Primordial Black Holes from supercooled phase transitions

Paris workshop on primordial black holes and gravitational waves

- Yann Gouttenoire
- 28th November 2023

Postdoc in Tel Aviv U.

Azrieli International Postdoctoral Fellows

Supermassive PBH binaries

Supermassive PBH binaries

Global cosmic strings

		Supermassive PBH binaries
		Global cosmic strin
ermassive oles binaries		Local cosmic strin

		Supermassive PBH binaries LSS and UV LF galaxy YG, Trifinopoulos, Valogiannis, Vanvla elaer, 2307.01457 Except if clustering Depta, Schmidt-Hoberg, Schwa Tasillo 2306.17836
		Global cosmic strin
Supermassive black holes binaries		Local cosmic strin
		Large curvature perturbation
Gravitational Waves		First-order phase transition
		Domain walls
13.8 Gyr \gtrsim t \gtrsim 500 M	yr $1 \text{ s } \gtrsim \text{ t } \gtrsim 10^{-5}$	S

What is Primordial Black Holes?

BH formed before any astrophysical objects exists **PBH** formation **Star formation** $z \gg 10^3$ $z \lesssim 30$

How do they form ?

$H^2 = \frac{8\pi G}{3}\rho$

Friedmann's equation : $H^{-3} \times H^2 = \frac{8\pi G}{3}\rho \times H^{-3}$

How do they form ?

How do they form ?

 $\equiv R_{\rm H}$

How do they form ?

How do they form ?

$R_{\rm H} = 2GM_{\rm H}$

Schwarschild's equation

How do they form ?

$R_{\rm H} = 2GM_{\rm H}$

Schwarschild's equation

How do they form ?

$R_{\rm H} = 2GM_{\rm H}$

Hubble patches are on the edge to collapse into black holes

Schwarschild's equation

How do they form ?

$\frac{R_{\rm H} - 2GM_{\rm H}}{R_{\rm H}} \gtrsim 0.45$ **Radiation pressure**

Hubble patches are on the edge to collapse into black holes

Friedmann's equation :

Schwarschild's equation

How do they form ?

Hubble patches are on the edge to collapse into black holes

1) PBHs from primordial scalar fluctuation

B. Carr and J. E. Lidsey, Phys. Rev. D 48, 543 (1993)

P. Ivanov, P. Naselsky, and I. Novikov, Phys. Rev. D 50, 7173 (1994)

1) PBHs from primordial scalar fluctuation

B. Carr and J. E. Lidsey, Phys. Rev. D 48, 543 (1993)

2) PBHs from cosmic strings

S. W. Hawking, Phys.Lett.B 231 (1989) 237-239

R. R. Caldwell and P. Casper, Phys.Rev.D 53 (1996), <u>9509012</u>

P. Ivanov, P. Naselsky, and I. Novikov, Phys. Rev. D 50, 7173 (1994)

Requires $G\mu \sim 10^{-6}$ for PBH to be observable (cosmic rays)

1) PBHs from primordial scalar fluctuation

B. Carr and J. E. Lidsey, Phys. Rev. D 48, 543 (1993)

2) PBHs from cosmic strings

S. W. Hawking, Phys.Lett.B 231 (1989) 237-239

R. R. Caldwell and P. Casper, Phys.Rev.D 53 (1996), <u>9509012</u>

P. Ivanov, P. Naselsky, and I. Novikov, Phys. Rev. D 50, 7173 (1994)

Requires $G\mu \sim 10^{-6}$ for PBH to be observable (cosmic rays)

1) PBHs from primordial scalar fluctuation

B. Carr and J. E. Lidsey, Phys. Rev. D 48, 543 (1993)

2) PBHs from cosmic strings

S. W. Hawking, Phys.Lett.B 231 (1989) 237-239

R. R. Caldwell and P. Casper, Phys.Rev.D 53 (1996), <u>9509012</u>

3) PBHs from Domain Walls Networks

Ferrer, Masso, Panico, Pujolas, Rompineve, Phys.Rev.Lett. 122 (2019), 1807.01707

G. B. Gelmini, A. Simpson, and E. Vitagliano, 2207.07126, JCAP 02, 031,

P. Ivanov, P. Naselsky, and I. Novikov, Phys. Rev. D 50, 7173 (1994)

Requires $G\mu \sim 10^{-6}$ for PBH to be observable (cosmic rays)

1) PBHs from primordial scalar fluctuation

B. Carr and J. E. Lidsey, Phys. Rev. D 48, 543 (1993)

2) PBHs from cosmic strings

S. W. Hawking, Phys.Lett.B 231 (1989) 237-239

R. R. Caldwell and P. Casper, Phys.Rev.D 53 (1996), <u>9509012</u>

3) PBHs from Domain Walls Networks

Ferrer, Masso, Panico, Pujolas, Rompineve, Phys.Rev.Lett. 122 (2019), 1807.01707

G. B. Gelmini, A. Simpson, and E. Vitagliano, 2207.07126, JCAP 02, 031,

YG, Vitagliano, <u>2306.17841</u>

YG, Vitagliano, <u>2311.07670</u>

P. Ivanov, P. Naselsky, and I. Novikov, Phys. Rev. D 50, 7173 (1994)

Requires $G\mu \sim 10^{-6}$ for PBH to be observable (cosmic rays)

1) PBHs from primordial scalar fluctuation

B. Carr and J. E. Lidsey, Phys. Rev. D 48, 543 (1993)

2) PBHs from cosmic strings

S. W. Hawking, Phys.Lett.B 231 (1989) 237-239

R. R. Caldwell and P. Casper, Phys.Rev.D 53 (1996), <u>9509012</u>

3) PBHs from Domain Walls Networks

Ferrer, Masso, Panico, Pujolas, Rompineve, Phys.Rev.Lett. 122 (2019), 1807.01707

G. B. Gelmini, A. Simpson, and E. Vitagliano, 2207.07126, JCAP 02, 031,

YG, Vitagliano, <u>2306.17841</u>

YG, Vitagliano, <u>2311.07670</u>

4) PBHs from Supercooled 1st-order Phase Transition

1982: Kodama, Sasaki, Sato, (Prog.Theor.Phys. 68 (1982) 1979)

2021: Liu, Bian, Can, Guo, Wang, 2106.05637, Phys.Rev.D 105 (2022) 2

2022: Kawana, T. Kim, and P. Lu, 2212.14037

2023: Lewicki, Toczek, Vaskonen, JHEP 09 (2023) 092, 2305.04924

P. Ivanov, P. Naselsky, and I. Novikov, Phys. Rev. D 50, 7173 (1994)

Requires $G\mu \sim 10^{-6}$ for PBH to be observable (cosmic rays)

1) PBHs from primordial scalar fluctuation

B. Carr and J. E. Lidsey, Phys. Rev. D 48, 543 (1993)

2) PBHs from cosmic strings

S. W. Hawking, Phys.Lett.B 231 (1989) 237-239

R. R. Caldwell and P. Casper, Phys.Rev.D 53 (1996), <u>9509012</u>

3) PBHs from Domain Walls Networks

Ferrer, Masso, Panico, Pujolas, Rompineve, Phys.Rev.Lett. 122 (2019), 1807.01707

G. B. Gelmini, A. Simpson, and E. Vitagliano, 2207.07126, JCAP 02, 031,

YG, Vitagliano, <u>2306.17841</u>

YG, Vitagliano, <u>2311.07670</u>

4) PBHs from Supercooled 1st-order Phase Transition

1982: Kodama, Sasaki, Sato, (Prog.Theor.Phys. 68 (1982) 1979)

2021: Liu, Bian, Can, Guo, Wang, 2106.05637, Phys.Rev.D 105 (2022) 2

2022: Kawana, T. Kim, and P. Lu, 2212.14037

2023: Lewicki, Toczek, Vaskonen, JHEP 09 (2023) 092, 2305.04924

P. Ivanov, P. Naselsky, and I. Novikov, Phys. Rev. D 50, 7173 (1994)

Requires $G\mu \sim 10^{-6}$ for PBH to be observable (cosmic rays)

Excluded by PTA $G\mu \lesssim 10^{-10}$ and CMB $G\mu \lesssim 10^{-7}$

YG, Volansky, 2305.04942

YG, 2307.04239, Phys.Rev.Lett. 131 (2023) 17

YG,2311.13640

PBHs formation during supercooled phase transition

Guth 1980 "Old inflation idea"

YG, Volansky 2305:04942

Old vacuum-dominated region (outside bubbles)

YG, Volansky 2305:04942

Old vacuum-dominated region (outside bubbles)

YG, Volansky 2305:04942

Old vacuum-dominated region (outside bubbles)

YG, Volansky 2305:04942

Old vacuum-dominated region (outside bubbles)

YG, Volansky 2305:04942

Old vacuum-dominated region (outside bubbles)

Old vacuum-dominated region (outside bubbles)

YG, Volansky 2305:04942

Old vacuum-dominated region (outside bubbles)

YG, Volansky 2305:04942

Old vacuum-dominated region (outside bubbles)

YG, Volansky 2305:04942

Old vacuum-dominated region (outside bubbles)

YG, Volansky 2305:04942

Old vacuum-dominated region (outside bubbles)

YG, Volansky 2305:04942

Old vacuum-dominated region (outside bubbles)

$\delta \rho / \rho \gtrsim 0.45.$

if

Old vacuum-dominated region (outside bubbles)

YG, Volansky 2305:04942

$\delta \rho / \rho \gtrsim 0.45.$

if

then

Old vacuum-dominated region (outside bubbles)

PBH

YG, Volansky 2305:04942

t ► X

YG, Volansky 2305:04942

YG, Volansky 2305:04942 $t_{\rm max}$ ${\mathcal X}$

PBH

Hubble patch when $\delta \rho / \rho$ is max

↑ Nucleation starts ↑

No nucleation inside that 4-volume

Past light-cone of a Hubble Datch at that ↑ Nucleation becomes energetically allowed ↑

Collapse probability :
$$\mathscr{P}_{\text{coll}} = \exp\left[-\int_{t_c}^{t_{n_i}} dt' \,\Gamma(t') a(t')^3 \frac{4\pi}{3} \left(\frac{1}{a(t_{\text{max}})H(t_{\text{max}})} + \int_{t'}^{t_{\text{max}}} \frac{d\tilde{t}}{a(\tilde{t})}\right)\right]$$

Vacuum energy :

Radiation energy :

PBH formation threshold :

$$\frac{\dot{a}(t)}{a(t)} = \sqrt{\frac{\rho_{\rm V}(t;t_{n_i}) + \rho_{\rm R}(t;t_{n_i})}{3M_{\rm pl}^2}}$$

$$\rho_{\rm V}(t;t_{n_i}) = \Delta V \exp\left[-\int_{t_{n_i}}^t dt' \,\Gamma(t') a(t')^3 \frac{4}{3}\pi\left(\int_{t'}^t \frac{d\tilde{t}}{a(\tilde{t})}\right)\right]$$

$$\dot{\rho}_{\rm R}(t;t_{n_i}) + 4H\rho_{\rm R}(t;t_{n_i}) = -\dot{\rho}_V(t;t_{n_i})$$

$$\frac{\rho_{\rm R}(t_{\rm max};t_{n_i}) - \rho_{\rm R}(t_{\rm max};t_c)}{\rho_{\rm R}(t_{\rm max};t_c)} \simeq 0.45,$$

Tunneling rate : $\Gamma = \Gamma_0 e^{\beta t}$ $\beta \equiv \frac{d \log \Gamma}{dt}$

 $\beta^{-1} \simeq \text{PT}$ duration \simeq bubble size

 \simeq bubble size

Tunneling rate :

$$\Gamma = \Gamma_0 e^{\beta t}$$

$$\beta \equiv \frac{d \log \Gamma}{dt}$$

$$\beta^{-1} \simeq \text{PT duration}$$

 \simeq bubble size

Tunneling rate :

$$\Gamma = \Gamma_0 e^{\beta t}$$

$$\beta \equiv \frac{d \log \Gamma}{dt}$$

$$\beta^{-1} \simeq \text{PT duration}$$

 \simeq bubble size

$V_{\text{tree}}(|\Phi|, |H|) = \lambda_h |H|^4 + \lambda_\phi |\Phi|^4 - \lambda_{h\phi} |\Phi|^2 |H|^2$

$V_{\text{tree}}(|\Phi|, |H|) = \lambda_h |H|^4 + \lambda_\phi |\Phi|^4 - \lambda_{h\phi} |\Phi|^2 |H|^2$ $V_{T=0}(\phi) = \beta_{\lambda} \frac{\phi^4}{4} \left[\log\left(\frac{\phi}{v_{\phi}}\right) - \frac{1}{4} \right], \quad \beta_{\lambda} \simeq 6\alpha_{\rm D}^2.$

$V_{\text{tree}}(|\Phi|,|H|) = \lambda_h |H|^4 + \lambda_\phi |\Phi|^4 - \lambda_{h\phi} |\Phi|^2 |H|^2$ $V_{T=0}(\phi) = \beta_\lambda \frac{\phi^4}{4} \left[\log\left(\frac{\phi}{v_\phi}\right) - \frac{1}{4} \right], \quad \beta_\lambda \simeq 6\alpha_{\text{D}}^2.$

PT completion rate:

$$\beta/H\simeq 100g_{\rm D}^3-4$$

$V_{\text{tree}}(|\Phi|,|H|) = \lambda_h |H|^4 + \lambda_\phi |\Phi|^4 - \lambda_{h\phi} |\Phi|^2 |H|^2$ $V_{T=0}(\phi) = \beta_\lambda \frac{\phi^4}{4} \left[\log\left(\frac{\phi}{v_\phi}\right) - \frac{1}{4} \right], \quad \beta_\lambda \simeq 6\alpha_{\text{D}}^2.$

YG, 2311.13640

PT completion rate:

$$\beta/H\simeq 100g_{\rm D}^3-4$$

PT supercooling amount:

$$\log(T_{\rm eq}/T_n) \simeq g_{\rm D}^{-3}$$

$$V_{\text{tree}}(|\Phi|,|H|) = \lambda_{h}|H|^{4} + \lambda_{\phi}|\Phi|^{4} - \lambda_{h\phi}|\Phi|^{2}|H|^{2}$$

$$V_{T=0}(\phi) = \beta_{\lambda}\frac{\phi^{4}}{4} \left[\log\left(\frac{\phi}{v_{\phi}}\right) - \frac{1}{4}\right], \quad \beta_{\lambda} \simeq 6\alpha_{\text{D}}^{2}.$$

$$ignormalize{2} 10^{7}$$

$$ignormalize{2} 10^{5}$$

$$ignormalize{2} 10^{3}$$

$$ignormalize{2} 10^{4}$$

$$ignormalize{2} 10^{4}$$

$$ignormalize{2} 10^{4}$$

$$ignormalize{2} 10^{4}$$

$$V_{\text{tree}}(|\Phi|,|H|) = \lambda_{h}|H|^{4} + \lambda_{\phi}|\Phi|^{4} - \lambda_{h\phi}|\Phi|^{2}|H|^{2}$$

$$V_{T=0}(\phi) = \beta_{\lambda}\frac{\phi^{4}}{4} \left[\log\left(\frac{\phi}{v_{\phi}}\right) - \frac{1}{4} \right], \quad \beta_{\lambda} \simeq 6\alpha_{\text{D}}^{2}.$$

$$interval = 10^{7}$$

$$V_{\text{tree}}(|\Phi|, |H|) = \lambda_{h} |H|^{4} + \lambda_{\phi} |\Phi|^{4} - \lambda_{h\phi} |\Phi|^{2} |H|^{2}$$

$$V_{T=0}(\phi) = \beta_{\lambda} \frac{\phi^{4}}{4} \left[\log\left(\frac{\phi}{v_{\phi}}\right) - \frac{1}{4} \right], \quad \beta_{\lambda} \simeq 6\alpha_{\text{D}}^{2}.$$

$$\downarrow 0^{5} 10^{7} \qquad \uparrow \lambda_{h\phi} < 1$$

$$\downarrow 0^{5} 10^{5} \qquad \uparrow \text{Gravity eff}$$

$$\downarrow 0^{5} 10^{3} \qquad \downarrow 0^{5} 10^{3} \qquad \downarrow 0^{5} 10^{5} 10^{5} \qquad \downarrow 0^{5} 1$$

Cosmological Consequences of a Light Higgs Boson

Cosmological Consequences of a Light Higgs Boson

$$V_{\text{tree}}(|\Phi|, |H|) = \lambda_{h} |H|^{4} + \lambda_{\phi} |\Phi|^{4} - \lambda_{h\phi} |\Phi|^{2} |H|^{2}$$

$$V_{T=0}(\phi) = \beta_{\lambda} \frac{\phi^{4}}{4} \left[\log\left(\frac{\phi}{v_{\phi}}\right) - \frac{1}{4} \right], \quad \beta_{\lambda} \simeq 6\alpha_{\text{D}}^{2}.$$

$$\Omega_{\text{GW}} \rightarrow D^{-4/3}\Omega_{\text{GW}}$$

$$D \simeq \frac{T_{\text{dom}}}{\sqrt{M_{\text{pl}}\Gamma_{\phi}}} \propto \lambda_{h\phi}$$

$$I0^{5}$$

$$I0^{3}$$

$$\int_{\text{CO}} D^{2} \frac{\lambda_{h\phi}}{\lambda_{h\phi}}$$

$$I0^{3}$$

$$\int_{\text{CO}} D^{2} \frac{\lambda_{h\phi}}{\lambda_{h\phi}}$$

$$I0^{3}$$

$$\int_{\text{CO}} D^{2} \frac{\lambda_{h\phi}}{\lambda_{h\phi}}$$

$$V \supset -\lambda_{l} \langle \bar{t}_{L} t_{R} \rangle H$$

$$0.40 \quad 0$$

Witten, Nucl. Phys. B 177, 477 (1981) Cosmological Consequences of a Light Higgs Boson

1) $\alpha \gg 1$, $\beta/H \lesssim 7 \implies$ Efficient PBH production due to collapse of late-bloomers

1) $\alpha \gg 1$, $\beta/H \lesssim 7 \implies$ Efficient PBH production due to collapse of late-bloomers

2) IMPORTANT POST-DICTION ABOUT OUR UNIVERSE PAST:

1) $\alpha \gg 1$, $\beta/H \lesssim 7 \implies$ Efficient PBH production due to collapse of late-bloomers

2) IMPORTANT POST-DICTION ABOUT OUR UNIVERSE PAST:

If our universe ever boiled, it could not have boiled during more than 14% of its age at that time

1) $\alpha \gg 1$, $\beta/H \leq 7 \implies$ Efficient PBH production due to collapse of late-bloomers

2) IMPORTANT POST-DICTION ABOUT OUR UNIVERSE PAST:

If our universe ever boiled, it could not have boiled during more than 14% of its age at that time

3) 1stOPT interpretation of NANOGrav signal produce ten-solar-mass PBHs

YG, 2307.04239, Phys.Rev.Lett. 131 (2023) 17

1) $\alpha \gg 1$, $\beta/H \leq 7 \implies$ Efficient PBH production due to collapse of late-bloomers

2) IMPORTANT POST-DICTION ABOUT OUR UNIVERSE PAST:

If our universe ever boiled, it could not have boiled during more than 14% of its age at that time

3) 1stOPT interpretation of NANOGrav signal produce ten-solar-mass PBHs

YG, 2307.04239, Phys.Rev.Lett. 131 (2023) 17

4) Scale-invariant U(1) extension of SM:

Only two additional parameters $g_{\rm D}$ and v_{ϕ}

YG, 2311.13640

- Explain HSC lensing anomaly ($v_{\phi} \sim 20 \text{ TeV}$)
- Explain 100% of DM ($v_{\phi} \in [300 \,\text{TeV}, \, 300 \,\text{PeV}]$)
- Explain 511-keV line ($v_{\phi} \sim 5 \times 10^8 \,\mathrm{GeV}$)

2023: Primordial Black Holes from Supercooled Phase Transitions, **YG**, Volansky, 2305.04942

2021: Liu, Bian, Can, Guo, Wang, Primordial black hole production during firstorder phase transitions, 2106.05637, *Phys.Rev.D* 105 (2022) 2

1982: Kodama, Sasaki, Sato, Abundance of Primordial Holes Produced by Cosmological First Order Phase Transition (Prog.Theor.Phys. 68 (1982) 1979)

2023: Primordial black holes from strong first-order phase transitions, Lewicki, Toczek, Vaskonen, JHEP 09 (2023) 092, 2305.04924

2022: Kawana, T. Kim, and P. Lu, PBH Formation from Overdensities in Delayed Vacuum Transitions, 2212.14037

Scale invariant Higgs + U(1)

$$V_{\text{tree}}(|\Phi|, |H|) = \lambda_h |H|^4 + \lambda_\phi |\Phi|^4 - \lambda_{h\phi} |\Phi|^2 |H|^2,$$

$$V_{T=0}(\phi) = \beta_{\lambda} \frac{\phi^4}{4} \left[\log\left(\frac{\phi}{v_{\phi}}\right) - \frac{1}{4} \right], \quad \beta_{\lambda} \simeq 6\alpha_{\rm D}^2.$$

PT supercooling amount:

$$\log(T_{\rm eq}/T_n) \simeq g_{\rm D}^{-3}$$

$$\log(T_{\rm eq}/T_n) \simeq g_{\rm D}^{-3}$$

