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Introduction

o PBHs are theoretical black holes that could have formed in the early universe, for e.g. from the gravitational

collapse of overdense regions

o No evidence for PBHs, but their existence could be interesting, e.g. insights into the conditions of the early

universe and the processes that led to their formation, for reheating phase, and for explaining DM

o Reheating is a phase, thought to have occurred after cosmic inflation and just before the hot Big Bang phase

— leading to the creation of particles and radiation
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o In this talk, i discuss the details of reheating dynamics in the presence of PBH

the implications for the reheating temperature

comment on the parameter space that could be compatible with dark matter relic abundance
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Reheating with inflaton ¢ + PBH
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M2
initial mass M, = a);/247r—P. We consider 1g < M, <10%g

in

initial energy density fraction pit = 3 pil. We impose GWs constraints on f3

o The evolution of the system is determined by: standard ¢ scenario + PBH

Po+3(1+ay)Hpy = —(1+ @) Py
: P dMigy
H — CBHTTBH
pPeH + 3HPBH [y
. d
pr+4Hpr = (1+w¢)r¢p¢_% IZI;H
M3 y
Ps + Pr+psn = 3H?M3 and Men _ —e—F-, with &= 9

dt M2 480

n—2

n+2



o Very interesting phenomenological scenarios depending on the values of y,, M;,, and B

E.g. @y =1/2, My, = 10g



o Very interesting phenomenological scenarios depending on the values of y;, Mi,, and (3

E.g. 0y =1/2, My, =10g

Reheating driven by inflaton

T T T T T T
1 ]
Inflaton i
domination !
1
1073 B ! |
i
|
8 | Radiation
\1‘ 10~ j domination |
LT A ey
Il
><
-9 ¢+BH |
c 10 — 0/
——_—— ¢
Oy
¢+BH
10712 +PBH _ — T
Teed TP = Tpd = 107 Gev, yy = 1073 e g
Min=10g, n =6, p=10""2 R
; — Opn
10—15 1 || L 1 1 1 hN
1 103 10° 10° 1012 101 1018
a
Aend

PBH evaporation completes BEFORE reheating



o Very interesting phenomenological scenarios depending on the values of y;, Mi,, and (3

E.g. 0y =1/2, My, =10g

Reheating driven by inflaton

T T ¥ T T T L |
1 | |
Inflaton E 1 |
domination !
1
1073 F | ]
1
} ; - 0.01 |
£ 1 adiation 2 O
< 10 i domination | g’_ Inflaton Radiation
éi ---------------- & domination domination
Il |1< 10-4 i
é 10-9 Q #+BH A
4; Q¢¢ +BH
Oy ol e ——- -—-
10712 I p ; _ QéerBH ] 10 _QR¢ +BH i
Try =Tgy =107 GeYZ' yp=10"° — Qrf Trn® B = Tpy® =77 X101 GeV, yp =0.1 - R?
Min=10g, n =6, f = 10" - =6 B =5 x10°
in g n B | : Ot M, =10g n =6, B =5x10°8 — Ogn
10—15 1 I I I I I AN 10 8 | | | | I |
1 103 106 109 1012 1015 1018 1 100 104 106 108 a 1010
a
fend Send

PBH evaporation completes BEFORE reheating PBH evaporation completes AFTER reheating




» Reheating with PBH domination
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o Even if PBH do not dominate, the evaporation can dominate the reheating process
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Extended mass case

o We found comparable reheating temperature as for monochromatic case.
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Explaining Dark Matter

o Assuming:  — SM, and PBH — SM + DM, and no interactions between DM and ¢ or SM
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» Two distinct allowed regions: 10° GeV < m; <1GeV, for mj < Tin,

108 GeV <m; S Mp, for m; > Ti%,
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Interestingly this can happen without PBH ever dominating the energy budget of the universe

o PBH can can simultaneously reheat the universe and explain the right amount of relic abundance

Warm DM constraints mpy < Tli;h region, especially in pure PBH reheating scenario

THANK YOU !






Warm DM constraints
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o A is constrained by CBM [Drewes, Kang and Mun, JHEP 11 (2017), 072]
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o The field value at the end of the inflation can be written as
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o Inflaton decay to fermions rate



o Even when PBH do not dominate, their evaporation can dominate the reheating process

e e.g: for quartic potential, 8 < 3 x 10~° implies PBHs never dominate, BUT ...
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Results: y, versus f3

o Summarizing, the dynamics is determined by: y;, B, and M,

" '/l T
s
0.200f  ® Yo (Teen) S |
/- I
I -‘/" |
Standard reheating 7 PBH reheating GW
0.001¢ R : i
e |
e I
o /o'/ I
> 4 I
105 n= n = |
e |
- & |
|
1077+ | :
|
| MIH - ]_0 g 1
: ?
10- | n n | n n | n L |
1012 10°° 106 103
B
o Mi =109
e n=4:yMt=6x10" e n=6:y5"~33x107°

4
Bl ~BEH ~3x 1077 ﬁf”-tocy(;, and B2 ~1.2x107°

crit — Fecrit



Yo

/

A /\
i ° / &
0.100 Yo (Tean) A 1 0.100F ® yo (Teen) i 1
P A
e | S
0.001} o L | Standard reheating +” PBH reheati
Standard reheating .7 PBH reheating GW 0.001 andard reheating , PBH reheating CWE
= 7 I
,/‘/ : v I
_5| — c _ § "'/ !
10 ,D 6 n =4 . 1075} n = n= 1
’/0 | _./'
x4 I i :
I
107 3 I
: : 107+ I g
I
| —1n4
i M, =10%g ' M, =107 g
10— 9 l " | m | | | 10— 9 | | | ‘l |
10 10 10°8 10°° 10" Y7 10715 1013 101 10°° 16' 7

B B



Try [GeV]

1076 1078 10710 10712 10714

109_

107f

105
1000

10

0.100

0.001

1 100 104 108 108

M;, [g]

Tru [GeV]
)
S
S

107

0.1

107°

100

10*
M, [g]

108

T

—pB=10"
— p= 10710
—pB=10""4
—p=21x10""

108




Warm DM constraints

o Revisit of the typical limit on WDM of mpy = 3keV from structure formation or Lyman-a constraints since
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