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The model

- long-range deformation of the XX model
- particular point of a q-deformation of the Haldane-Shastry spin chain

- naturally expressed in terms of Temperley-Lieb algebra and free fermions

- no regular translational invariance — quasi-translation invariance

« the boundary conditions render the fermions non-unitary

- the even and odd length chains have radically different properties



Non-unitary fermions and gl(1|1)

- consider a 1-dimensional lattice with N sites and the fermionic degrees of freedom
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- they generate a global gl(1|1) algebra with anti-commutation relations

- gl(1|1) (anti-)commutes with the two-site operators

g=fitfiri, g5 =Ff+fL,, 1<i<N



Non-unitary fermions and Temperley-Lieb

- the two-site operators gia=gfife. , =gl ISt <N

can be used to generate the free-fermion Temperley-Lieb algebra
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- TL generators commute with the global gl(1|1) plus Fy = Z fifi, F3 = Z fi )
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/ |Gainutdinov, Read, Saleur, 11]
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The Hamiltonians at N odd

- the interaction can be defined in terms of commutators of TL generators
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« two chiral Hamiltonians Z hit e
1<z<g<N
with explicit coefficients hi; = (=1 "Wy _jn_y = —hij — H'=-H°
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one non-chiral Hamiltonian e = 3" (R + D) {epis e}
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- the quasi-translation operator G= (1+ty_1en_1) - (1+tie1), G =1

|G,H"| = |G,H] = [H*,H] =0

generalises the XXZ Hamiltonian Hxxz = — Z €j at



Discrete symmetries

The model has real spectrum in spite of being non-unitary, due to PT symmetry

- Parity P: P(fi) = [Nt+1-i
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- Time reversal T (anti-linear): T(e;) = ¢;

T — B, T =g, L&) =G p = —ilogG

- Charge conjugation C (anti-linear):
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The spectrum for N odd

The spectrum 1s given in terms of collections of integers {u»} reminiscent of the
Haldane-Shastry motifs, with huge degeneracies [Haldane, 88; Shastry, 88]
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How to solve the model

The model descends from a g-deformation of the Haldane-Shastry model with quantum
affine symmetry (which explains the spectrum and the degeneracies)

As such, the highest weight wave functions are written in terms of particular Macdonald
polynomials

[Bernard, Gaudin, Haldane, Pasquier, 93; Cherednik 92; Uglov 95; Lamers 18; Lamers, Pasquier, D.S., 22]

We want to solve 1t in terms of (non-unitary) fermions —> use quasi-translations

start with the first site and translate the fermions via
YRS A o ! M € C oy
- the transformation is periodic due to GV =1

QN =Py, Q)::LN — q);r

- the price to pay 1s that the commutation relations are non-local (but translationally invariant)



How to solve the model

next we use the Fourier modes of the quasi-translated fermions
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to get canonical commutation relations we rescaled the Fourier modes
Qe gignl — 6., diegle) —disuagnl — 0

the zero modes are generators of the gl(1|1) algebra

1 a 1 al
—Wo=Y fi=F, —UI=) ftr=
Vo= fi=Fi, ¥ ;
the other modes are linear combinations of the two-site operators
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How to solve the model

in these variables the chiral Hamiltonian becomes purely quadratic
N-—1 ~ ~
HE =98 chalehals,
=1

it can be diagonalised on the Fourier Fock space spanned by 1, ) = WU 2)

0< <~ <ny <N

compatibility with the motif rule thanks to Ern + Eni1l = €304l mod N

the non-chiral Hamiltonian 1s quartic
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eigenvalues statistical repulsion selection rule: Em + En = &5t €5



To do list

- Study the system for even length: spectrum identically zero; Jordan blocks
- Identify the extended symmetry: gl(1|1) Yangian?
- Interpret the staggering & the linear dispersion relations in the odd case

+ CFT limit: gl(1|1) Kac-Moody algebra?

- Free field realisation and vertex operators algebra

- Wave functions in the fermionic representation & Macdonald polynomials

+ Other roots of unity: g"3=1 and gl(2|1) symmetry



Happy birthday Philippe!




