconds for any configuration

- Simulation of laboratory front panel
- Uncertainty calculation \rightarrow More than a year for good statistical results
- Introduction VRTs \rightarrow 2 hours to generate a phase space
- Using phase space $\rightarrow \sim 30$ seconds for any configuration

Establish relationship between probe and staff exposure Establish radiological exposure as a function of position

- Simulation of laboratory front panel
- Uncertainty calculation \rightarrow More than a year for good statistical results
- Introduction VRTs \rightarrow 2 hours to generate a phase space
- Using phase space \rightarrow ~ 30 seconds for any configuration

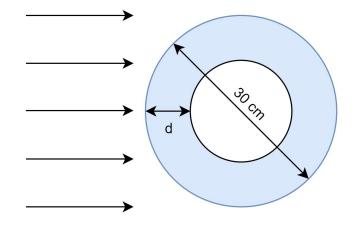
Establish relationship between probe and staff exposure Establish radiological exposure as a function of position

Openings :

- Investigate single VRT bias correlation
- Obtain experimental reference value for the probe
- Find other VRTs

Sources

[1] - Arronax Nantes


https://www.arronax-nantes.fr/chimie-et-radiopharmacie/thematique/radiopharmacie/

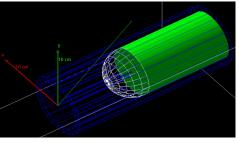
[2] - CIPR Coefficients

International Commission on Radiological Protection, 1995, Conversion coefficients for use in Radiological Protection Against External Radiation, publication 74 [3] - ⁹⁰Y Decay scheme and energy spectrum data International Atomic Energy Agency

Backups : ICRU Sphere

ICRU = Internal Commission on Radiation Units & Measurements

76.2 % O, 11.1% C, 10.1% H, 2.6% N

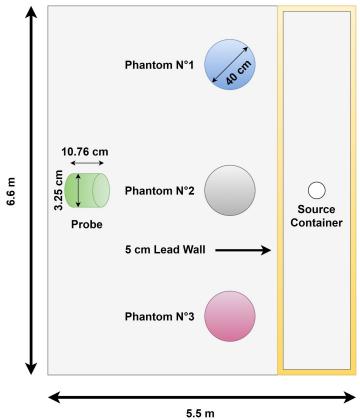

Backups : Radiation protection factors

- dE/dm Absorbed dose (Gy or J/Kg)
 - Ideal dE/dx to kill DNA : 100 keV/µm
 - Even if two types of particles deposited dE/dm their dE/dx is different
- $H_T = D_{T,R} W_R$
 - Different organs sensibilities (experimental)

$$E = \sum H_T W_T$$

Backups : Materials & Methods : The GATE software

- GATE software developed by the international OpenGATE collaboration
- Define volumes and geometries with associated material
- Select physical processes : EM type in our case Photoelectric, Compton, pair production, Bremsstrahlung, Annihilation...
- Source : Particles type, energy range, angular distribution.
- Attach actors to volumes (TLE Dose Actor, Energy Spectrum, Fluence actor, Phase Space Actor...)



Cylindrical Si probe

Backups : More details about the simulation

Distance Probe - Phantom N°2 : 3.9 m Distance Phantom N°2 - Source : 0.8 m Distance Probe - Source : 4.7 m

Backups : Probe modeling validation

	Theoretical (given)	Measurement (given)	Simulated
$\dot{H}^*(10)~(\mu{ m Sv/h})$	37.5	36.84	37.40 ± 0.03

To **ensure** the **accuracy** of the probe Monte Carlo modeling : **comparison** with **experimental** data.

$$^{137}_{55}Cs \to \beta^- + \bar{\nu}_e + ^{137}_{56}Ba$$

Relative error ~1.5 10⁻² **Validation** of the modeling

Backups : H^{*}(10) invariance

Invariant by the changing the radius **for the probe** under some assumptions : **Unidirectional** and **Homogeneous** radiation field, **photon spectrum invariant**.

$$\dot{H}^{*}(10) = \dot{\phi} \sum_{i} CIPR_{i}I_{i}$$

$$\phi(r) = \frac{dl(r)}{dV(r)} = \frac{1}{V(r)}\sum_{i}l_{i}(r)$$

$$\phi(R) = \frac{dl(R)}{dV(R)} = \frac{1}{V(R)}\sum_{i}l_{i}(R)$$

$$\phi(R) = \frac{1}{\pi h}\sum_{i}l_{i}(r)\frac{1}{r^{2}}$$

$$\phi(R) = \frac{1}{\pi h}\sum_{i}l_{i}(r)\frac{1}{r^{2}}$$

$$\phi(R) = \frac{1}{V(r)}\sum_{i}l_{i}(r)$$

$$\phi(R) = \frac{1}{V(r)}\sum_{i}l_{i}(r)$$

$$\phi(R) = \frac{1}{V(r)}\sum_{i}l_{i}(r)$$

$$\phi(R) = \phi(r)$$

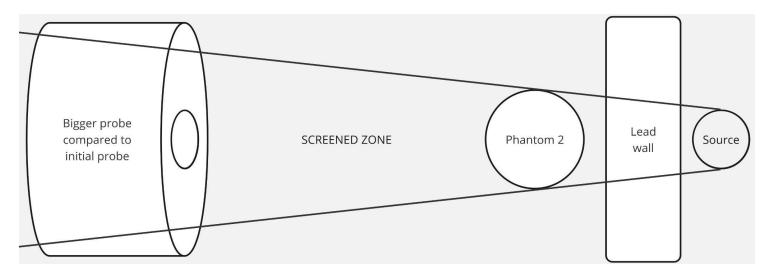
Backups : Radiological zonage

Zone type		Zone identification	Maximum total effective dose (external plus internal)
Unregulated		White	80 µSv/month
Supervised		Blue	7.5 μSv/hr
Controlled	Limited	Green	25 μSv/hr
	Specially regulated	Yellow	2 mSv/hr
	Forbidden without specific authorization	Orange	100 mSv/hr
		Red	above 100 mSv/hr

Cancer risk : 0.5% / 100 mSv

Public limit : 1 mSv/yr Worker limit : 20 mSv/yr

Karlsruhe Institute of Technology


III. VRT : Probe Radius Variation

$$\dot{H}^*(10) = \dot{\phi} \sum CIPR_i I_i$$

2

Invariant by the changing the radius **for the probe** under some assumptions :

Unidirectional and Homogeneous radiation field, invariant energy distribution.

