Phenomenology of gravitational waves
from hyperbolic encounters
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based on work by ]. Garcia-Bellido
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Motivations for studying hyperbolics

More probable events than bounded orbits?

Assumes E . > 0 (unbounded)

Close encounters
€ dense PBH clusters

\ EOUT<O

Requires leading process
of dissipating energy

3,

= Capturing an
True with object from oo is
-  Newtonian dynamics hard!

- weak energy dissipation

Very scarce literature: no textbook !
Studied e.g. in [Garcia-Bellido et al. 1711.09702 / 2307.00915, De Vittori et al. 1207.5359]
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I_) GW detector fixes frequency
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Aside: frequency of aperiodic signal

Geometrical definition Fourier definition
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[Garcia-Bellido et al. 1711.09702]: equivalent!

And even: 7“3 w2 = QM(6+ 1)

min“~m

= Pseudo Kepler law!
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GWs on hyperbolas

Bunch of parameters but 3 D.o.E.!
Q°: How to cleverly pick them ?
___5 frequency - fixed by detector

3 mass — constrained by physics

—> eccentricity = easier computations

Based on [Garcia-Bellido et al. 1711.09702]:

h = \/Q(hi + h?) (equal mass BHs)

5/3 v/ 18(e + 1) + He?
(e +1)1/3

1
hmax = r2n/£§X(gM )
observer distance —
Goals : Probe 2D parameter space with M and e

Best possible h ., for a given detector ? on which trajectory ?
How far can we detect such events ?
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Parameter space for hyperbolas
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Optimal and suboptimal GW strains
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|c.f. Killian's talk]: Event duration must be
carefully assessed for proper sensitivity reckoning

Haloscopes: f~ afew GHz, quality factor Q~f/Af~10°
Very short signals:  SNR = h @ x f3Q x [other experimental vars.|

Time spent within bandwidth: ¢ Af R i 1+ 1 ﬁ
(newly derived for hyperbolas) 7 f e f

5\ 1/2
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horribly small!

Taking best scenario ,,_ _— 1vite .
R 87 f

SNR>1 —> R <60 A.U. (experimenta,l vars.) )

typical values
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Take-away message:

Great strain can be generated on unbounded and highly eccentric orbits
(comparable to inspirals!)

Counter-intuitive behavior at fixed frequency:
best scenario is a parabola yet strain grows with e!

Reusable results
for others!

Clarified situation on
hyperbolic trajectories:
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Major drawback: signal-to-noise ratios for high-frequency detectors are terrible
Signal lasts way too short at these frequencies

Left to do: reckoning the number of events if we relax f



Fiducial values at LVK frequencies
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Removing divergences in formulae

V1.2 Fixing divergencies

The problem with parabolic orbits is that e — 0, but voc — 0 as well, while b — oc...
All these parameters are not independent and mix in the equations, so it’s not obvious
to see how to obtain the parabolic limit from the hyperbolic formulae. Here I make two
claims on how to do it, which turn out to be equivalent:

1. Claim 1: the starting point of computations is the conic equation r(¢) = WM

where p is the semi-latus rectum. Here there is no problem when e = 1, but in
: . b2 K
calculations we start replacing e.g. p = —a((z2 —1)=——= —
a v

divergences start appearing: e — 1 — 0 but vee — 0 as well, also a,b — oo...
Hence the claim: to avoid divergences, the limit shall be taken such that
p remains fixed. Assuming the masses are given at the start (they have nothing

to do with geometrical considerations). This limit means that

(e — 1) and now

ez —1

must remain a constant quantity, more precisely

2 kle+1) 2k

’U
o0
~Y
e—1 el P P

4Gz,
Rct(e — 1

¢, max: —

] V/18(e + 1) + 5e?

332G e+ 1)°
~ 45052 (e—1)*




More on the physical constraints

Values of (M, e, h) such that wmasx = 1 GHz
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+ and X polariza® & linear memory effect

0 1 2
(t/M)(M/p)*” [Favata 1003.3486]
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General suboptimal strain
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|OLD] Maximization under constraints

Constraint 1:
fixed w
max

Constraint 2:
no merger

r_ >R =2GM/c?

Constraint 3:
do not exceed c

= 2D parameter space with boundaries ; spanned with Mand e




