Non-unitary fermions and extended symmetry

D. Serban
IPhT Saclay

arXiv: 2404.10164, w/ A. Ben Moussa, J. Lamers, A. Toufik

At the crossroads of physics and mathematics :
the joy of integrable combinatorics
A conference in the honour of Philippe Di Francesco's 60th birthday
IPhT, 24-26 June 2024

IPhT@60

IGST 2017

The model

- long-range deformation of the XX model
- particular point of a q-deformation of the Haldane-Shastry spin chain
- naturally expressed in terms of Temperley-Lieb algebra and free fermions
- no regular translational invariance \longrightarrow quasi-translation invariance
- the boundary conditions render the fermions non-unitary
- the even and odd length chains have radically different properties

Non-unitary fermions and gl(1|1)

- consider a 1-dimensional lattice with N sites and the fermionic degrees of freedom

$$
\left\{f_{i}, f_{j}^{+}\right\}=(-1)^{i} \delta_{i j}, \quad\left\{f_{i}, f_{j}\right\}=\left\{f_{i}^{+}, f_{j}^{+}\right\}=0 \quad \quad f_{j}=(-\mathrm{i})^{j} c_{j}, f_{j}^{+}=(-\mathrm{i})^{j} c_{j}^{\dagger} .
$$

- they generate a global $\mathbf{g l}(\mathbf{1} \mid \mathbf{1})$ algebra with anti-commutation relations

$$
\begin{gathered}
{\left[\mathrm{N}, \mathrm{~F}_{1}\right]=-\mathrm{F}_{1}, \quad\left[\mathrm{~N}, \mathrm{~F}_{1}^{+}\right]=\mathrm{F}_{1}^{+}, \quad\left\{\mathrm{F}_{1}, \mathrm{~F}_{1}^{+}\right\}=\mathrm{E}} \\
\mathrm{~F}_{1}=\sum_{i=1}^{N} f_{i}, \quad \mathrm{~F}_{1}^{+}=\sum_{i=1}^{N} f_{i}^{+}, \quad \mathrm{N}=\sum_{i=1}^{N}(-1)^{i} f_{i}^{+} f_{i}, \quad \mathrm{E}=\sum_{i=1}^{N}(-1)^{i}=-1
\end{gathered}
$$

- $\mathbf{g l (1 | 1})$ (anti-)commutes with the two-site operators

$$
g_{i} \equiv f_{i}+f_{i+1}, \quad g_{i}^{+}=f_{i}^{+}+f_{i+1}^{+}, \quad 1 \leqslant i<N
$$

Non-unitary fermions and Temperley-Lieb

- the two-site operators $\quad g_{i} \equiv f_{i}+f_{i+1}, \quad g_{i}^{+}=f_{i}^{+}+f_{i+1}^{+}, \quad 1 \leqslant i<N$
can be used to generate the free-fermion Temperley-Lieb algebra

$$
e_{i}^{2}=0, \quad e_{i} e_{i \pm 1} e_{i}=e_{i}, \quad\left[e_{i}, e_{j}\right]=0 \text { if }|i-j|>1 \quad e_{i} \equiv g_{i}^{+} g_{i}
$$

- TL generators commute with the global gl(1|1) plus

$$
\mathrm{F}_{2}=\sum_{i<j}^{N} f_{i} f_{j}, \quad \mathrm{~F}_{2}^{+}=\sum_{i<j}^{N} f_{i}^{+} f_{j}^{+}
$$

[Gainutdinov, Read, Saleur, 11]

The Hamiltonians at \mathbf{N} odd

- the interaction can be defined in terms of commutators of TL generators

$$
e_{[i, j]} \equiv\left[\left[\cdots\left[e_{i}, e_{i+1}\right], \cdots\right], e_{j}\right] \quad e_{[i, i]} \equiv e_{i}
$$

- two chiral Hamiltonians $\quad \mathrm{H}^{\mathrm{L}, \mathrm{R}}=\frac{\mathrm{i}}{2} \sum_{1 \leqslant i \leqslant j<N} h_{i j}^{\mathrm{L}, \mathrm{R}} e_{[i, j]}$
with explicit coefficients $\quad h_{i j}^{\mathrm{R}}=(-1)^{j-i} h_{N-j, N-i}^{\mathrm{L}}=-h_{i j}^{\mathrm{L}} \quad \longrightarrow \mathrm{H}^{\mathrm{L}}=-\mathrm{H}^{\mathrm{R}}$
- one non-chiral Hamiltonian

$$
\mathrm{H}=-\frac{1}{4 N} \sum_{1 \leqslant i \leqslant j<k \leqslant l<N}\left(h_{i j k l \mid}^{\mathrm{L}}+h_{i j ; k l}^{\mathrm{R}}\right)\left\{e_{[[i, j]}, e_{[k, l]}\right\}
$$

- the quasi-translation operator $\mathrm{G}=\left(1+t_{N-1} e_{N-1}\right) \cdots\left(1+t_{1} e_{1}\right), \quad \mathrm{G}^{N}=1$

$$
\left[\mathrm{G}, \mathrm{H}^{\mathrm{L}}\right]=[\mathrm{G}, \mathrm{H}]=\left[\mathrm{H}^{\mathrm{L}}, \mathrm{H}\right]=0
$$

generalises the XXZ Hamiltonian

$$
H_{\mathrm{XXZ}}=-\sum_{j=1}^{N} e_{j} \quad \text { at } \quad \Delta=\frac{\mathrm{q}+\mathrm{q}^{-1}}{2}=0
$$

Discrete symmetries

The model has real spectrum in spite of being non-unitary, due to PT symmetry

- Parity P: $\quad \mathrm{P}\left(f_{i}\right)=f_{N+1-i}$

$$
\mathrm{P}\left(\mathrm{H}^{\mathrm{L}}\right)=-\mathrm{H}^{\mathrm{L}}, \quad \mathrm{P}(\mathrm{H})=\mathrm{H}, \quad \mathrm{P}(\mathrm{G})=\mathrm{G}^{-1}
$$

- Time reversal T (anti-linear): $\quad \mathrm{T}\left(e_{i}\right)=e_{i}$

$$
\mathrm{T}\left(\mathrm{H}^{\mathrm{L}}\right)=-\mathrm{H}^{\mathrm{L}}, \quad \mathrm{~T}(\mathrm{H})=\mathrm{H}, \quad \mathrm{~T}(\mathrm{G})=\mathrm{G}
$$

$$
\mathrm{p}=-\mathrm{i} \log \mathrm{G}
$$

- Charge conjugation C (anti-linear):

$$
\mathrm{C}\left(\mathrm{H}^{\mathrm{L}}\right)=-\mathrm{H}^{\mathrm{L}}, \quad \mathrm{C}(\mathrm{H})=\mathrm{H}, \quad \mathrm{C}(\mathrm{G})=\mathrm{G}
$$

The spectrum for \mathbf{N} odd

The spectrum is given in terms of collections of integers $\left\{\mu_{m}\right\}$ reminiscent of the Haldane-Shastry motifs, with huge degeneracies [Haldane, 88; Shastry, 88]

- quasi-momentum

$$
\mathrm{p}=-\mathrm{i} \log \mathrm{G}
$$

$$
p=\frac{2 \pi}{N} \sum_{m} \mu_{m} \bmod 2 \pi
$$

- chiral Hamiltonian

$$
E_{\left\{\mu_{m}\right\}}^{\mathrm{L}}=\sum_{m=1}^{M} \varepsilon_{\mu_{m}}^{\mathrm{L}}
$$

$$
\varepsilon_{n}^{L}=\left\{\begin{array}{l}
n, \\
n-N,
\end{array}\right.
$$

$$
\begin{aligned}
& n \text { even, }, \\
& n \text { odd, }
\end{aligned}
$$

n odd,

- non-chiral Hamiltonian

$$
E_{\left\{\mu_{m}\right\}}=\sum_{m=1}^{M} \varepsilon_{\mu_{m}} \quad \quad \varepsilon_{n}=\left|\varepsilon_{n}^{L}\right|
$$

How to solve the model

The model descends from a q-deformation of the Haldane-Shastry model with quantum affine symmetry (which explains the spectrum and the degeneracies)

As such, the highest weight wave functions are written in terms of particular Macdonald polynomials
[Bernard, Gaudin, Haldane, Pasquier, 93; Cherednik 92; Uglov 95; Lamers 18; Lamers, Pasquier, D.S., 22]
We want to solve it in terms of (non-unitary) fermions \longrightarrow use quasi-translations

- start with the first site and translate the fermions via

$$
\Phi_{i} \equiv \mathrm{G}^{1-i} f_{1} \mathrm{G}^{i-1}, \quad \Phi_{i}^{+} \equiv \mathrm{G}^{1-i} f_{1}^{+} \mathrm{G}^{i-1}
$$

- the transformation is periodic due to $\mathrm{G}^{N}=1$

$$
\Phi_{i+N}=\Phi_{i}, \quad \Phi_{i+N}^{+}=\Phi_{i}^{+}
$$

- the price to pay is that the commutation relations are non-local (but translationally invariant)

$$
\left\{\Phi_{i}, \Phi_{j}^{+}\right\}=-\left(1+t_{j-i}\right), \quad\left\{\Phi_{i}, \Phi_{j}\right\}=\left\{\Phi_{i}^{+}, \Phi_{j}^{+}\right\}=0
$$

How to solve the model

- next we use the Fourier modes of the quasi-translated fermions

$$
\tilde{\Psi}_{n} \equiv \frac{a_{n}}{N} \sum_{j=1}^{N} \mathrm{e}^{-2 \mathrm{i} \pi n j / N} \Phi_{j}, \quad \tilde{\Psi}_{n}^{+} \equiv \frac{a_{n}}{N} \sum_{j=1}^{N} \mathrm{e}^{2 \mathrm{i} \pi n j / N} \Phi_{j}^{+} \quad a_{0} \equiv \mathrm{i} \text { and } a_{n} \equiv \mathrm{i}^{n+1 / 2} \text { else }
$$

- to get canonical commutation relations we rescaled the Fourier modes

$$
\left\{\tilde{\Psi}_{n}, \tilde{\Psi}_{m}^{+}\right\}=\delta_{n m}, \quad\left\{\tilde{\Psi}_{n}, \tilde{\Psi}_{m}\right\}=\left\{\tilde{\Psi}_{n}^{+}, \tilde{\Psi}_{m}^{+}\right\}=0
$$

- the zero modes are generators of the gl(1|1) algebra

$$
\frac{1}{a_{0}} \tilde{\Psi}_{0}=\sum_{i=1}^{N} f_{i}=\mathrm{F}_{1}, \quad \frac{1}{a_{0}} \tilde{\Psi}_{0}^{+}=\sum_{i=1}^{N} f_{i}^{+}=\mathrm{F}_{1}^{+}
$$

- the other modes are linear combinations of the two-site operators

$$
\frac{1}{a_{n}} \tilde{\Psi}_{n}=\sum_{i=1}^{N-1} M_{n i} g_{i}, \quad \frac{1}{a_{n}} \tilde{\Psi}_{n}^{+}=\sum_{i=1}^{N-1} \bar{M}_{n i} g_{i}^{+} \quad g_{i} \equiv f_{i}+f_{i+1}, \quad g_{i}^{+}=f_{i}^{+}+f_{i+1}^{+}
$$

How to solve the model

- in these variables the chiral Hamiltonian becomes purely quadratic

$$
\mathrm{H}^{\mathrm{L}}=\sum_{n=1}^{N-1} \varepsilon_{n}^{\mathrm{L}} \tilde{\Psi}_{n}^{+} \tilde{\Psi}_{n}
$$

- it can be diagonalised on the Fourier Fock space spanned by

$$
\begin{aligned}
&\left|n_{1}, \ldots, n_{M}\right\rangle \equiv \tilde{\Psi}_{n_{1}}^{+} \ldots \tilde{\Psi}_{n_{M}}^{+}|\varnothing\rangle \\
& 0 \leqslant n_{1}<\cdots<n_{M}<N
\end{aligned}
$$

- compatibility with the motif rule thanks to

$$
\varepsilon_{n}^{\mathrm{L}}+\varepsilon_{n+1}^{\mathrm{L}}=\varepsilon_{2 n+1 \bmod N}^{\mathrm{L}}
$$

- the non-chiral Hamiltonian is quartic

$$
\mathrm{H}=\sum_{n=1}^{N-1} \varepsilon_{n} \tilde{\Psi}_{n}^{+} \tilde{\Psi}_{n}+\sum_{\substack{1 \leqslant m<n<N \\ 1 \leqslant r<s<N}} \tilde{V}_{m n ; r s} \tilde{\Psi}_{m}^{+} \tilde{\Psi}_{n}^{+} \tilde{\Psi}_{r} \tilde{\Psi}_{s}
$$

$$
\tilde{V}_{m n ; m+k, n-k}=(-1)^{k+1} 4 \delta_{m \mathrm{odd}}
$$

$$
0 \leqslant 2 k<n-m
$$

To do list

- Study the system for even length: spectrum identically zero; Jordan blocks
- Identify the extended symmetry: $\mathrm{gl}(1 \mid 1)$ Yangian?
- Interpret the staggering \& the linear dispersion relations in the odd case
- CFT limit: gl(1|1) Kac-Moody algebra?
- Free field realisation and vertex operators algebra
- Wave functions in the fermionic representation \& Macdonald polynomials
- Other roots of unity: $q^{\wedge} 3=1$ and $g l(2 \mid 1)$ symmetry

Happy birthday Philippe!

