Module tests for the tracker upgrade of the CMS experiment at HL-LHC

Cyril Eschenlauer

Supervised by: Jeremy Andrea & Saskia Falke

June 19th 2024

I. Introduction

II. Experimental setup

III. Results

IV. Conclusion

Introduction

The Large Hadron Collider (LHC)

- Put the Standard Model to the test
- Bunches of particles crossing at a frequency of 40 MHz (crossing every 25 ns)
- High Luminosity phase of the LHC (HL-LHC) starting in 2029
- Target luminosity of 5 × 10³⁴ cm⁻² s⁻¹
 → Statistically limited processes

The Compact Muon Solenoid (CMS) detector

- General-purpose detector located at a collision point
- New conditions:
 - More <u>simultaneous</u>
 <u>collisions</u>: 50 → 200
 - Higher <u>radiation</u> <u>dose</u>
- → Tracker entirely replaced

Upgrade of the silicon tracker

• Enhanced radiation tolerance, higher granularity, and compatibility with very high rates

One quarter of the new tracker layout

Upgrade of the silicon tracker

 Enhanced radiation tolerance, higher granularity, and compatibility with <u>very high rates</u> Tested modules

From [1]

Collison point

One quarter of the new tracker layout

Charge collection in a strip silicon sensor

• The number of <u>activated strips</u> depends on the charge generated by the energy deposition of the particle. Which depends on the energy via the Bethe-Bloch formula

The 2S modules

- Not all collisions happening inside the detector can be recorded and stored: Trigger system, 40 MHz \rightarrow 750 kHz
- New modules will provide <u>tracking information</u> to the first stage of trigger

Front-end electronics

• The read-out chips (CBC) will provide the p_T discrimination logic

From [1]

Front-end electronics

• The read-out chips (CBC) will provide the p_T discrimination logic

From [1]

Front-end electronics

• The read-out chips (CBC) will provide the p_T discrimination logic

Objective: validate the <u>performance</u> of a pre-production version of a 2S module in <u>high rates</u> condition

- Participation in the beam tests at CYRCé : 11/03 22/03 & 22/04 26/04
 - \rightarrow Preparation and manipulation of the module on the setup
 - → Working with the software interface for data taking
- Analysis of the recorded data:
 - → Implementation in C++/ROOT
 - \rightarrow Discussion with members of the collaboration

Experimental setup

The CYRCé cyclotron

Beam line dedicated to irradiation of sensors for tracker upgrade

- Beam of 25 MeV protons at <u>adjustable intensities:</u> from 1 fA to 100 nA
- Bunches of proton delivered at 85 MHz, frequency divided by 2: 42.5 MHz

Setup inside the experimental box

• Monitoring temperature and humidity to avoid damage to the silicon sensors

Data acquisition system

• The signal from the scintillator is filtered by a <u>trigger supervisor</u> <u>system</u> to keep the events compatible with a 40 MHz clock

Calibrations : detection threshold

- The <u>pedestal</u> (or baseline) value is the average output obtained without the beam irradiating the module
- The <u>noise</u> are the fluctuations around the pedestal

Calibrations : detection threshold

- The pedestal and noise can be determined from an <u>S-curve</u>
- The <u>threshold</u> is set to detect signals 5σ above the pedestal
- Expressed in *Vcth* DAC units, a lower *Vcth* value corresponds to a higher threshold

Calibrations : latency

- The <u>latency</u>: delay between the detection of a proton by the scintillator and the reception of the trigger signal by the module
- Expressed in 40 MHz clock cycles (units of 25 ns)

Results

Beam profile

- Beam hitting 250 strips: spreading on two read-out chips
- Beam profile as expected from beam line diagnostics

Correlation of hits between the two sensors

• As expected from multiple scattering effect, the position can differ up to 1 strip

Number of activated strips per event

Detector efficiency

- Increasing gradually the intensity of the beam, and so the rate
 → Test the module up to high rates (~ 750 kHz)
- Assess the <u>efficiency</u> of the module as function of the trigger rate

 $E = \frac{number of events with recorded hits}{total number of triggered events}$

• The test was done for two threshold values

Detector efficiency

- Above 99 % for this range of rate
- Decreasing with trigger rate for the higher threshold
- Problem limiting data taking to ~ 100 kHz

Conclusion

Discussion

- Other facilities observed the same problem with the data acquisition system
 - \rightarrow Once the problem is fixed, the tests will be performed again
- Unexpected low number of activated strips per events: problem of threshold calibration
 - → More systematic tests to better understand the impact of the threshold on the number of activated strips

Conclusion

- Learn the functioning of a module and the associated data acquisition system and conduct beam tests
- Current data acquisition system is not suitable for high rates tests
- Efficiency of the module above 99 % for the range of accessible rates

→ Another series of tests with the fixed data acquisition system

References

- [1] K. Klein et al, 2017, <u>' The Phase-2 Upgrade of the CMS Tracker '</u>
- [2] W. Adam et al, 2020,

<u>'Beam test performance of prototype silicon detectors for the Outer Tracker for t</u> <u>he Phase-2 Upgrade of CMS '</u>

• [3] Frank Hartmann, 2017,

<u>'Evolution of Silicon Sensor Technology in Particle Physics</u> '

- [4] H. Kolanoski, N. Wermes, 2020, <u>'Particle Detectors: Fundamentals and Applications</u>'
- [5] T. Ullrich, Z. Xu, 2007, <u>'Treatment of Errors in Efficiency Calculations</u> '

Backup

Threshold scan

• Surprising peak at 3 activated strips per event for *Vcth* = 500 DAC units

Bunch crossing Id

- Bunches of particles crossing at a frequency of 40 MHz (crossing every 25 ns)
 - → For CYRCé, each clock cycle corresponds to a bunch of protons sent by the cyclotron

Bunch crossing Id

- Bunches of particles crossing at a frequency of 40 MHz (crossing every 25 ns)
 - → For CYRCé, each clock cycle corresponds to a bunch of protons sent by the cyclotron
- <u>Bunch crossing Id:</u> numerical value associated to the corresponding clock cycle
- The trigger supervisor keeps tracks of the trigger signals sent to the module by counting the bunch crossing Id

Matching of events with the trigger supervisor

- Check that the trigger signals sent by the trigger supervisor were correctly received by the module
- Bunch crossing Id values counted by the trigger supervisor and the data acquisition system were matched
 → However, they are not synchronous when counting the bunch crossing Id values
- Matching indirectly, by comparing the difference between consecutive bunch crossing Id values

Matching of events with the trigger supervisor

Pedestal and noise distributions

Crate picture

