DM & DE from 1st Principles How PBH define a new paradigm for a unified view of the evolution of the Universe

[arXiv: 2306.03903, 2306.10593 & 2310.19857]

PBH & GW, Paris, 27th November 2023

Juan García-Bellido IFT-UAM/CSIC

Early Universe

Inflation

- Critical Higgs Inflation (Standard Model + ξ)
- · Generation of fluctuations for PBH
 - Large amplitude P(k) 2-point function
 - Large PNG tails from Quantum Diffusion
- Signatures in CMB & LSS (LiteBird + JWST)
- Coupling to gauge fields (axion-gauge model)
- Signatures in GW (chirality and PNG)

Early Universe

Radiation era

- Gravitational collapse to PBH
 Radiation pressure Thermal history (SM)
- Baryon asymmetry at QCD PBH collapse
- ISGWB from PBH collapse/non-collapse
- CMB spectral distortions and anisotropies

Late Universe Matter era

- Early Structure formation (Z>30, JWST)
 Poisson/seed effect + PBH clustering
 First Stars and X-ray/CIR backgrounds
- GW emission from BHBC GWTC-3
 Spin + mass + redshift distributions
- Microlensing events OGLE/GAIA
- SMBH growth via accretion Entropic forces
- Cosmic acceleration GREA = DE

Observational Prospects

- Gaia + LSST : microlensing surveys
- LVK + ET + LISA : SSMBH + IMBH (PISN)
- IPTA : SGWB from SMBH-PBH
- JWST : high-z SMBH seed + growth
- Euclid + DESI : H(z) Not ACDM

Standard Model Lagrangian

Z= - 4 Fre FMV +iųpų +h.c. 2= - + FAL FAL + iFDy +h.c. + Ψ: Y :: 4:0+ h. c. + K: Yis Ksp the $+ \left| \sum_{\alpha} \varphi \right|^2 - \sqrt{(\phi)}$ $+ D_{\mu}\phi l^2 - V(\phi)$ ^{12}R Z

$$R = 12H^2 + 6\dot{H} \rightarrow R_0 = 9.2 H_0^2 \rightarrow m_H = \sqrt{\xi R_0} = 2 \times 10^{-32} \text{ eV}$$

EW vacuum metastability

Renormalization of Higgs couplings

$$\lambda(\phi) = \lambda_0 + b_\lambda \ln^2 (\phi/\mu) ,$$

$$\xi(\phi) = \xi_0 + b_\xi \ln (\phi/\mu) ,$$

Buttazzo et al (2014)

Critical Higgs Inflation

Ezquiaga, JGB, Ruiz Morales (2017)

$$S = \int d^4x \sqrt{g} \left[\left(\frac{1}{2\kappa^2} + \frac{\xi(\phi)}{2} \phi^2 \right) R - \frac{1}{2} (\partial \phi)^2 - \frac{1}{4} \lambda(\phi) \phi^4 \right]$$
$$\lambda(\phi) = \lambda_0 + b_\lambda \ln^2(\phi/\mu) ,$$
$$\xi(\phi) = \xi_0 + b_\xi \ln(\phi/\mu) ,$$
$$d\varphi = \sqrt{1 + \xi(\phi) \phi^2 + 6 \phi^2 (\xi(\phi) + \phi \xi'(\phi)/2)^2}$$

$$\frac{dr}{d\phi} = \frac{\sqrt{-1 + \varsigma(r) + 1 +$$

$$V(x) = \frac{V_0 \left(1 + a \ln^2 x\right) x^4}{\left(1 + c \left(1 + b \ln x\right) x^2\right)^2} \qquad x = \phi/\mu$$

$$V_0 = \lambda_0 \mu^4 / 4, \ a = b_\lambda / \lambda_0, \ b = b_\xi / \xi_0 \ \text{and} \ c = \xi_0 \ \kappa^2 \mu^2$$

Conformal redefinition of metric and Higgs

Primordial Power Spectrum

Thermal history of the universe

Carr, Clesse, JGB, Kühnel (2019)

 $T \; [\text{MeV}]$

Gravitational Collapse

Gravity wins

Radiation wins

Hot Spot Electroweak baryogenesis

"Primordial supernova"

JGB, Carr, Clesse (2019)

History of the Universe

Stochastic SN - formalism Coarse-grained curvature perturbation $\mathrm{d}s^{2} = -\mathrm{d}t^{2} + a^{2}(t)e^{2\zeta(t,\mathbf{x})}\delta_{ij}\mathrm{d}x^{i}\mathrm{d}x^{j} \qquad \zeta_{\mathrm{cg}}\left(\mathbf{x}\right) = \delta N_{\mathrm{cg}}\left(\mathbf{x}\right) = \mathcal{N}\left(\mathbf{x}\right) - \langle \mathcal{N} \rangle$ $\frac{1}{M_{\rm pl}^2} \frac{\mathrm{d}}{\mathrm{d}\mathcal{N}} P_{\Phi}\left(\mathcal{N}\right) = \begin{pmatrix} -\sum_i \frac{v_{\phi_i}}{v} \frac{\partial}{\partial \phi_i} + v \sum_i \frac{\partial^2}{\partial \phi_i^2} \end{pmatrix} \cdot P_{\Phi}\left(\mathcal{N}\right) & \text{Fokker-Planck} \\ \text{Diffusion Eq.} \end{cases}$ Determined by the poles of the characteristic function $P_{\phi}(\mathcal{N}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-it\mathcal{N}} \chi_{\mathcal{N}}(t,\phi) dt = \sum a_n(\phi) e^{-\Lambda_n \mathcal{N}}$ Ezquiaga, JGB, Vennin (2019) $\chi_{\mathcal{N}}(t,\phi) = \sum \frac{a_n(\phi)}{\Lambda_n - it} + \text{regular func}$ $10^{2} \left[v(\phi) = v_0 (1 + \alpha ((\phi - \phi_0)/M_{\rm pl}) + \beta ((\phi - \phi_0)/M_{\rm pl})^3) \right]$ -0.4- Full PDF ··· Gaussian approx. 10^{0} $\alpha \gg (v_0^2\beta)^{1/3}$ $\sum_{\mathbf{q}^{\mathbf{G}}} 10^{-2}$ $\Delta \phi_{\rm well} \simeq 2 M_{\rm pl} \sqrt{\frac{\alpha}{3\beta}}$ 10^{-4} $v(\phi)$ 10^{-6} -0.4 10^{-8} III 0.0 0.51.01.52.0 $\mathcal{N} = \langle \mathcal{N} \rangle + \zeta$

Quantum Diffusion a CMB & LSS

$$\text{LN}(x, \rho, \sigma) = \frac{1}{\rho \sigma \sqrt{2\pi}} \exp\left[-\frac{\ln(x/\rho)^2}{2\sigma^2} - \frac{\sigma^2}{2}\right] \qquad P_{\text{NL}}(\zeta) = \frac{1}{\sqrt{2\pi\sigma_{\text{G}}^2 \Delta}} \left[e^{-\frac{25(\sqrt{\Delta}-1)^2}{72f_{\text{NL}}^2 \sigma_{\text{G}}^2}} + e^{-\frac{25(\sqrt{\Delta}+1)^2}{72f_{\text{NL}}^2 \sigma_{\text{G}}^2}}\right] \\
 \text{G}(x, \rho, \sigma_{\text{G}}) = \frac{1}{\sigma_{\text{G}}\sqrt{2\pi}} \exp\left[-\frac{(x-\rho)^2}{2\sigma_{\text{G}}^2}\right] \qquad \text{where} \quad \Delta(\zeta) = 1 + \frac{12}{5} f_{\text{NL}}\zeta + \frac{36}{25} f_{\text{NL}}^2 \sigma_{\text{G}}^2.$$

Quantum Diffusion a CMB & LSS

PBH could explain the SMBH in the center of galaxies seen by JWST at $z \sim 13-16$

Ezquiaga, JGB, Vennin (2023)

PBH could explain SMBH in AGN seen by JWST+Chandra at $z \sim 10$

THE ASTROPHYSICAL JOURNAL LETTERS, 955:L24 (8pp), 2023 September 20

Goulding et al.

Figure 2. JWST/NIRSpec Prism spectroscopy of UHZ-1. Upper panel: 2D MSA Prism spectroscopy produced by msaexp. Lower panel: 1D spectral extraction in f_{λ} (in units of 10^{-17} erg s⁻¹ cm⁻² μ m⁻¹) with associated statistical uncertainties (gray shaded region). Slit-loss corrections are defined by convolution of the JWST photometry with the Prism spectrum (see Section 2). Prominent and/or expected emission features are highlighted assuming $z_{spec} = 10.07$ with significant >3 σ detections and nondetections labeled in red and gray, respectively. Overlaid are the JWST/NIRCam photometry (blue circles) with associated filter responses highlighted. Inset panel: redshift probability distributions for fits to the NIRSpec spectroscopy produced by EAZY (yellow) and BAGPIPES (purple) packages.

Figure 22. Illustration of PBH clustering at redshifts 10 - 15. Initially, PBHs (black dots) capture baryons while accreting, thereby contributing to the cosmic X-ray background. Lighter PBHs later form halos around more massive ones and initiate star formation; the lowest mass halos first form Population III stars, which generate a faint cosmic infrared background, and the higher mass ones then yield Population II stars. The most massive (central) supermassive PBH continues to accrete and merge with other PBHs. It appears as the central source in the infrared and X-ray emission, with the smaller PBHs and stars filling the halo as satellites.

Spatial Distribution PBH

- Monochromatic
- Uniformly distributed

- Broad range of masses
- PBH in clusters

JGB (2017)

PBH clusters

Microlensing

Wyrzykowski (2016)

 $4GM_{n}d$

OGLE3-UL-PAR-02 - candidate BH

OGLE photometry from 2001-2008 and microlensing model

Mass, Distance (degenerated estimate)

 $Dt = \frac{r_E}{r_E}$

 M_{PBH} (M_{\odot})

Rotation curves MW J. Calcino et al (2018)

Rotation curves MWJ. Jiao et al. (2023)X. Ou et al. (2023)

PBH coalesence

GW emission

GWTC-3 LVK Coll. (2022)

OBSERVING												
01 R U 1 2015 - 2016	N		02 2016 - 2017	and a second		Lin					03a+b 2019 - 2020	
• • 36 31	• • 23 14	14 7.7	31 20	11 7.6	50 34	35 24	31 25	••• 1.5 1.3	35 27	40 29	88 22	25 18
63 GW150914	36 GW151012	21 CW151226	49 GW170104	18 cw170608	80 CW170729	56 CW170809	53 CW170814	≤ 2.8 GW170817	60 GW170818	65 GW170823	105 GW190403_051519	41 cw190408_181802
30 8.3	35 24	48 32	41 32	•••• 2 1.4	107 77	43 28	23 13	36 18	39 28	37 25	66 41	95 69
37 GW190412	56 cw190413_052954	76 cw190413_134308	70 GW190421_213856	3.2 cw190425	175 cw190426_190642	69 cw190503_185404	35 GW190512_180714	52 GW190513_205428	65 GW190514_065416	59 GW190517_055101	101 GW190519_153544	156 GW190521
42 3 3	37 23	69 • 48	57 36	35 24	54 41	67 38	12 8.4	18 13	37 21	13 7.8	12 6.4	38 29
71 GW190521_074359	56 GW190527_092055	111 GW190602_175927	87 GW190620_030421	56 GW190630_185205	90 cw190701_203306	99 GW190706_222641	19 cw190707_093326	30 CW190708_232457	55 GW190719_215514	20 cw190720_000836	17 GW190725_174728	64 GW190727_060333
12 8.1	42 29	• • 37 27	48 32	• • 23 2.6	32 26	24 10	44 36	35 24	44 24	• 9.3 2.1	8.9 5	21 16
20 GW190728_064510	67 cw190731_140936	62 GW190803_022701	76 cw190805_211137	26 GW190814	55 CW190828_063405	33 cw190828_065509	76 GW190910_112807	57 GW190915_235702	66 cw190916_200658	11 GW190917_114630	13 CW190924_021846	35 GW190925_232845
• • 40 23	81 24	12 7.8		11 7.7	65 47	29 5.9	12 8.3	• • 53 24	11 6.7	27 19	12 8.2	25 18
61 GW190926_050336	102 GW190929_012149	19 cw190930_133541	19 GW191103_012549	18 GW191105_143521	107 GW191109_010717	34 GW191113_071753	20 GW191126_115259	76 GW191127_050227	17 GW191129_134029	45 GW191204_110529	19 GW191204_171526	41 GW191215_223052
12 7.7	• • 31 1.2	• • 45 35	49 37	9 1.9	36 28		42 33	34 29	10 7.3	38 27	51 12	36 27
19 GW191216_213338	32 GW191219_163120	76 GW191222_033537	82 GW191230_180458	11 GW200105_162426	61 GW200112_155838	7.2 GW200115_042309	71 GW200128_022011	60 GW200129_065458	17 GW200202_154313	63 GW200208_130117	61 GW200208_222617	60 cw200209_085452
• • 24 2.8	• • ⁵¹ • ³⁰	• • 38 28	87 61	39 28	40 33	• 19 14	38 20	28 15	36 14	34 28		34 14
27 GW200210_092254	78 GW200216_220804	62 GW200219_094415	141 GW200220_061928	64 GW200220_124850	69 GW200224_222234	32 GW200225_060421	56 GW200302_015811	42 GW200306_093714	47 GW200308_173609	59 GW200311_115853	20 GW200316_215756	53 GW200322_091133

KEY BLACK HOLE PRIMARY MASS FINAL SCONDARY FINAL SCONDARY MASS COMPUTE ARESOLATIONS AND THE CONTROL DATE(_TIME) UNITS ARE SOLATI MASSES ISOLAR MASS = 1.999 × 10¹⁰ KB

than the primary plus the secondary mass. The events listed here pass one of two thresholds for detection. They either have a probability of being GRAVITATIONAL WAVE MERGER DETECTIONS SINCE 2015

Black Holes and Neutron Stars

Primary and secondary masses

Primary mass (M⊙)

Primary mass (M⊙)

Primary mass (M⊙)

Are LIGO/Virgo BH Primordial? 1. 100 **GWTC-3** 1.5 Escriva et al. (2022) 1.0 10 - 10 - 10 10 0.5 10 100 1. $m_1[M_{\odot}]$

SSM170401

Morras et al. (2023)

Parameter	IMRPhenomPv2	IMRPhenomXPHM
Signal to Noise Ratio	$7.98\substack{+0.62 \\ -1.03}$	$7.94\substack{+0.70\\-1.05}$
${\rm Primary\ mass}\ (M_{\odot})$	$4.65^{+1.21}_{-2.15}$	$4.71_{-2.18}^{+1.57}$
Secondary mass (M_{\odot})	$0.77\substack{+0.50 \\ -0.12}$	$0.76\substack{+0.50 \\ -0.14}$
Primary spin magnitude	$0.32\substack{+0.47 \\ -0.26}$	$0.36\substack{+0.46 \\ -0.30}$
Secondary spin magnitude	$0.48\substack{+0.46 \\ -0.43}$	$0.47\substack{+0.46 \\ -0.42}$
Total mass (M_{\odot})	$5.42^{+1.10}_{-1.65}$	$5.47^{+1.43}_{-1.68}$
Mass ratio $(m_2/m_1 \leq 1)$	$0.17\substack{+0.34 \\ -0.05}$	$0.16\substack{+0.34 \\ -0.06}$
$\chi_{ m eff}$ [51, 52]	$-0.06\substack{+0.17\\-0.32}$	$-0.05\substack{+0.22\\-0.35}$
χ_{p} 53	$0.28\substack{+0.34 \\ -0.21}$	$0.33\substack{+0.33 \\ -0.26}$
Luminosity Distance (Mpc)	119^{+82}_{-48}	124_{-48}^{+82}
Redshift	$0.028\substack{+0.018\\-0.010}$	$0.028\substack{+0.017\\-0.011}$
$\operatorname{Ra}(^{\circ})$	-2^{+34}_{-35}	-1^{+34}_{-37}
$Dec (^{\circ})$	47^{+14}_{-26}	46^{+14}_{-29}
Final mass (M_{\odot})	$5.34^{+1.11}_{-1.70}$	$5.40^{+1.45}_{-1.73}$
Final spin	$0.39\substack{+0.24 \\ -0.07}$	$0.42\substack{+0.22\\-0.10}$
$P(m_2 < 1 M_\odot)$	85%	84%

SSM200308

Prunier et al. (2023)

Parameter	
Matched Filter SNR	$8.02\substack{+0.49\\-0.85}$
${\rm Primary\ mass}\ (M_{\odot})$	$0.62\substack{+0.46\\-0.20}$
Secondary mass (M_{\odot})	$0.27\substack{+0.12\\-0.10}$
Primary spin magnitude	$0.66\substack{+0.13\\-0.25}$
Secondary spin magnitude	$0.44\substack{+0.33\\-0.39}$
Total mass (M_{\odot})	$0.88\substack{+0.35\\-0.08}$
Detector-frame chirp mass (M_{\odot})	$0.3527\substack{+0.0003\\-0.0001}$
Mass ratio $(m_2/m_1 \leq 1)$	$0.44\substack{+0.48\\-0.28}$
$\chi_{ ext{eff}}$ [27, [28]	$0.41\substack{+0.08\\-0.04}$
$\chi_{\rm p}$ [29]	$0.37\substack{+0.24 \\ -0.24}$
Luminosity Distance (Mpc)	90^{+43}_{-39}
Redshift	$0.02\substack{+0.01\\-0.01}$
$P(m_1 < 1 M_\odot)$	92%
$P(m_2 < 1 M_\odot)$	100%

The future of GW (G3)

Detection horizon for black-hole binaries

BBH sensitivity in future G3 GW

Partial Summary

- Quantum diffusion inevitably generates PBH
- Thermal history predicts PBH have multimodal mass distribution $\sim 10^{-5}, 1, 100, 10^5~{\rm M}_\odot~(10^{-10}~{\rm M}_\odot~{\rm also?})$
- The predicted PBH spin and mass distribution has been measured by LIGO/Virgo + OGLE around 1-100 M_{\odot} (features: peak & plateau)
- Other peaks could be explored with microlensing
- PBH scenario can explain various cosmic conundra
- Paradigm shift in Structure Formation of Universe
- Very rich phenomenology: multiscale, multiepoch, multiprobe => Future G3 detectors (ET, LISA, GAIA)

Forces in Physics

- Fundamental Forces Gravitation, Strong, Weak, E.M.
- Residual Forces Molecular, Nuclear, Surface Tension
- Collective Forces Brownian motion, Entropic Forces $Fdx = dW = -dU + TdS \Rightarrow F = -\frac{dU}{dx} + T\frac{dS}{dx}$

Entropic forces in mechanics

General mechanical system with two components:

- Slow d.o.f. described with canonical coordinates (q, p)
- Fast d.o.f. coarsegrained as a thermodynamical system with macroscopic quantities (S, T)
- The interaction between the slow and fast d.o.f. are described by the Thermodynamical constraint: the First Law of Thermodynamics

Entropic forces in GR

JGB, Espinosa (2021)

$$S = \frac{1}{2\kappa} \int d^4x \sqrt{-g} R + \int d^4x \sqrt{-g} \mathcal{L}_m(g_{\mu\nu}, S) \qquad \text{Entropy}$$

$$\delta S = \int d^4x \left(\frac{1}{2\kappa} \frac{\delta(\sqrt{-g\,R})}{\delta g^{\mu\nu}} + \frac{\delta(\sqrt{-g\,\mathcal{L}_m})}{\delta g^{\mu\nu}} \right) \delta g^{\mu\nu} + \int d^4x \sqrt{-g} \frac{\partial \mathcal{L}_m}{\partial S} \delta S$$

Variational constraint: First law thermodynamics

$$\frac{\partial \mathcal{L}_m}{\partial s} \delta s = \frac{1}{2} f_{\mu\nu} \delta g^{\mu\nu}$$

Non-equilibrium Einstein field equations

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \kappa \left(T_{\mu\nu} - f_{\mu\nu}\right)$$

Entropic force

<u>Entropy (anti)gravitates !</u> GREA = General Relativistic

Entropic Acceleration

Gravitational Collapse $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \kappa \left(T_{\mu\nu} - f_{\mu\nu}\right) \equiv \kappa \mathcal{T}_{\mu\nu}$ Variational constraint: First law thermodynamics $-dW = -\vec{F} \cdot d\vec{x} = dU + \left(P - T\frac{dS}{dV}\right)dV$ Effective Pressure $\equiv dU + \tilde{P} dV$ Coeff. viscosity $f_{\mu\nu} = \zeta D_{\lambda} u^{\lambda} \left(g_{\mu\nu} + u_{\mu} u_{\nu} \right) = \zeta \Theta h_{\mu\nu}$ $\mathcal{T}^{\mu\nu} = P g^{\mu\nu} + (\epsilon + P) u^{\mu} u^{\nu} - \zeta \Theta h^{\mu\nu}$ $= \tilde{P} g^{\mu\nu} + (\epsilon + \tilde{P}) u^{\mu} u^{\nu} ,$ Maintains the perfect fluid form

Gravitational Collapse

Raychaudhuri equation for geodesic motion

 $\frac{D}{d\tau}\Theta + \frac{1}{3}\Theta^2 = -\sigma_{\mu\nu}\sigma^{\mu\nu} + \omega_{\mu\nu}\omega^{\mu\nu} - R_{\mu\nu}u^{\mu}u^{\nu}$ $= -\kappa \left(T_{\mu\nu}u^{\mu}u^{\nu} + \frac{1}{2}T^{\lambda}_{\ \lambda} - \frac{3}{2}\zeta\Theta\right)$ $= -\frac{\kappa}{2}(\epsilon + 3\tilde{P}) = -\frac{\kappa}{2}\left(\epsilon + 3P - 3T\frac{dS}{dV}\right).$

Due to the extra entropic term in the effective pressure, even for matter that satisfies the strong energy condition, $\epsilon + 3P > 0$, it's possible to prevent gravitat. collapse, $\dot{\Theta} + \Theta^2/3 > 0$, as long as entropy production is significant, i.e. $3TdS/dV > (\epsilon + 3P) > 0$.

Hawking Radiation

Temperature & Entropy of a black hole horizon

Entropic forces in GR

Temperature and Entropy from the gravity sector

• Horizon H with induced metric h

$$\mathcal{S}_{\rm GHY} = \frac{1}{8\pi G} \int_H d^3 y \sqrt{h} \, K = \frac{1}{8\pi G} \int_H dt \, \sin\theta d\theta \, d\phi \, \sqrt{h} \, K$$

Schwarzschild black hole

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \left(1 - \frac{2GM}{r}\right)^{-1}dr^{2} + r^{2}d\Omega_{2}^{2}$$

$$n = -\sqrt{1 - \frac{2GM}{r}}\partial_{r}$$

$$normal \ \text{vector } + S_{2} \ \text{of radius } r$$

Entropic forces in GR

$$\mathcal{S}_{\text{GHY}} = \frac{1}{8\pi G} \int_{H} d^{3}y \sqrt{h} K = \frac{1}{8\pi G} \int_{H} dt \sin\theta d\theta \, d\phi \sqrt{h} K$$

 $\sqrt{h}K = (3GM - 2r)\sin\theta$ at event horizon r = 2GM

$$\begin{split} \mathcal{S}_{\rm GHY} &= -\frac{1}{2} \int dt \, Mc^2 = - \int dt \, T_{\rm BH} S_{\rm BH} \\ T_{\rm BH} &= \frac{\hbar c^3}{8\pi G M} \qquad \text{Classical (emergent)} \\ quantum \text{ origin} \\ S_{\rm BH} &= \frac{A \, c^3}{4G\hbar} = \frac{4\pi G M^2}{\hbar c} \end{split}$$

Entropic forces in FLRW

Non-equilibrium thermodynamics in expanding universe

$$ds^{2} = -N(t)^{2}dt^{2} + a^{2}(t)\left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega_{2}^{2}\right)$$

$$T^{\mu\nu} = (\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu} \qquad D^{\mu}T_{\mu\nu} = D^{\mu}f_{\mu\nu}$$
2nd law thermodynamics
$$TdS = d(\rho a^{3}) + p d(a^{3}) \qquad \clubsuit \qquad \dot{\rho} + 3H(\rho + p) = \frac{T\dot{S}}{a^{3}}$$
Familtonian constraint
$$\dot{a}^{2} + k = \frac{8\pi G}{3}\rho a^{2}$$

Friedmann/Raychaudhuri equation

$$\frac{\ddot{a}}{a}=-\frac{4\pi G}{3}(\rho+3p)+\frac{4\pi G}{3}\frac{T\dot{S}}{a^{3}H}$$

Entropic forces in SMBH

Accretion onto black holes from the gas around them will change their mass and therefore their entropy, inducing an entropic force on space-time around them, according to Raychaudhuri equations.

At the Eddington limit, the mass of SMBH grows like

$$\dot{M} = \frac{4\pi G m_p}{0.1 c \,\sigma_T} M \simeq \frac{M}{40 \,\text{Myr}} = \frac{2}{t(z_*)} M$$
 (z_{*} \approx 35)

<u>Assumption</u>: SMBH continue to accrete mass at Eddington limit with a rate that decreases with the available gas over cosmological timescales, at least since 80 Myr $M \propto t^2 \propto a^3 = V$

Entropic forces in SMBH

Growth of BH entropy associated with this mass growth

$$S \propto M^2 \propto V^2 \quad \Rightarrow \quad \frac{dS}{S} = 2\frac{dV}{V}$$

Contributes with a constant & negative entropic pressure

 $p_{S} = -T \frac{dS}{dV} = -2 \frac{TS}{V} = -\frac{N_{\text{SMBH}}M_{\text{SMBH}}}{V} = -\rho_{\text{SMBH}}$ where the total entropy is $S = \sum_{i} S_{\text{SMBH}}^{(i)} = N_{\text{SMBH}}S_{\text{SMBH}}$ N_{SMBH} is the total number of SMBH in the Universe,
assumed constant (i.e. without SMBH mergers)

Acceleration from SMBH

The Raychaudhuri equation in this case becomes

$$\dot{H} + H^2 = \frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + 3p + \rho_{\text{SMBH}} + 3p_S\right)$$
$$= -\frac{4\pi G}{3} \left(\rho + 3p\right) + \frac{8\pi G}{3} \rho_{\text{SMBH}}.$$

The entropic force term can be interpreted as an effective cosmological constant term $\Lambda = 8\pi G \rho_{\text{SMBH}}$

<u>Consequence:</u> Primordial seeds of SMBH, rather than contributing as DM, they behave as DE, due to their rapid growth, until accretion stops.

DE from SMBH

Only a small fraction of DM in the form of PBH constitute the seeds of SMBH at the centers of galaxies, and their rapid growth induces GREA that we interpret as DE.

 $\Omega_{\rm DE} = f_{\rm SMBH} \,\Omega_{\rm DM} \,(1+z_*)^3 = 0.69$

$$f_{\rm SMBH} = 5 \times 10^{-5} \quad \Omega_{\rm DM} = 0.26$$

A more sophisticated computation is needed for the case of a broad mass distribution f(M) of PBH, and possibly different rates of accretion, M(z)

$$\Omega_{\rm DE} = \Omega_{\rm DM} \int \frac{f(M)}{M} \frac{dM}{dz} dz$$

PBH could be all the DM

SMBH growth

Farrah+

Cosmic Acceleration

Cosmic Acceleration

а

Cosmic Acceleration

Cosmo Observations

Cosmic Constraints

Arjona, Espinosa, JGB & Nesseris (2021)

Future Constraints

DESI Coll. (2016)

Future Parameters

 W_0

Conclusions

- Quantum diffusion inevitably generates PBH
- Thermal history predicts PBH have multimodal mass distribution $\sim 10^{-5}, 1, 100, 10^5 \ {\rm M}_{\odot} \ (10^{-10} \ {\rm M}_{\odot} \ {\rm also}?)$
- Very rich phenomenology: multiscale, multiepoch, multiprobe => Future G3 detectors (ET, LISA, GAIA)
- Non-equilibrium phenomena in GR: entropic forces
- FLRW: Cosmic acceleration from first principles
- SMBH growth through Eddington accretion
- BH entropy production generates GREA
- No need for a Cosmological Constant
- Precise knowledge of M(z) & f(M) will give (w_0, w_a)
HISTORY OF THE UNIVERSE WITH PRIMORDIAL BLACK HOLES

