Theoretical consistency with enhanced density fluctuations

Sébastien Renaux-Petel

IHP, Paris workshop on PBH and GW, November 27th 2023

European Research Council Established by the European Commission

CNRS - Institut d'Astrophysique de Paris

Context: GW astronomy

recent PBH review in LISA CosWG 2310.19857

Large power spectrum on small scales and **nontrivial** dynamics of inflation

A tale of three scales

Backreaction?

Questions

slow-roll violation, particle production, enhanced fluctuations...

- Validity of standard perturbation theory?
 - (distinct questions)

Loss of perturbative control?

Non-trivial but within scope of analytical methods

Particle production

Excitation of sub-Hubble modes

Langage and intuition of particles useful

Particle production The produced particles carry energy (and pressure) Gravitational waves $\Box h_{ij} = T_{ij}^{\mathrm{TT}}$ amount of GW bounded by backreaction / energy conservation Inomata, 2109.06192 Fumagalli, Palma, RP, Sypsas, Witkowski, Zenteno, 2111.14664,

Loss of perturbative control (some generic spirit)

characteristic time scale of variation $\,\Delta t$ Time-dependent coupling in EFT of inflation M(t)

Governs structure of interactions

Goldstone boson of broken time-diff invariance

expansion ok if $\pi < \Delta t$ at energy

$$\dot{M}(t+\pi) = M(t) + \pi \dot{M}(t) + \dots$$

 $\omega \sim 1/\Delta t$ excited by time-dependence

Loss of perturbative control (some generic spirit)

e.g., canonical single-field inflation

$${\cal L}/a^3 = {f_\pi^4\over 2} \dot{\pi}^2 + \dots$$
 with $f_\pi^4 = 2 M_{\rm Pl}^2 |\dot{H}|^2$

$$\Delta t > 1/f_{\pi}$$

see, e.g., Bartolo, Cannone, Matarrese 13,14 Adshead, Hu, 14

non-Gaussianity

$$\frac{\mathcal{L}_3}{\mathcal{L}_2} \sim f_{\rm NL} \mathcal{P}_{\zeta}^{1/2} \sim 1$$

useful tools:

PyTransport CppTransport

nonlinear sigma models

see lacconi's talk and 2304.14260

CosmoFLow

EFT based approach

Werth, Pinol, RP, 2302.00655 and to appear

Example of Resonant Amplification

slow-roll + transient periodic modulations (resonant NG setup)

Inomata, Braglia, Chen, RP, 2211.02586

Tree-level power spectrum

(first) First-principles numerical 1-loop computation

Standard background + numerical mode functions +

numerical computations of loop integrals (natural cutoffs)

(first) First-principles numerical 1-loop computation

Standard background + numerical mode functions +

Standard Perturbation Theory C: under control **B**: marginal A: out of control

Models with PBH always out of control (in our study!)

numerical computations of loop integrals (natural cutoffs)

(first) First-principles numerical 1-loop computation

Standard background + numerical mode functions +

Qualitative analytical understanding as well

Cases A and B: backreaction also an issue

numerical computations of loop integrals (natural cutoffs)

Lattice simulations to the rescue

Not ultimate answers to all questions (classical vs quantum) but

Extremely useful approach

Fully nonlinear eom for scalar fields in (almost) FLRW background sourced by average full energy density and pressure

Lattice simulations to the rescue

see Angelo Caravano's review talk, and preliminary results for resonant amplification setup

- Not ultimate answers to all questions (classical vs quantum) but
 - Extremely useful approach

Infrared rescattering

Is $\mathcal{P}_{1-loop} > \mathcal{P}_{tree}$ No! Depends on

Short reason: some phenomena start at loop level

 $\mathcal{P}_{2-\text{loop}} < \mathcal{P}_{1-\text{loop}}$

enough then

2307.08358, Fumagalli, Bhattacharya, Peloso, RP, Witkowski

Is $\mathcal{P}_{1-\text{loop}} > \mathcal{P}_{\text{tree}}$ always a problem for SPT?

No! Depends on which scales we discuss

Conclusions

- Backreaction (ok, compute) and perturbative control (more tricky): ever-present threats in models with enhanced fluctuations
- First-principle numerical computations of loop effects with enhanced

• First lattice simulation of it: way beyond standard perturbation theory!

fluctuations (perturbative control always problematic for setups with PBH)

• Infrared rescattering: IR cascade of power. Generic effect, of relevance for PBH

UNIVERSE **Cosmology and General Relativity**

The Young Universe

Primordial Cosmology

Edited by **Richard Taillet**

STE

WILEY

Oct 22, 348 pages

Thank you!

- undergraduate & graduate textbook, 4 authors :
- 1. A Thermal History of the Universe and Primordial Nucleosynthesis, Pierre Salati.
- 2. Cosmological Microwave Background, Julien Lesgourgues.
 - 3. Cosmological Inflation, Sébastien Renaux-Petel.
 - 4. Dark Matter, Richard Taillet.