
Primordial Black Hole Reheating in Post-inflationary Universe

Donald E. KPATCHA (IJCLab & UAM-CSIC)

IHP, Paris Workshop on PBHs & GWs

November 28, 2023

Based on arXiv: 2305.10518 and 2309.06505

in collaboration with: Y. Mambrini, D. Maity and M. R, Haque



Outline

1 Introduction

2 Primordial Black Holes Reheating

3 Implications for Dark Matter

4 Conclusions



Introduction

PBHs are theoretical black holes that could have formed in the early universe, for e.g. from the gravitational

collapse of overdense regions

No evidence for PBHs, but their existence could be interesting, e.g. insights into the conditions of the early

universe and the processes that led to their formation, for reheating phase, and for explaining DM

Reheating is a phase, thought to have occurred after cosmic inflation and just before the hot Big Bang phase

→ leading to the creation of particles and radiation
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Two well studied reheating scenarios:

� Inflaton φ

reheating

[JGB, astro-ph/9906497]

+

� PBH reheating via Hawking emission

• What if the hybrid scenario drives the reheating ?

In this talk, i discuss the details of reheating dynamics in the presence of PBH

� the implications for the reheating temperature

� comment on the parameter space that could be compatible with dark matter relic abundance
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Reheating with inflaton φ + PBH

Inflaton φ decays via yφ f̄ fφ , the potential V(φ) = λM4
P

(
φ

MP

)n

, and equation of state ωφ =
n−2
n+2

Evaporating monochromatic Schawrzchild PBH with:

� initial mass Min = ω
3/2
φ

4π
M2

P

Hin
. We consider 1g ≲ Min ≲ 109 g

� initial energy density fraction ρ in
BH = β ρ in

tot. We impose GWs constraints on β

The evolution of the system is determined by: standard φ scenario + PBH

ρ̇φ +3(1+ωφ)Hρφ = −(1+ωφ)Γφ ρφ

˙ρBH + 3HρBH =
ρBH
MBH

dMBH
dt

ρ̇R +4HρR = (1+ωφ)Γφ ρφ −
ρBH
MBH

dMBH
dt

ρφ + ρR +ρBH = 3H2M2
P and

dMBH
dt

= −ε
M4

P

M2
BH

, with ε =
πg∗
480
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E.g. ωφ = 1/2, Min = 10g

� Reheating driven by inflaton
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� Reheating with PBH domination



Even if PBH do not dominate, the evaporation can dominate the reheating process

What are the implications for TRH ? → two classes of solutions depending on yφ , ωφ and Min
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First class: yφ < ycst −→ TRH > T φ
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I β
φ
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TRH ≡ F(yφ)

φ-domination at reheating

φ reheating

yφφ f f̄ interactions

TRH
≡ G(yφ

, β, M in
)

φ-domination at reheating

BH reheating
initial mass Min, and energy density fraction β

TRH ≡ F(ycst
φ ) TRH ≡ f (Min)

BH-domination at reheating

yφ < ycst
φ

TRH ∼
(

30λ

gT π2
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For example: ωφ = 1/2, Min = 10g ycst
φ

≃ 3.3×10−3 β BH
c ∼ 1.2×10−9 β

φ
c ∝ y

4
3
φ
(Min/MP)

−2
3

 



Extended mass case

We found comparable reheating temperature as for monochromatic case.

For e.g. ω = 1/3
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Explaining Dark Matter

Assuming: φ → SM, and PBH → SM + DM, and no interactions between DM and φ or SM

ωφ = 1/2

Two distinct allowed regions: 10−5 GeV ≲ mj ≲ 1GeV, for mj < T in
BH

108 GeV ≲ mj ≲ MP, for mj > T in
BH



Explaining Dark Matter

Assuming: φ → SM, and PBH → SM + DM, and no interactions between DM and φ or SM

ωφ = 1/2

Two distinct allowed regions: 10−5 GeV ≲ mj ≲ 1GeV, for mj < T in
BH

108 GeV ≲ mj ≲ MP, for mj > T in
BH



Explaining Dark Matter

Assuming: φ → SM, and PBH → SM + DM, and no interactions between DM and φ or SM

ωφ = 1/2

Two distinct allowed regions: 10−5 GeV ≲ mj ≲ 1GeV, for mj < T in
BH

108 GeV ≲ mj ≲ MP, for mj > T in
BH



Conclusions

PBH can affect the standard post-inflation reheating dynamics

� The reheating temperature TRH can change drastically in the presence of PBH

� Interestingly this can happen without PBH ever dominating the energy budget of the universe

PBH can can simultaneously reheat the universe and explain the right amount of relic abundance

� Warm DM constraints mDM < T in
BH region, especially in pure PBH reheating scenario
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THANK YOU !





Warm DM constraints
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λ is constrained by CBM [Drewes, Kang and Mun, JHEP 11 (2017), 072]

λ = α
n
1

(
3π2rAR

2

)4
[

n2 +n+
√

n2 +3α(2+n)(1−ns)

n(2+n)

]n

AR ∼ 2.19×10−9 = amplitude of the scalar perturbations, r = tensor-to-scalar ratio, and ns = spectral index

The field value at the end of the inflation can be written as

φend =
MP

α1
ln

(
n√
3α

+1
)
.

V(φend) =
λ M4

P

α4
1

(
n

n+
√

3α

)n

Energy density at the end of inflation is then

ρend =
3
2

V(φend) =
3λ M4

P

2α4
1

(
n

n+
√

3α

)n

.

Inflaton decay to fermions rate

Γφ = γφ

(
ρφ

M4
P

)ℓ

, γφ =
√

n(n−1)λ 1/nMP
y2

φ

8π
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1
2
− 1
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Even when PBH do not dominate, their evaporation can dominate the reheating process

• e.g: for quartic potential, β ≲ 3×10−6 implies PBHs never dominate, BUT ...
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Results: yφ versus β

Summarizing, the dynamics is determined by: yφ , β , and Min

PBH reheatingStandard reheating GW
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GWPBH reheatingStandard reheating
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BBN

n = 4
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Warm DM constraints

Revisit of the typical limit on WDM of mDM ≳ 3keV from structure formation or Lyman-α constraints since
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