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The model 

• long-range deformation of the XX model  

• particular point of a q-deformation of the Haldane-Shastry spin chain 

• naturally expressed in terms of  Temperley-Lieb algebra and free fermions 

• no regular translational invariance          quasi-translation invariance 

• the boundary conditions render the  fermions non-unitary 

• the even and odd length chains have radically different properties  



Non-unitary fermions and gl(1|1)  

• consider a 1-dimensional lattice with N sites and the fermionic degrees of freedom 
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bility [23]. The interaction in the quartic hamiltonian
implements a statistical selection rule, forbidding occu-
pied successive mode numbers, that is inherited from the
parent model and matches the description of the HS chain
via ‘motifs’ [10]. This selection rule comes with high de-
generacies for the motifs to account for the full Hilbert
space. These degeneracies are caused by (ii), arising from
the parent model’s extended spin symmetry. The latter
includes a global symmetry algebra that contains gl(1|1)
and is the commutant of the free-fermion TL algebra [2].
Due to the linear dispersions, there are many additional
‘accidental’ degeneracies between di�erent motifs.
The model. Consider fermions hopping on a one-
dimensional lattice with an odd number N sites.

The simplest definition of our model uses non-unitary
fermionic operators with anticommutation relations [3]

{fi, f
+
j } = (≠1)i

”ij , {fi, fj} = {f
+
i , f

+
j } = 0 . (1)

They are related to canonical Jordan–Wigner fermions
as fj = (≠i)j

cj , f
+
j = (≠i)j

c
†
j . The fs will avoid a

proliferation of factors of i and make the symmetries more
transparent. From the two-site fermionic operators

gi © fi + fi+1 , g
+
i = f

+
i + f

+
i+1 , 1 6 i < N , (2)

we construct the quadratic combinations

ei © g
+
i gi , 1 6 i < N , (3)

which obey the free-fermion TL algebra relations

e
2
i = 0 , ei ei±1 ei = ei , [ei, ej ] = 0 if |i≠ j| > 1 . (4)

Further define the nested TL commutators [19, § C]

e[i,j] © [[· · · [ei, ei+1], · · · ], ej ]
= sij

!
g

+
j gi + (≠1)i≠j

g
+
i gj

"
, i ”= j ,

(5)

where sij © (≠1)(i≠j)(i+j≠1)/2, and we set e[i,i] © ei.
Note that (5) is bilinear in the fermions (1). Finally set

tk © tan fik
N , tk,l ©

rl≠1
i=k ti (k < l) , tk,k © 1 . (6)

Then the chiral hamiltonian reads

Hl = i
2

ÿ

16i6j<N

h
l
ij e[i,j] ,

h
l
ij ©

Nÿ

n=j+1
tn≠j,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
.

(7)

This is a quadratic (free-fermion) hamiltonian describing
long-range hopping. It is not translationally invariant:
the amplitudes h

l
ij do not only depend on the distance

i ≠ j, and sites N, 1 are not on the same footing as other
neighbours i, i + 1. Instead, the standard translation op-
erator is replaced by the quasi-translation operator

G = (1 + tN≠1 eN≠1) · · · (1 + t1 e1) , GN = 1 . (8)

The model is integrable: there exists a hierarchy of con-
served charges that commute with each other and (7).
We can explicitly write down the next charge, which is
a linear combination of anticommutators of the nested
commutators (5) with coe�cients like in (7),

H = ≠
1

4N

N≠1ÿ

i6j<k6l

!
h

l
ij;kl + h

r
ij;kl

" )
e[i,j], e[k,l]

*
, (9)

h
l
ij;kl © (≠1)k≠j

Nÿ

n(>l)
tn≠l,n≠j tn≠k,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
,

h
r
ij;kl © (≠1)l≠j+k≠i

h
l
N≠l,N≠k;N≠j,N≠i .

Integrability guarantees that these quantities, and higher
charges that we do not give here, mutually commute,

#
G, Hl$

=
#
G, H

$
=

#
Hl

, H
$

= 0 . (10)

The existence of this hierarchy of commuting charges,
and their expressions, stem from the parent model [19].

Symmetries. The commuting charges (7)–(9) have var-
ious symmetries and transformation properties.

Parity. Parity acts by reversal of the lattice sites
P(fi) = fN+1≠i. This preserves the anticommutation
relations (1) since N is odd. The TL generators trans-
form as P(ei) = eN≠i. The chiral hamiltonian (7) is not
invariant under parity, whence its name. It is a highly
nontrivial result that P(Hl) = ≠Hl [19]. We have

P(Hl) = ≠Hl
, P(H) = H , P(G) = G≠1

, (11)

where the last relation uses ti = ≠tN≠i.
Time reversal. We define time reversal as complex

conjugation of the coe�cients with respect to the Fock
basis f

+
i1

· · · f
+
iM

|?Í. Thus T(ei) = ei, and

T(Hl) = ≠Hl
, T(H) = H , T(G) = G . (12)

Since the hamiltonians (and their eigenstates) are PT-
invariant, their spectrum is real [25–28]. The same is
true for the ‘quasi-momentum’ p = ≠i log G.

Particle-hole transformation. Another simple opera-
tion, which we interpret as the charge conjugation, ex-
changes the creation and annihilation operators

C(fi) = f
+
i , C(f+

i ) = fi . (13)

Then C(ei) = ≠ei, preserving (4). If we complement this
for (7)–(9) by formally replacing ti æ ≠ti we get

C(Hl) = ≠Hl
, C(H) = H , C(G) = G . (14)

See [19] for details. preceding to be checked
Global symmetry. The model can be seen as a long-

range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic

• they generate a global gl(1|1) algebra with anti-commutation relations  
3

generators, which we denote by N, E and F1, F+
1 respec-

tively. The nontrivial (anti)commutation relations are
#
N, F1

$
= ≠F1 ,

#
N, F+

1
$

= F+
1 ,

)
F1, F+

1
*

= E , (15)

and E is central. This is just a fermionic version of
the usual spin algebra. Each site i carries a gl(1|1)-
representation generated by fi, f

+
i , the number operator

(≠1)i
f

+
i fi and central charge (≠1)i. From this perspec-

tive, (7)–(9) is a long-range gl(1|1) super-spin chain. For
odd length the alternating central charge breaks periodic
boundaries, which are replaced by (8). Our model has a
global gl(1|1)-symmetry generated by

F1 =
Nÿ

i=1
fi , F+

1 =
Nÿ

i=1
f

+
i ,

N =
Nÿ

i=1
(≠1)i

f
+
i fi , E =

Nÿ

i=1
(≠1)i = ≠1 ,

(16)

Indeed, these operators anticommute with all gi, g
+
j , and

thus commute with the conserved charges (7)–(9).
Since F2

1 = (F+
1 )2 = 0, gl(1|1) produces fewer descen-

dants than su(2) does for isotropic spin chains. This is
compensated by additional bosonic generators

F2 =
Nÿ

i<j

fi fj , F+
2 =

Nÿ

i<j

f
+
i f

+
j , (17)

which commute with the ei, whence with (7)–(9). To-
gether, (16)–(17) generate the full global-symmetry alge-
bra, called A1|1 [2]. It is the Uq sl(2)|q=i symmetry from
the parent model in fermionic language, cf. [3, §2.3].

Extended symmetry. The parent model has quantum-
a�ne sl(2) symmetry, which underpins the large degen-
eracies (21). As we will see, these are already visible in
the two-particle spectrum. A plausible guess is that it
relates to the Yangian of gl(1|1). A detailed study of this
extended symmetry will be performed elsewhere.
The spectrum. The spectrum and degeneracies of the
parent model are known explicitly [11, 16–18]. Like for
the HS chain, the quantum numbers are ‘motifs’ [10]
{µm}, consisting of integers 1 6 µm < N increasing as

µm+1 > µm + 1 , 1 6 m < M . (18)

Such a motif labels an M -fermion state with quasi-
momentum p = 2fi

N

q
m µm mod 2fi setting the eigenvalue

eip of G. Its energy is additive:

E
l
{µm} =

Mÿ

m=1
Á

l
µm

, E{µm} =
Mÿ

m=1
Áµm , (19)

with dispersions having two linear branches (Fig. 1):

Á
l
n =

;
n , n even ,
n ≠ N , n odd ,

Án = |Á
l
n| . (20)

Á
l

≠N

0

N

n

N

Á

0

N

n

0 N

Figure 1. The dispersion relations (20) alternate between two
linear branches, realising chiral and (up to a shift) ‘full’ mass-
less relativistic dispersions on the lattice.

This state has (often many) descendants due to the ex-
tended symmetry. Its multiplicity is [12, 18] N + 1 for
the empty motif (at M = 0), and otherwise

µ1 (N ≠ µM )
M≠1Ÿ

m=1
(µm+1 ≠ µm ≠ 1) . (21)

Given the extremely simple dispersion, further (‘acciden-
tal’) degeneracies between di�erent motifs occur much
more often than even for the HS chain.

The energy levels are equispaced with steps of 2. E
l is

bounded by ±(N2
≠ 1)/4 and reaches these extremes at

motifs {1, 3, . . . , N ≠2} and {2, 4, . . . , N ≠1}, cf. Fig. 1. H
has eigenvalues > 0, with E = 0 for the empty motif, and
maximal energy E = 2¸ (3¸ + 1) or E = 2(¸ + 1)(3¸ + 1)
depending on whether N = 4¸ + 3 or N = 4¸ + 1, re-
spectively. This maximum corresponds to the one or two
motifs {1, 3, . . . , N ≠4, N ≠2} switching halfway between
the branches of Án in Fig. 1. Intriguingly, for H a few lev-
els near the maximum are missing.

Explicit diagonalisation. Let us (re)derive this spec-
trum from the fermionic representation. The key to defin-
ing a good basis of fermions is to start at one end of the
lattice and use the quasi-translation operator:

�i © G1≠i
f1 Gi≠1

, �+
i © G1≠i

f
+
1 Gi≠1

. (22)

These dressed fermions obey the periodicity

�i+N = �i , �+
i+N = �+

i , (23)

and have non-local anticommutation relations [19]
)

�i, �+
j

*
= ≠(1 + tj≠i) , {�i, �j} = {�+

i , �+
j } = 0 .

(24)
The nontrivial relation only depends on the distance. For
a0 © i and an © in+1/2 else, the rescaled Fourier modes

�̃n ©
an

N

Nÿ

j=1
e≠2ifinj/N �j , �̃+

n ©
an

N

Nÿ

j=1
e2ifinj/N �+

j ,

(25)
obey canonical anticommutation relations
)

�̃n, �̃+
m

*
= ”nm , {�̃n, �̃m} = {�̃+

n , �̃+
m} = 0 . (26)
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"
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!
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t
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n≠i,n

"
.

(7)
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long-range hopping. It is not translationally invariant:
the amplitudes h

l
ij do not only depend on the distance

i ≠ j, and sites N, 1 are not on the same footing as other
neighbours i, i + 1. Instead, the standard translation op-
erator is replaced by the quasi-translation operator

G = (1 + tN≠1 eN≠1) · · · (1 + t1 e1) , GN = 1 . (8)
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served charges that commute with each other and (7).
We can explicitly write down the next charge, which is
a linear combination of anticommutators of the nested
commutators (5) with coe�cients like in (7),

H = ≠
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Integrability guarantees that these quantities, and higher
charges that we do not give here, mutually commute,

#
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=
#
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$
=

#
Hl

, H
$

= 0 . (10)

The existence of this hierarchy of commuting charges,
and their expressions, stem from the parent model [19].

Symmetries. The commuting charges (7)–(9) have var-
ious symmetries and transformation properties.

Parity. Parity acts by reversal of the lattice sites
P(fi) = fN+1≠i. This preserves the anticommutation
relations (1) since N is odd. The TL generators trans-
form as P(ei) = eN≠i. The chiral hamiltonian (7) is not
invariant under parity, whence its name. It is a highly
nontrivial result that P(Hl) = ≠Hl [19]. We have

P(Hl) = ≠Hl
, P(H) = H , P(G) = G≠1

, (11)

where the last relation uses ti = ≠tN≠i.
Time reversal. We define time reversal as complex

conjugation of the coe�cients with respect to the Fock
basis f

+
i1

· · · f
+
iM

|?Í. Thus T(ei) = ei, and

T(Hl) = ≠Hl
, T(H) = H , T(G) = G . (12)

Since the hamiltonians (and their eigenstates) are PT-
invariant, their spectrum is real [25–28]. The same is
true for the ‘quasi-momentum’ p = ≠i log G.

Particle-hole transformation. Another simple opera-
tion, which we interpret as the charge conjugation, ex-
changes the creation and annihilation operators

C(fi) = f
+
i , C(f+

i ) = fi . (13)

Then C(ei) = ≠ei, preserving (4). If we complement this
for (7)–(9) by formally replacing ti æ ≠ti we get

C(Hl) = ≠Hl
, C(H) = H , C(G) = G . (14)

See [19] for details. preceding to be checked
Global symmetry. The model can be seen as a long-

range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic

• gl(1|1) (anti-)commutes with the two-site operators
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bility [23]. The interaction in the quartic hamiltonian
implements a statistical selection rule, forbidding occu-
pied successive mode numbers, that is inherited from the
parent model and matches the description of the HS chain
via ‘motifs’ [10]. This selection rule comes with high de-
generacies for the motifs to account for the full Hilbert
space. These degeneracies are caused by (ii), arising from
the parent model’s extended spin symmetry. The latter
includes a global symmetry algebra that contains gl(1|1)
and is the commutant of the free-fermion TL algebra [2].
Due to the linear dispersions, there are many additional
‘accidental’ degeneracies between di�erent motifs.
The model. Consider fermions hopping on a one-
dimensional lattice with an odd number N sites.
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fermionic operators with anticommutation relations [3]
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cj , f
+
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c
†
j . The fs will avoid a
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ÿ
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This is a quadratic (free-fermion) hamiltonian describing
long-range hopping. It is not translationally invariant:
the amplitudes h
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neighbours i, i + 1. Instead, the standard translation op-
erator is replaced by the quasi-translation operator
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The existence of this hierarchy of commuting charges,
and their expressions, stem from the parent model [19].

Symmetries. The commuting charges (7)–(9) have var-
ious symmetries and transformation properties.

Parity. Parity acts by reversal of the lattice sites
P(fi) = fN+1≠i. This preserves the anticommutation
relations (1) since N is odd. The TL generators trans-
form as P(ei) = eN≠i. The chiral hamiltonian (7) is not
invariant under parity, whence its name. It is a highly
nontrivial result that P(Hl) = ≠Hl [19]. We have

P(Hl) = ≠Hl
, P(H) = H , P(G) = G≠1

, (11)

where the last relation uses ti = ≠tN≠i.
Time reversal. We define time reversal as complex

conjugation of the coe�cients with respect to the Fock
basis f

+
i1

· · · f
+
iM

|?Í. Thus T(ei) = ei, and

T(Hl) = ≠Hl
, T(H) = H , T(G) = G . (12)

Since the hamiltonians (and their eigenstates) are PT-
invariant, their spectrum is real [25–28]. The same is
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space. These degeneracies are caused by (ii), arising from
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This is a quadratic (free-fermion) hamiltonian describing
long-range hopping. It is not translationally invariant:
the amplitudes h

l
ij do not only depend on the distance

i ≠ j, and sites N, 1 are not on the same footing as other
neighbours i, i + 1. Instead, the standard translation op-
erator is replaced by the quasi-translation operator

G = (1 + tN≠1 eN≠1) · · · (1 + t1 e1) , GN = 1 . (8)

The model is integrable: there exists a hierarchy of con-
served charges that commute with each other and (7).
We can explicitly write down the next charge, which is
a linear combination of anticommutators of the nested
commutators (5) with coe�cients like in (7),

H = ≠
1

4N

N≠1ÿ

i6j<k6l

!
h

l
ij;kl + h

r
ij;kl

" )
e[i,j], e[k,l]

*
, (9)

h
l
ij;kl © (≠1)k≠j

Nÿ

n(>l)
tn≠l,n≠j tn≠k,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
,

h
r
ij;kl © (≠1)l≠j+k≠i

h
l
N≠l,N≠k;N≠j,N≠i .

Integrability guarantees that these quantities, and higher
charges that we do not give here, mutually commute,
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The existence of this hierarchy of commuting charges,
and their expressions, stem from the parent model [19].

Symmetries. The commuting charges (7)–(9) have var-
ious symmetries and transformation properties.

Parity. Parity acts by reversal of the lattice sites
P(fi) = fN+1≠i. This preserves the anticommutation
relations (1) since N is odd. The TL generators trans-
form as P(ei) = eN≠i. The chiral hamiltonian (7) is not
invariant under parity, whence its name. It is a highly
nontrivial result that P(Hl) = ≠Hl [19]. We have
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Global symmetry. The model can be seen as a long-
range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic
generators, which we denote by N, E and F1, F+

1 respec-
tively. The nontrivial (anti)commutation relations are
#
N, F1

$
= ≠F1 ,

#
N, F+

1
$

= F+
1 ,

)
F1, F+

1
*

= E , (15)

and E is central. This is just a fermionic version of
the usual spin algebra. Each site i carries a gl(1|1)-
representation generated by fi, f

+
i , the number operator

(≠1)i
f

+
i fi and central charge (≠1)i. From this perspec-

tive, (7)–(9) is a long-range gl(1|1) super-spin chain. For
odd length the alternating central charge breaks periodic
boundaries, which are replaced by (8). Our model has a
global gl(1|1)-symmetry generated by

F1 =
Nÿ

i=1
fi , F+

1 =
Nÿ

i=1
f

+
i ,

N =
Nÿ

i=1
(≠1)i

f
+
i fi , E =

Nÿ

i=1
(≠1)i = ≠1 ,

(16)

Indeed, these operators anticommute with all gi, g
+
j , and

thus commute with the conserved charges (7)–(9).
Since F2

1 = (F+
1 )2 = 0, gl(1|1) produces fewer descen-

dants than su(2) does for isotropic spin chains. This is
compensated by additional bosonic generators

F2 =
Nÿ

i<j

fi fj , F+
2 =

Nÿ

i<j

f
+
i f

+
j , (17)

which commute with the ei, whence with (7)–(9). To-
gether, (16)–(17) generate the full global-symmetry alge-
bra, called A1|1 [5]. It is the Uq sl(2)|q=i symmetry from
the parent model in fermionic language, cf. [6, §2.3].

Extended symmetry. The parent model has quantum-
a�ne sl(2) symmetry, which underpins the large degen-
eracies (21). As we will see, these are already visible in
the two-particle spectrum. A plausible guess is that it
relates to the Yangian of gl(1|1). A detailed study of this
extended symmetry will be performed elsewhere.

The spectrum. The spectrum and degeneracies of the
parent model are known explicitly [14, 19–21]. Like for
the HS chain, the quantum numbers are ‘motifs’ [15]
{µm}, consisting of integers 1 6 µm < N increasing as

µm+1 > µm + 1 , 1 6 m < M . (18)

Such a motif labels an M -fermion state with quasi-
momentum p = 2fi

N

q
m µm mod 2fi setting the eigenvalue

eip of G. Its energy is additive:

E
l
{µm} =

Mÿ

m=1
Á

l
µm

, E{µm} =
Mÿ

m=1
Áµm , (19)

Á
l

≠N

0

N

n

N

Á

0

N

n

0 N

Figure 1. The dispersion relations (20) alternate between two
linear branches, realising chiral and (up to a shift) ‘full’ mass-
less relativistic dispersions on the lattice.

with dispersions having two linear branches (Fig. 1):

Á
l
n =

;
n , n even ,
n ≠ N , n odd ,

Án = |Á
l
n| . (20)

This state has (often many) descendants due to the ex-
tended symmetry. Its multiplicity is [13, 21] N + 1 for
the empty motif (at M = 0), and otherwise

µ1 (N ≠ µM )
M≠1Ÿ

m=1
(µm+1 ≠ µm ≠ 1) . (21)

Given the extremely simple dispersion, further (‘acciden-
tal’) degeneracies between di�erent motifs occur much
more often than even for the HS chain.

The energy levels are equispaced with steps of 2. E
l is

bounded by ±(N2
≠ 1)/4 and reaches these extremes at

motifs {1, 3, . . . , N ≠2} and {2, 4, . . . , N ≠1}, cf. Fig. 1. H
has eigenvalues > 0, with E = 0 for the empty motif, and
maximal energy E = 2¸(3¸ + 1) or E = 2(¸ + 1)(3¸ + 1)
depending on whether N = 4¸ + 3 or N = 4¸ + 1, re-
spectively. This maximum corresponds to the one or two
motifs {1, 3, . . . , N ≠4, N ≠2} switching halfway between
the branches of Án in Fig. 1. Intriguingly, for H a few lev-
els near the maximum are missing.

Explicit diagonalisation. Let us (re)derive this spec-
trum from the fermionic representation. The key to defin-
ing a good basis of fermions is to start at one end of the
lattice and use the quasi-translation operator:

�i © G1≠i
f1 Gi≠1

, �+
i © G1≠i

f
+
1 Gi≠1

. (22)

These dressed fermions obey the periodicity

�i+N = �i , �+
i+N = �+

i , (23)

and have non-local anticommutation relations [22]
)

�i, �+
j

*
= ≠(1 + tj≠i) , {�i, �j} = {�+

i , �+
j } = 0 .

(24)
The nontrivial relation only depends on the distance. Set
a0 © i and an © in+1/2 else. The rescaled Fourier modes

�̃n ©
an

N

Nÿ

j=1
e≠2ifinj/N �j , �̃+

n ©
an

N

Nÿ

j=1
e2ifinj/N �+

j ,

(25)

• TL generators commute with the global gl(1|1) plus
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We define and study a long-range version of the xx model, arising as the free-fermion point of the
xxz-type Haldane–Shastry (HS) chain. It has a description via non-unitary fermions, based on the
free-fermion Temperley–Lieb algebra, and may also be viewed as an alternating gl(1|1) spin chain.
Even and odd length behave very di�erently; we focus on odd length. The model is integrable,
and we explicitly identify two commuting hamiltonians. While non-unitary, their spectrum is real
by PT-symmetry. One hamiltonian is chiral and quadratic in fermions, while the other is parity-
invariant and quartic. Their one-particle spectra have two linear branches, realising a massless
relativistic dispersion on the lattice. The appropriate fermionic modes arise from ‘quasi-translation’
symmetry, which replaces ordinary translation symmetry. The model exhibits exclusion statistics,
like the isotropic HS chain, with even more ‘extended symmetry’ and larger degeneracies.

Introduction. Strongly-interacting quantum many-
body systems lie at the core of modern condensed-matter
physics. In 2d such systems exhibit rich collective be-
haviours, e.g. fractionalisation of excitations and spin-
charge separation. Non-perturbative tools, including in-
tegrability, allow such phenomena to be treated analyt-
ically both at and away from criticality. Several partic-
ularly interesting critical phenomena that are driven by
disorder, like the transition between plateaus in the in-
teger quantum Hall e�ect, and geometric problems, e.g.
polymers or percolation, are inherently non-unitary [1–3].
The few tools available for treating such systems analyti-
cally are mostly based on super-spin chains, loop models
and the Heisenberg xxz chain [4–6]. Despite their in-
tegrability, these non-unitary models remain challenging
to analyse, as it is not yet well understood how the as-
sociated non-unitary infinite-dimensional symmetries are
realised.

Models with long-range interactions are an impor-
tant chapter of integrability. Prominent examples are
Calogero–Sutherland systems [7] and the associated spin
chains [8, 9], which are deeply related to matrix mod-
els, exclusion statistics and 2d CFT [10, 11]. Long-range
spin chains also arise in AdS/CFT integrability [12].
Rather than a Bethe ansatz, such models are tackled via
symmetry-based algebraic methods. In particular, the
trigonometric spin Calogero–Sutherland system and the
closely related Haldane–Shastry (HS) chain have mani-
fest extended (Yangian) spin symmetry [13, 14] rendering
the spectrum very simple and degenerate [14, 15]. The
continuum limit in the antiferromagnetic regime, belong-
ing to the same universality class as for the Heisenberg
xxx chain, is captured by the SU(2)k=1 Wess–Zumino–
Witten CFT [13, 16, 17]. Yet, until recently there were
few, if any, examples of non-unitary spin chains with ex-
tended symmetry like the HS chain. Such systems should
provide finite discretisations of the non-unitary CFTs
with current-algebra symmetry expected for disordered
critical systems [18]. As an important step in this direc-
tion we propose a non-unitary model that is analytically

tractable thanks to extended symmetries.
Main results. We introduce and solve a new integrable

long-range model. It can be viewed as a long-range xx
model, a long-range model of non-unitary fermions, or a
long-range alternating gl(1|1) super-spin chain. It has

i) a family of conserved charges,
ii) extended symmetry,
iii) an extremely degenerate and simple spectrum.
The ‘parent model’ underlying our model is the xxz-

type counterpart of the HS chain [14, 19–21], reviewed
in [22]. It generalises the isotropic HS chain by break-
ing the su(2) spin symmetry to u(1) while preserving
its key properties. This underpins (i)–(iii). Crucially,
the extended spin symmetry of the HS chain remains
[14], where the Yangian is replaced by a quantum-a�ne
algebra, and, in particular, su(2) by its ‘quantisation’
Uq sl(2). Thus, the high degeneracies of the HS chain
persist. The deformation parameter q determines the
anisotropy parameter � = (q + q≠1)/2 of the Heisenberg
xxz chain, and q æ 1 gives the isotropic case. For real q,
most properties of the parent model match those of the
HS chain. Yet at root of unity, new features appear. Here
we consider the simple but important case q = i. For the
Heisenberg xxz chain this gives the xx model (� = 0),
equivalent to free fermions via the Jordan–Wigner trans-
formation, with Uq sl(2)|q=i spin symmetry depending on
the boundary conditions [6, 23, 24]. We study its long-
range counterpart by combining knowledge from the par-
ent model with fermionic techniques.

Our model has several striking features. Its properties
depend sensitively on the parity of the system size. In
this Letter we focus on an odd number of sites. Em-
ploying fermionic degrees of freedom that are related
to spins through the Temperley–Lieb (TL) algebra, we
can give three conserved charges from (i) explicitly. One
is a ‘quasi-translation’, which replaces the lattice trans-
lation since ordinary translational invariance is broken.
The second charge is free fermionic, and parity odd (chi-
ral). Since the third charge has quartic interactions and
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bility [23]. The interaction in the quartic hamiltonian
implements a statistical selection rule, forbidding occu-
pied successive mode numbers, that is inherited from the
parent model and matches the description of the HS chain
via ‘motifs’ [10]. This selection rule comes with high de-
generacies for the motifs to account for the full Hilbert
space. These degeneracies are caused by (ii), arising from
the parent model’s extended spin symmetry. The latter
includes a global symmetry algebra that contains gl(1|1)
and is the commutant of the free-fermion TL algebra [2].
Due to the linear dispersions, there are many additional
‘accidental’ degeneracies between di�erent motifs.
The model. Consider fermions hopping on a one-
dimensional lattice with an odd number N sites.

The simplest definition of our model uses non-unitary
fermionic operators with anticommutation relations [3]

{fi, f
+
j } = (≠1)i

”ij , {fi, fj} = {f
+
i , f

+
j } = 0 . (1)

They are related to canonical Jordan–Wigner fermions
as fj = (≠i)j

cj , f
+
j = (≠i)j

c
†
j . The fs will avoid a

proliferation of factors of i and make the symmetries more
transparent. From the two-site fermionic operators

gi © fi + fi+1 , g
+
i = f

+
i + f

+
i+1 , 1 6 i < N , (2)

we construct the quadratic combinations

ei © g
+
i gi , 1 6 i < N , (3)

which obey the free-fermion TL algebra relations

e
2
i = 0 , ei ei±1 ei = ei , [ei, ej ] = 0 if |i≠ j| > 1 . (4)

Further define the nested TL commutators [19, § C]

e[i,j] © [[· · · [ei, ei+1], · · · ], ej ]
= sij

!
g

+
j gi + (≠1)i≠j

g
+
i gj

"
, i ”= j ,

(5)

where sij © (≠1)(i≠j)(i+j≠1)/2, and we set e[i,i] © ei.
Note that (5) is bilinear in the fermions (1). Finally set

tk © tan fik
N , tk,l ©

rl≠1
i=k ti (k < l) , tk,k © 1 . (6)

Then the chiral hamiltonian reads

Hl = i
2

ÿ

16i6j<N

h
l
ij e[i,j] ,

h
l
ij ©

Nÿ

n=j+1
tn≠j,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
.

(7)

This is a quadratic (free-fermion) hamiltonian describing
long-range hopping. It is not translationally invariant:
the amplitudes h

l
ij do not only depend on the distance

i ≠ j, and sites N, 1 are not on the same footing as other
neighbours i, i + 1. Instead, the standard translation op-
erator is replaced by the quasi-translation operator

G = (1 + tN≠1 eN≠1) · · · (1 + t1 e1) , GN = 1 . (8)

The model is integrable: there exists a hierarchy of con-
served charges that commute with each other and (7).
We can explicitly write down the next charge, which is
a linear combination of anticommutators of the nested
commutators (5) with coe�cients like in (7),

H = ≠
1

4N

N≠1ÿ

i6j<k6l

!
h

l
ij;kl + h

r
ij;kl

" )
e[i,j], e[k,l]

*
, (9)

h
l
ij;kl © (≠1)k≠j

Nÿ

n(>l)
tn≠l,n≠j tn≠k,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
,

h
r
ij;kl © (≠1)l≠j+k≠i

h
l
N≠l,N≠k;N≠j,N≠i .

Integrability guarantees that these quantities, and higher
charges that we do not give here, mutually commute,

#
G, Hl$

=
#
G, H

$
=

#
Hl

, H
$

= 0 . (10)

The existence of this hierarchy of commuting charges,
and their expressions, stem from the parent model [19].

Symmetries. The commuting charges (7)–(9) have var-
ious symmetries and transformation properties.

Parity. Parity acts by reversal of the lattice sites
P(fi) = fN+1≠i. This preserves the anticommutation
relations (1) since N is odd. The TL generators trans-
form as P(ei) = eN≠i. The chiral hamiltonian (7) is not
invariant under parity, whence its name. It is a highly
nontrivial result that P(Hl) = ≠Hl [19]. We have

P(Hl) = ≠Hl
, P(H) = H , P(G) = G≠1

, (11)

where the last relation uses ti = ≠tN≠i.
Time reversal. We define time reversal as complex

conjugation of the coe�cients with respect to the Fock
basis f

+
i1

· · · f
+
iM

|?Í. Thus T(ei) = ei, and

T(Hl) = ≠Hl
, T(H) = H , T(G) = G . (12)

Since the hamiltonians (and their eigenstates) are PT-
invariant, their spectrum is real [25–28]. The same is
true for the ‘quasi-momentum’ p = ≠i log G.

Particle-hole transformation. Another simple opera-
tion, which we interpret as the charge conjugation, ex-
changes the creation and annihilation operators

C(fi) = f
+
i , C(f+

i ) = fi . (13)

Then C(ei) = ≠ei, preserving (4). If we complement this
for (7)–(9) by formally replacing ti æ ≠ti we get

C(Hl) = ≠Hl
, C(H) = H , C(G) = G . (14)

See [19] for details. preceding to be checked
Global symmetry. The model can be seen as a long-

range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic
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conserved charges symmetry
HS chain Ghs Hhs Hhs Hhs su(2) su(2) Yangian

parent model G(q) Hl(q) Hl(q) + Hr(q)
q + q≠1 Hr(q) Uq sl(2) quantum-a�ne gl(2)

this paper G Hl H ≠Hl A1|1 extended (gl(1|1) Yangian?)

Table I. Correspondence of the conserved charges and symmetries of the HS chain, parent model, and the model studied here.

2. Explicit formulas for the hamiltonians

Let us expand the chiral spin interactions around q = i as

Sl,r
[i,j](q) = Sl,r

[i,j] + q + q≠1

2 S̃l,r
[i,j] + O

!
(q + q≠1)2"

, Sl,r
[i,j] © Sl,r

[i,j](i) , S̃l,r
[i,j] © ˆq|q=i Sl,r

[i,j](q) . (B.13)

Since (B.7) holds up to quadratic corrections we have

Hl,r = i
2

N≠1ÿ

i=1

N≠iÿ

k=1

!
1 + t

2
k

"
Sl,r

[i,i+k] ,

H = 1
4N

N≠1ÿ

i=1

N≠iÿ

k=1

!
1 + t

2
k

" !
S̃l

[i,i+k] + S̃r
[i,i+k]

"
,

(B.14)

Remarkably, the complicated spin operators can be written explicitly in terms of nested commutators of adjacent
Temperley–Lieb generators,

e[l,m] © [el, [el+1, . . . [em≠1, em] . . .]] = [[. . . [el, el+1], . . . em≠1], em] , i 6 l < m < j . (B.15)

Note that e[k,k] = ek is just a single Temperley–Lieb generator. The commutators in (B.15) can be nested from
left to right or from right to left, as can be proven by induction using the Jacobi identity. Note that it su�ces to
consider commutators of strings of successive Temperley–Lieb generators, since non-successive generators commute,
which implies that the nested commutators vanish if any ek with l 6 k 6 m is missing from the string.

a. Chiral hamiltonians. In § B 3 we will use the recursive structure of the spin interactions to show that the

Sl
[i,i+k] =

ÿ

06l6m<k

(≠1)l
tk≠m,k≠l t

2
k≠l,k e[i+l,i+m] ,

Sr
[i,i+k] =

ÿ

06l6m<k

(≠1)k≠l≠1
tl+1,m+1 t

2
m+1,k e[i+l,i+m] ,

(B.16)

where denote products of the tangents (B.4) as

tk,l ©

l≠1Ÿ

i=k

ti (k < l) , tk,k © 1 . (B.17)

For our purposes it will be more convenient to rewrite (B.16) in the more symmetric form

Sl,r
[i,i+k] =

ÿ

06l6m<k

Î
l,r
l,m,k≠1 e[i+l,i+m] , Î

l
l,m,k≠1 © (≠1)l

tk≠l,k tk≠m,k , Î
r
l,m,k © Î

l
k≠l,k≠m,k . (B.18)

Note that (B.17) makes sense for any k 6 l, and the coe�cients in (B.18) for arbitrary k and nonnegative l, m.
Plugging (B.18) into the expression (B.14) for the chiral hamiltonians one obtains

Hl,r = i
2

ÿ

16i6j<N

h
l,r
ij e[i,j] , (B.19)• two chiral Hamiltonians
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with the nested commutators have coe�cients

h
l,r
ij ©

iÿ

l=1

N≠1ÿ

m=j

!
1 + t

2
m≠l+1

"
Î

l,r
i≠l,j≠l,m≠l , h

l,r
ji © (≠1)j≠i

h
l,r
ij , i 6 j . (B.20)

Now, using the l-r-symmetry Î
r
l,m,k = Î

l
k≠l,k≠m,k and changing indices, it can be checked that the coe�cients of the

chiral hamiltonians (B.19) are related by

h
r
ij = (≠1)j≠i

h
l
N≠j,N≠i . (B.21)

Furthermore, h
l
ij can be simplified using t

2
m≠l+1 Î

l
i≠l,j≠l,m≠l = ≠Î

l
i≠(l≠1),j≠(l≠1),m≠(l≠1), which follows from the defi-

nitions. As such, coe�cients in h
l
ij telescope over the l variable to yield

h
l
ij =

N≠1ÿ

m=j

!
Î

l
0, j≠i, m≠i ≠ Î

l
i,j,m

"
. (B.22)

This can be more explicitly factorised as

h
l
ij =

Nÿ

n=j+1
tn≠j,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
, (B.23)

which is useful for numerical computations. This proves (7) from the main text once we show (B.16). In § E 3 a we
will furthermore establish, using a rather technical analytic proof, that for any i, j

h
r
ij = ≠h

l
ij , (B.24)

which means that (B.10) holds coe�cient by coe�cient in terms of the nested TL commutators. This is the origin of
the first equality in (11).

b. Full hamiltonian. To find an explicit expression for H we need the next term in the expansion (B.13) of the
spin operators. As we will outline in § B 3, they can be written as anticommutators of the nested commutators (B.15):

S̃l
[i,i+k] =

ÿ

06j6l<m6n<k

(≠1)n≠1
tk≠n,k≠l tk≠m,k≠j t

2
k≠j,k

)
e[i+n,i+m], e[i+l,i+j]

*
,

S̃r
[i,i+k] =

ÿ

06j6l<m6n<k

(≠1)k≠j
tj+1,m+1 tl+1,n+1 t

2
n+1,k

)
e[i+j,i+l], e[i+m,i+n]

*
.

(B.25)

After combining all the factors and telescoping the sums like before we obtain

H = ≠
1

4N

ÿ

16i6j<k6l<N

!
h

l
ij;kl + h

r
ij;kl

" )
e[i,j], e[k,l]

*
, (B.26)

with

h
l
ij;kl = (≠1)k≠j

Nÿ

n=l+1
tn≠l,n≠j tn≠k,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
,

h
r
ij;kl = (≠1)l≠i

i≠1ÿ

n=0
ti≠n,k≠n tj≠n,l≠n

!
1 ≠ (≠1)N≠l

t
2
l≠n,N≠n

"

= (≠1)l≠j+k≠i
h

l
N≠l,N≠k;N≠j,N≠i .

(B.27)

This is (9) from the main text.
c. Example. For instance, at N = 3, we have

Hl = i
2

1
t1

!
1 + t

2
2
"

[e1, e2] +
!
2 + t

2
1 + t

2
2
"

e1 +
!
1 ≠ t

2
1 t

2
2
"

e2
2

= 2 i
!Ô

3 [e1, e2] + 2 (e1 ≠ e2)
"

,

H = 1
6

!
1 + t

2
2
"

t
2
1 {e1, e2} = 2 {e1, e2} .

(B.28)

with explicit coefficients
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with the nested commutators have coe�cients

h
l,r
ij ©

iÿ

l=1

N≠1ÿ

m=j

!
1 + t

2
m≠l+1

"
Î

l,r
i≠l,j≠l,m≠l , h

l,r
ji © (≠1)j≠i

h
l,r
ij , i 6 j . (B.20)

Now, using the l-r-symmetry Î
r
l,m,k = Î

l
k≠l,k≠m,k and changing indices, it can be checked that the coe�cients of the

chiral hamiltonians (B.19) are related by

h
r
ij = (≠1)j≠i

h
l
N≠j,N≠i . (B.21)

Furthermore, h
l
ij can be simplified using t

2
m≠l+1 Î

l
i≠l,j≠l,m≠l = ≠Î

l
i≠(l≠1),j≠(l≠1),m≠(l≠1), which follows from the defi-

nitions. As such, coe�cients in h
l
ij telescope over the l variable to yield

h
l
ij =

N≠1ÿ

m=j

!
Î

l
0, j≠i, m≠i ≠ Î

l
i,j,m

"
. (B.22)

This can be more explicitly factorised as

h
l
ij =

Nÿ

n=j+1
tn≠j,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
, (B.23)

which is useful for numerical computations. This proves (7) from the main text once we show (B.16). In § E 3 a we
will furthermore establish, using a rather technical analytic proof, that for any i, j

h
r
ij = ≠h

l
ij , (B.24)

which means that (B.10) holds coe�cient by coe�cient in terms of the nested TL commutators. This is the origin of
the first equality in (11).

b. Full hamiltonian. To find an explicit expression for H we need the next term in the expansion (B.13) of the
spin operators. As we will outline in § B 3, they can be written as anticommutators of the nested commutators (B.15):

S̃l
[i,i+k] =

ÿ

06j6l<m6n<k

(≠1)n≠1
tk≠n,k≠l tk≠m,k≠j t

2
k≠j,k

)
e[i+n,i+m], e[i+l,i+j]

*
,

S̃r
[i,i+k] =

ÿ

06j6l<m6n<k

(≠1)k≠j
tj+1,m+1 tl+1,n+1 t

2
n+1,k

)
e[i+j,i+l], e[i+m,i+n]

*
.

(B.25)

After combining all the factors and telescoping the sums like before we obtain

H = ≠
1

4N

ÿ

16i6j<k6l<N

!
h

l
ij;kl + h

r
ij;kl

" )
e[i,j], e[k,l]

*
, (B.26)

with

h
l
ij;kl = (≠1)k≠j

Nÿ

n=l+1
tn≠l,n≠j tn≠k,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
,

h
r
ij;kl = (≠1)l≠i

i≠1ÿ

n=0
ti≠n,k≠n tj≠n,l≠n

!
1 ≠ (≠1)N≠l

t
2
l≠n,N≠n

"

= (≠1)l≠j+k≠i
h

l
N≠l,N≠k;N≠j,N≠i .

(B.27)

This is (9) from the main text.
c. Example. For instance, at N = 3, we have

Hl = i
2

1
t1

!
1 + t

2
2
"

[e1, e2] +
!
2 + t

2
1 + t

2
2
"

e1 +
!
1 ≠ t

2
1 t

2
2
"

e2
2

= 2 i
!Ô

3 [e1, e2] + 2 (e1 ≠ e2)
"

,

H = 1
6

!
1 + t

2
2
"

t
2
1 {e1, e2} = 2 {e1, e2} .

(B.28)

• one non-chiral Hamiltonian
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with the nested commutators have coe�cients

h
l,r
ij ©

iÿ

l=1

N≠1ÿ

m=j

!
1 + t

2
m≠l+1

"
Î

l,r
i≠l,j≠l,m≠l , h

l,r
ji © (≠1)j≠i

h
l,r
ij , i 6 j . (B.20)

Now, using the l-r-symmetry Î
r
l,m,k = Î

l
k≠l,k≠m,k and changing indices, it can be checked that the coe�cients of the

chiral hamiltonians (B.19) are related by

h
r
ij = (≠1)j≠i

h
l
N≠j,N≠i . (B.21)

Furthermore, h
l
ij can be simplified using t

2
m≠l+1 Î

l
i≠l,j≠l,m≠l = ≠Î

l
i≠(l≠1),j≠(l≠1),m≠(l≠1), which follows from the defi-

nitions. As such, coe�cients in h
l
ij telescope over the l variable to yield

h
l
ij =

N≠1ÿ

m=j

!
Î

l
0, j≠i, m≠i ≠ Î

l
i,j,m

"
. (B.22)

This can be more explicitly factorised as

h
l
ij =

Nÿ

n=j+1
tn≠j,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
, (B.23)

which is useful for numerical computations. This proves (7) from the main text once we show (B.16). In § E 3 a we
will furthermore establish, using a rather technical analytic proof, that for any i, j

h
r
ij = ≠h

l
ij , (B.24)

which means that (B.10) holds coe�cient by coe�cient in terms of the nested TL commutators. This is the origin of
the first equality in (11).

b. Full hamiltonian. To find an explicit expression for H we need the next term in the expansion (B.13) of the
spin operators. As we will outline in § B 3, they can be written as anticommutators of the nested commutators (B.15):

S̃l
[i,i+k] =

ÿ

06j6l<m6n<k

(≠1)n≠1
tk≠n,k≠l tk≠m,k≠j t

2
k≠j,k

)
e[i+n,i+m], e[i+l,i+j]

*
,

S̃r
[i,i+k] =

ÿ

06j6l<m6n<k

(≠1)k≠j
tj+1,m+1 tl+1,n+1 t

2
n+1,k

)
e[i+j,i+l], e[i+m,i+n]

*
.
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This is (9) from the main text.
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• the quasi-translation operator
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bility [23]. The interaction in the quartic hamiltonian
implements a statistical selection rule, forbidding occu-
pied successive mode numbers, that is inherited from the
parent model and matches the description of the HS chain
via ‘motifs’ [10]. This selection rule comes with high de-
generacies for the motifs to account for the full Hilbert
space. These degeneracies are caused by (ii), arising from
the parent model’s extended spin symmetry. The latter
includes a global symmetry algebra that contains gl(1|1)
and is the commutant of the free-fermion TL algebra [2].
Due to the linear dispersions, there are many additional
‘accidental’ degeneracies between di�erent motifs.
The model. Consider fermions hopping on a one-
dimensional lattice with an odd number N sites.

The simplest definition of our model uses non-unitary
fermionic operators with anticommutation relations [3]

{fi, f
+
j } = (≠1)i

”ij , {fi, fj} = {f
+
i , f

+
j } = 0 . (1)

They are related to canonical Jordan–Wigner fermions
as fj = (≠i)j

cj , f
+
j = (≠i)j

c
†
j . The fs will avoid a

proliferation of factors of i and make the symmetries more
transparent. From the two-site fermionic operators

gi © fi + fi+1 , g
+
i = f

+
i + f

+
i+1 , 1 6 i < N , (2)

we construct the quadratic combinations

ei © g
+
i gi , 1 6 i < N , (3)

which obey the free-fermion TL algebra relations

e
2
i = 0 , ei ei±1 ei = ei , [ei, ej ] = 0 if |i≠ j| > 1 . (4)

Further define the nested TL commutators [19, § C]

e[i,j] © [[· · · [ei, ei+1], · · · ], ej ]
= sij

!
g

+
j gi + (≠1)i≠j

g
+
i gj

"
, i ”= j ,

(5)

where sij © (≠1)(i≠j)(i+j≠1)/2, and we set e[i,i] © ei.
Note that (5) is bilinear in the fermions (1). Finally set

tk © tan fik
N , tk,l ©

rl≠1
i=k ti (k < l) , tk,k © 1 . (6)

Then the chiral hamiltonian reads

Hl = i
2

ÿ

16i6j<N

h
l
ij e[i,j] ,

h
l
ij ©

Nÿ

n=j+1
tn≠j,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
.

(7)

This is a quadratic (free-fermion) hamiltonian describing
long-range hopping. It is not translationally invariant:
the amplitudes h

l
ij do not only depend on the distance

i ≠ j, and sites N, 1 are not on the same footing as other
neighbours i, i + 1. Instead, the standard translation op-
erator is replaced by the quasi-translation operator

G = (1 + tN≠1 eN≠1) · · · (1 + t1 e1) , GN = 1 . (8)

The model is integrable: there exists a hierarchy of con-
served charges that commute with each other and (7).
We can explicitly write down the next charge, which is
a linear combination of anticommutators of the nested
commutators (5) with coe�cients like in (7),

H = ≠
1

4N

N≠1ÿ

i6j<k6l

!
h

l
ij;kl + h

r
ij;kl

" )
e[i,j], e[k,l]

*
, (9)

h
l
ij;kl © (≠1)k≠j

Nÿ

n(>l)
tn≠l,n≠j tn≠k,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
,

h
r
ij;kl © (≠1)l≠j+k≠i

h
l
N≠l,N≠k;N≠j,N≠i .

Integrability guarantees that these quantities, and higher
charges that we do not give here, mutually commute,

#
G, Hl$

=
#
G, H

$
=

#
Hl

, H
$

= 0 . (10)

The existence of this hierarchy of commuting charges,
and their expressions, stem from the parent model [19].

Symmetries. The commuting charges (7)–(9) have var-
ious symmetries and transformation properties.

Parity. Parity acts by reversal of the lattice sites
P(fi) = fN+1≠i. This preserves the anticommutation
relations (1) since N is odd. The TL generators trans-
form as P(ei) = eN≠i. The chiral hamiltonian (7) is not
invariant under parity, whence its name. It is a highly
nontrivial result that P(Hl) = ≠Hl [19]. We have

P(Hl) = ≠Hl
, P(H) = H , P(G) = G≠1

, (11)

where the last relation uses ti = ≠tN≠i.
Time reversal. We define time reversal as complex

conjugation of the coe�cients with respect to the Fock
basis f

+
i1

· · · f
+
iM

|?Í. Thus T(ei) = ei, and

T(Hl) = ≠Hl
, T(H) = H , T(G) = G . (12)

Since the hamiltonians (and their eigenstates) are PT-
invariant, their spectrum is real [25–28]. The same is
true for the ‘quasi-momentum’ p = ≠i log G.

Particle-hole transformation. Another simple opera-
tion, which we interpret as the charge conjugation, ex-
changes the creation and annihilation operators

C(fi) = f
+
i , C(f+

i ) = fi . (13)

Then C(ei) = ≠ei, preserving (4). If we complement this
for (7)–(9) by formally replacing ti æ ≠ti we get

C(Hl) = ≠Hl
, C(H) = H , C(G) = G . (14)

See [19] for details. preceding to be checked
Global symmetry. The model can be seen as a long-

range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic

2

bility [23]. The interaction in the quartic hamiltonian
implements a statistical selection rule, forbidding occu-
pied successive mode numbers, that is inherited from the
parent model and matches the description of the HS chain
via ‘motifs’ [10]. This selection rule comes with high de-
generacies for the motifs to account for the full Hilbert
space. These degeneracies are caused by (ii), arising from
the parent model’s extended spin symmetry. The latter
includes a global symmetry algebra that contains gl(1|1)
and is the commutant of the free-fermion TL algebra [2].
Due to the linear dispersions, there are many additional
‘accidental’ degeneracies between di�erent motifs.
The model. Consider fermions hopping on a one-
dimensional lattice with an odd number N sites.

The simplest definition of our model uses non-unitary
fermionic operators with anticommutation relations [3]

{fi, f
+
j } = (≠1)i

”ij , {fi, fj} = {f
+
i , f

+
j } = 0 . (1)

They are related to canonical Jordan–Wigner fermions
as fj = (≠i)j

cj , f
+
j = (≠i)j

c
†
j . The fs will avoid a

proliferation of factors of i and make the symmetries more
transparent. From the two-site fermionic operators

gi © fi + fi+1 , g
+
i = f

+
i + f

+
i+1 , 1 6 i < N , (2)

we construct the quadratic combinations

ei © g
+
i gi , 1 6 i < N , (3)

which obey the free-fermion TL algebra relations

e
2
i = 0 , ei ei±1 ei = ei , [ei, ej ] = 0 if |i≠ j| > 1 . (4)

Further define the nested TL commutators [19, § C]

e[i,j] © [[· · · [ei, ei+1], · · · ], ej ]
= sij

!
g

+
j gi + (≠1)i≠j

g
+
i gj

"
, i ”= j ,

(5)

where sij © (≠1)(i≠j)(i+j≠1)/2, and we set e[i,i] © ei.
Note that (5) is bilinear in the fermions (1). Finally set

tk © tan fik
N , tk,l ©

rl≠1
i=k ti (k < l) , tk,k © 1 . (6)

Then the chiral hamiltonian reads

Hl = i
2

ÿ

16i6j<N

h
l
ij e[i,j] ,

h
l
ij ©

Nÿ

n=j+1
tn≠j,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
.

(7)

This is a quadratic (free-fermion) hamiltonian describing
long-range hopping. It is not translationally invariant:
the amplitudes h

l
ij do not only depend on the distance

i ≠ j, and sites N, 1 are not on the same footing as other
neighbours i, i + 1. Instead, the standard translation op-
erator is replaced by the quasi-translation operator

G = (1 + tN≠1 eN≠1) · · · (1 + t1 e1) , GN = 1 . (8)

The model is integrable: there exists a hierarchy of con-
served charges that commute with each other and (7).
We can explicitly write down the next charge, which is
a linear combination of anticommutators of the nested
commutators (5) with coe�cients like in (7),

H = ≠
1

4N

N≠1ÿ

i6j<k6l

!
h

l
ij;kl + h

r
ij;kl

" )
e[i,j], e[k,l]

*
, (9)

h
l
ij;kl © (≠1)k≠j

Nÿ

n(>l)
tn≠l,n≠j tn≠k,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
,

h
r
ij;kl © (≠1)l≠j+k≠i

h
l
N≠l,N≠k;N≠j,N≠i .

Integrability guarantees that these quantities, and higher
charges that we do not give here, mutually commute,

#
G, Hl$

=
#
G, H

$
=

#
Hl

, H
$

= 0 . (10)

The existence of this hierarchy of commuting charges,
and their expressions, stem from the parent model [19].

Symmetries. The commuting charges (7)–(9) have var-
ious symmetries and transformation properties.

Parity. Parity acts by reversal of the lattice sites
P(fi) = fN+1≠i. This preserves the anticommutation
relations (1) since N is odd. The TL generators trans-
form as P(ei) = eN≠i. The chiral hamiltonian (7) is not
invariant under parity, whence its name. It is a highly
nontrivial result that P(Hl) = ≠Hl [19]. We have

P(Hl) = ≠Hl
, P(H) = H , P(G) = G≠1

, (11)

where the last relation uses ti = ≠tN≠i.
Time reversal. We define time reversal as complex

conjugation of the coe�cients with respect to the Fock
basis f

+
i1

· · · f
+
iM

|?Í. Thus T(ei) = ei, and

T(Hl) = ≠Hl
, T(H) = H , T(G) = G . (12)

Since the hamiltonians (and their eigenstates) are PT-
invariant, their spectrum is real [25–28]. The same is
true for the ‘quasi-momentum’ p = ≠i log G.

Particle-hole transformation. Another simple opera-
tion, which we interpret as the charge conjugation, ex-
changes the creation and annihilation operators

C(fi) = f
+
i , C(f+

i ) = fi . (13)

Then C(ei) = ≠ei, preserving (4). If we complement this
for (7)–(9) by formally replacing ti æ ≠ti we get

C(Hl) = ≠Hl
, C(H) = H , C(G) = G . (14)

See [19] for details. preceding to be checked
Global symmetry. The model can be seen as a long-

range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic

• Wave functions from the exact solution? The vanishing of some wave-functions?
Eigenfunctions for the non-renormalised Hamiltonian

• Higher conserved quantities and their eigenfunctions (what about the quasi momen-
tum?)

1 The nearest-neighbour XXZ spin chain

The XXZ model is the paradigm of nearest-neighbour integrable spin models. Its Hamilto-
nian is given by

HXXZ =

NX

j=1

S[j,j+1] (1.1)

where

S[j,j+1] =
1

2
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x
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x
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y
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y
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j �
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z
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z
j+1 � 1
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. (1.2)

and we assume periodic boundary conditions, �a
j = �

a
j+N . A convenient parametrisation

for the spin isotropy is

� =
q + q

�1

2
. (1.3)

When q is real � � 1, while for q unimodular |q| = 1, �  1. The Hamiltonian density in
(1.1) is closely related to the generators of a Temperley–Lieb algebra,

ej = �S[j,j+1] �
q� q

�1

4
(�

z
j � �

z
j+1) , (1.4)

where the generator ej is q-anti-symmetriser on the sites j and j+1 satisfying the relations

e
2

j = (q + q
�1

) ej (1.5)

with matrix

ej =

0

BBBB@

0 0 0 0

0 q
�1

�1 0

0 �1 q 0

0 0 0 0

1

CCCCA

j,j+1

. (1.6)

Write down the other relations of TL generators. ej ej±1 ej = ej and [ei, ej ] = 0 if |i�j| > 1.
Upon summation, in the periodic case the last term in (1.4) cancel such that the Hamiltonian
becomes

HXXZ = �

NX

j=1

ej . (1.7)

– 2 –
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Since the Temperley–Lieb generators belong to the centraliser of the Uq(sl2) algebra, for
the open case the Hamiltonian

H
open

XXZ
= �
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S[j,j+1] +
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has quantum group symmetry [1]. 1

The structure of the underlying quantum group Uq(sl2) at q root of unity is special,
and the case q = i is one of the simplest and most fascinating examples of solvable models
in this class. In this particular case � = 0 and the periodic model is equivalent to free
fermions via the Jordan-Wigner transformation,
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The Jordan-Wigner transformation is non-local, and the string e
i⇡
2

Pj�1
l=1 (�

z
l +1) is introduced

to correct the commutation relations of the spin operators at different sites j 6= k from
[�

+

j ,�
�
k ] = 0 to {c

+

j , ck} = 0, so that {c
+

j , ck} = �jk. The number of fermions at the site
j is given by Nj = c

+

j cj =
1

2
(�

z
l + 1), which means that | # ij is an empty state at site j

and | " ij is a state occupied by one fermion. The spectrum is easily obtained by Fourier
transform,
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so that the Hamiltonian (1.9) becomes
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N = 0 the system has a particle-hole symmetry; if bk = a
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the new fermionic operators obey canonical anti-commutation relations and
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1
This Uq(sl2) symmetric open Heisenberg spin chain is formally obtained from the chiral q-deformed

Haldane–Shastry Hamiltonians H
l,r

if we evaluate zj 7! $
j�1

, multiply by $N/[N ] and take either braid-

like limit $
±1 ! 1. Note that this procedure breaks the quantum loop symmetry, the commutativity of

the Hamiltonians with the other abelian symmetries (such as the q-translation operator G, which becomes

the Hecke translation).
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true for the ‘quasi-momentum’ p = ≠i log G.

Particle-hole transformation. Another simple opera-
tion, which we interpret as the charge conjugation, ex-
changes the creation and annihilation operators

C(fi) = f
+
i , C(f+

i ) = fi . (13)

Then C(ei) = ≠ei, preserving (4). If we complement this
for (7)–(9) by formally replacing ti æ ≠ti we get

C(Hl) = ≠Hl
, C(H) = H , C(G) = G . (14)

See [19] for details. preceding to be checked
Global symmetry. The model can be seen as a long-

range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic

together with the Temperley–Lieb relation (1.5) ensures that Řk,k+1(u) Řk,k+1(u
�1

) = 1.
For q unimodular complex conjugation of Hl is the same as reversing all spins (conjugation
by �

x
1
· · ·�

x
N ).

The interaction (3.5) is not symmetric under parity, i.e. under sending i ! N � i,
instead there exists another Hamiltonian
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such that the two Hamiltonians commute,
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and a parity invariant Hamiltonian can be defined by the half-sum of the two operators,
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The spectrum of the left and right Hamiltonians is given in terms of ‘motifs’. A motif is a
collection of M = bN/2c = bN/2c? integers µ1, . . . , µM with N � 1 � µ1 > . . . > µM � 1
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such that the combined Hamiltonian has spectrum
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that is real when q is real or unimodular (|q| = 1).
The appropriate shift operator is the q-translation operator [5, 6]
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is parity even, it is better suited for the role of hamil-
tonian. The extended symmetry (ii) requires special
‘quasi-periodic’ boundary conditions, which break uni-
tarity, cf. [23]. Nevertheless, by PT-invariance, the spec-
trum is real, cf. [25]. The reward for having complicated
interactions is that this spectrum is extremely simple as
in (iii): sums of quasiparticle energies with linear disper-
sions, comprising two branches that are associated with
even and odd mode numbers. Spin chains with linear
dispersions also arise in AdS3/CFT2 integrability [26].
The interaction in the quartic hamiltonian implements a
statistical selection rule, excluding occupation of succes-
sive mode numbers, that originates in the parent model
and matches the description of the HS chain via ‘mo-
tifs’ [15]. This selection rule comes with high degenera-
cies for the motifs to account for the full Hilbert space.
These degeneracies are caused by (ii), arising from the
parent model’s extended spin symmetry. The latter in-
cludes a global symmetry algebra that contains gl(1|1)
and is the commutant of the free-fermion TL algebra [5].
Due to the linear dispersions, there are many further ‘ac-
cidental’ degeneracies between di�erent motifs.
The model. Consider fermions hopping on a 1d lattice
with an odd number N sites. The simplest formulation
of our model uses non-unitary fermionic operators with
anticommutation relations [6]

{fi, f
+
j } = (≠1)i

”ij , {fi, fj} = {f
+
i , f

+
j } = 0 . (1)

They are related to canonical Jordan–Wigner fermions
as fj = (≠i)j

cj , f
+
j = (≠i)j

c
†
j . The fs will avoid a

proliferation of factors of i and make the symmetries more
transparent. From the two-site fermionic operators

gi © fi + fi+1 , g
+
i = f

+
i + f

+
i+1 , 1 6 i < N , (2)

we construct the quadratic combinations

ei © g
+
i gi , 1 6 i < N , (3)

which obey the free-fermion TL algebra relations

e
2
i = 0 , ei ei±1 ei = ei , [ei, ej ] = 0 if |i≠ j| > 1 . (4)

Further define the nested TL commutators [22, § C]

e[i,j] © [[· · · [ei, ei+1], · · · ], ej ]
= sij

!
g

+
j gi + (≠1)i≠j

g
+
i gj

"
, i ”= j ,

(5)

where sij © (≠1)(i≠j)(i+j≠1)/2, and we set e[i,i] © ei.
Note that (5) is bilinear in the fermions (1). Finally set

tk © tan fik
N , tk,l ©

rl≠1
i=k ti (k < l) , tk,k © 1 . (6)

Then the chiral hamiltonian reads

Hl = i
2

ÿ

16i6j<N

h
l
ij e[i,j] ,

h
l
ij ©

Nÿ

n=j+1
tn≠j,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
.

(7)

This is a quadratic (free-fermion) hamiltonian describing
long-range hopping. It is not translationally invariant:
the amplitudes h

l
ij do not only depend on the distance

i ≠ j, and sites N, 1 are not on the same footing as other
neighbours i, i + 1. Instead, the standard translation op-
erator is replaced by the quasi-translation operator

G = (1 + tN≠1 eN≠1) · · · (1 + t1 e1) , GN = 1 . (8)

The model is integrable: there exists a hierarchy of con-
served charges that commute with each other and (7).
We can explicitly write down the next charge, which is
a linear combination of anticommutators of the nested
commutators (5) with coe�cients like in (7),

H = ≠
1

4N

N≠1ÿ

i6j<k6l

!
h

l
ij;kl + h

r
ij;kl

" )
e[i,j], e[k,l]

*
, (9)

h
l
ij;kl © (≠1)k≠j

Nÿ

n(>l)
tn≠l,n≠j tn≠k,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
,

h
r
ij;kl © (≠1)l≠j+k≠i

h
l
N≠l,N≠k;N≠j,N≠i .

Integrability guarantees that these quantities, and higher
charges that we do not give here, mutually commute,

#
G, Hl$

=
#
G, H

$
=

#
Hl

, H
$

= 0 . (10)

The existence of this hierarchy of commuting charges,
and their expressions, stem from the parent model [22].
Symmetries. The commuting charges (7)–(9) have sev-
eral transformation properties and symmetries.

Parity. Parity acts by reversal of the lattice sites
P(fi) = fN+1≠i. This preserves the anticommutation
relations (1) since N is odd. The TL generators trans-
form as P(ei) = eN≠i. The chiral hamiltonian (7) is not
invariant under parity, whence its name. It is a highly
nontrivial result that P(Hl) = ≠Hl [22]. We have

P(Hl) = ≠Hl
, P(H) = H , P(G) = G≠1

, (11)

where the last relation uses ti = ≠tN≠i.
Time reversal. We define time reversal as complex

conjugation of the coe�cients with respect to the Fock
basis f

+
i1

· · · f
+
iM

|?Í. Thus T(ei) = ei, and

T(Hl) = ≠Hl
, T(H) = H , T(G) = G . (12)

Since the hamiltonians (and their eigenstates) are PT-
invariant, their spectrum is real [27–30]. The same is
true for the ‘quasi-momentum’ p = ≠i log G.

Charge conjugation. Another simple operation, which
we interpret as the particle-hole transformation, ex-
changes the creation and annihilation operators

CÕ(fi) = f
+
i , CÕ(f+

i ) = fi . (13)

Then CÕ(ei) = ≠ei, preserving (4). Including a suitable
antilinear transformation U, see [22], gives charge conju-
gation C = CÕ U. It acts on the conserved charges by

C(Hl) = ≠Hl
, C(H) = H , C(G) = G . (14)
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The model has real spectrum in spite of being non-unitary, due to PT symmetry

• Parity P: 
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is parity even, it is better suited for the role of hamil-
tonian. The extended symmetry (ii) requires special
‘quasi-periodic’ boundary conditions, which break uni-
tarity, cf. [23]. Nevertheless, by PT-invariance, the spec-
trum is real, cf. [25]. The reward for having complicated
interactions is that this spectrum is extremely simple as
in (iii): sums of quasiparticle energies with linear disper-
sions, comprising two branches that are associated with
even and odd mode numbers. Spin chains with linear
dispersions also arise in AdS3/CFT2 integrability [26].
The interaction in the quartic hamiltonian implements a
statistical selection rule, excluding occupation of succes-
sive mode numbers, that originates in the parent model
and matches the description of the HS chain via ‘mo-
tifs’ [15]. This selection rule comes with high degenera-
cies for the motifs to account for the full Hilbert space.
These degeneracies are caused by (ii), arising from the
parent model’s extended spin symmetry. The latter in-
cludes a global symmetry algebra that contains gl(1|1)
and is the commutant of the free-fermion TL algebra [5].
Due to the linear dispersions, there are many further ‘ac-
cidental’ degeneracies between di�erent motifs.
The model. Consider fermions hopping on a 1d lattice
with an odd number N sites. The simplest formulation
of our model uses non-unitary fermionic operators with
anticommutation relations [6]

{fi, f
+
j } = (≠1)i

”ij , {fi, fj} = {f
+
i , f

+
j } = 0 . (1)

They are related to canonical Jordan–Wigner fermions
as fj = (≠i)j

cj , f
+
j = (≠i)j

c
†
j . The fs will avoid a

proliferation of factors of i and make the symmetries more
transparent. From the two-site fermionic operators

gi © fi + fi+1 , g
+
i = f

+
i + f

+
i+1 , 1 6 i < N , (2)

we construct the quadratic combinations

ei © g
+
i gi , 1 6 i < N , (3)

which obey the free-fermion TL algebra relations

e
2
i = 0 , ei ei±1 ei = ei , [ei, ej ] = 0 if |i≠ j| > 1 . (4)

Further define the nested TL commutators [22, § C]

e[i,j] © [[· · · [ei, ei+1], · · · ], ej ]
= sij

!
g

+
j gi + (≠1)i≠j

g
+
i gj

"
, i ”= j ,

(5)

where sij © (≠1)(i≠j)(i+j≠1)/2, and we set e[i,i] © ei.
Note that (5) is bilinear in the fermions (1). Finally set

tk © tan fik
N , tk,l ©

rl≠1
i=k ti (k < l) , tk,k © 1 . (6)

Then the chiral hamiltonian reads

Hl = i
2
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16i6j<N
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ij e[i,j] ,

h
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ij ©

Nÿ

n=j+1
tn≠j,n≠i
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This is a quadratic (free-fermion) hamiltonian describing
long-range hopping. It is not translationally invariant:
the amplitudes h

l
ij do not only depend on the distance

i ≠ j, and sites N, 1 are not on the same footing as other
neighbours i, i + 1. Instead, the standard translation op-
erator is replaced by the quasi-translation operator

G = (1 + tN≠1 eN≠1) · · · (1 + t1 e1) , GN = 1 . (8)

The model is integrable: there exists a hierarchy of con-
served charges that commute with each other and (7).
We can explicitly write down the next charge, which is
a linear combination of anticommutators of the nested
commutators (5) with coe�cients like in (7),

H = ≠
1

4N

N≠1ÿ

i6j<k6l

!
h
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ij;kl + h

r
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e[i,j], e[k,l]
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, (9)
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ij;kl © (≠1)l≠j+k≠i
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Integrability guarantees that these quantities, and higher
charges that we do not give here, mutually commute,

#
G, Hl$

=
#
G, H

$
=

#
Hl

, H
$

= 0 . (10)

The existence of this hierarchy of commuting charges,
and their expressions, stem from the parent model [22].
Symmetries. The commuting charges (7)–(9) have sev-
eral transformation properties and symmetries.

Parity. Parity acts by reversal of the lattice sites
P(fi) = fN+1≠i. This preserves the anticommutation
relations (1) since N is odd. The TL generators trans-
form as P(ei) = eN≠i. The chiral hamiltonian (7) is not
invariant under parity, whence its name. It is a highly
nontrivial result that P(Hl) = ≠Hl [22]. We have

P(Hl) = ≠Hl
, P(H) = H , P(G) = G≠1

, (11)

where the last relation uses ti = ≠tN≠i.
Time reversal. We define time reversal as complex

conjugation of the coe�cients with respect to the Fock
basis f

+
i1

· · · f
+
iM

|?Í. Thus T(ei) = ei, and

T(Hl) = ≠Hl
, T(H) = H , T(G) = G . (12)

Since the hamiltonians (and their eigenstates) are PT-
invariant, their spectrum is real [27–30]. The same is
true for the ‘quasi-momentum’ p = ≠i log G.

Charge conjugation. Another simple operation, which
we interpret as the particle-hole transformation, ex-
changes the creation and annihilation operators

CÕ(fi) = f
+
i , CÕ(f+

i ) = fi . (13)

Then CÕ(ei) = ≠ei, preserving (4). Including a suitable
antilinear transformation U, see [22], gives charge conju-
gation C = CÕ U. It acts on the conserved charges by

C(Hl) = ≠Hl
, C(H) = H , C(G) = G . (14)
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is parity even, it is better suited for the role of hamil-
tonian. The extended symmetry (ii) requires special
‘quasi-periodic’ boundary conditions, which break uni-
tarity, cf. [23]. Nevertheless, by PT-invariance, the spec-
trum is real, cf. [25]. The reward for having complicated
interactions is that this spectrum is extremely simple as
in (iii): sums of quasiparticle energies with linear disper-
sions, comprising two branches that are associated with
even and odd mode numbers. Spin chains with linear
dispersions also arise in AdS3/CFT2 integrability [26].
The interaction in the quartic hamiltonian implements a
statistical selection rule, excluding occupation of succes-
sive mode numbers, that originates in the parent model
and matches the description of the HS chain via ‘mo-
tifs’ [15]. This selection rule comes with high degenera-
cies for the motifs to account for the full Hilbert space.
These degeneracies are caused by (ii), arising from the
parent model’s extended spin symmetry. The latter in-
cludes a global symmetry algebra that contains gl(1|1)
and is the commutant of the free-fermion TL algebra [5].
Due to the linear dispersions, there are many further ‘ac-
cidental’ degeneracies between di�erent motifs.
The model. Consider fermions hopping on a 1d lattice
with an odd number N sites. The simplest formulation
of our model uses non-unitary fermionic operators with
anticommutation relations [6]

{fi, f
+
j } = (≠1)i

”ij , {fi, fj} = {f
+
i , f

+
j } = 0 . (1)

They are related to canonical Jordan–Wigner fermions
as fj = (≠i)j

cj , f
+
j = (≠i)j

c
†
j . The fs will avoid a

proliferation of factors of i and make the symmetries more
transparent. From the two-site fermionic operators

gi © fi + fi+1 , g
+
i = f

+
i + f

+
i+1 , 1 6 i < N , (2)

we construct the quadratic combinations

ei © g
+
i gi , 1 6 i < N , (3)

which obey the free-fermion TL algebra relations

e
2
i = 0 , ei ei±1 ei = ei , [ei, ej ] = 0 if |i≠ j| > 1 . (4)

Further define the nested TL commutators [22, § C]

e[i,j] © [[· · · [ei, ei+1], · · · ], ej ]
= sij
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+
j gi + (≠1)i≠j

g
+
i gj

"
, i ”= j ,

(5)

where sij © (≠1)(i≠j)(i+j≠1)/2, and we set e[i,i] © ei.
Note that (5) is bilinear in the fermions (1). Finally set

tk © tan fik
N , tk,l ©

rl≠1
i=k ti (k < l) , tk,k © 1 . (6)

Then the chiral hamiltonian reads

Hl = i
2
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h
l
ij ©

Nÿ

n=j+1
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This is a quadratic (free-fermion) hamiltonian describing
long-range hopping. It is not translationally invariant:
the amplitudes h

l
ij do not only depend on the distance

i ≠ j, and sites N, 1 are not on the same footing as other
neighbours i, i + 1. Instead, the standard translation op-
erator is replaced by the quasi-translation operator

G = (1 + tN≠1 eN≠1) · · · (1 + t1 e1) , GN = 1 . (8)

The model is integrable: there exists a hierarchy of con-
served charges that commute with each other and (7).
We can explicitly write down the next charge, which is
a linear combination of anticommutators of the nested
commutators (5) with coe�cients like in (7),

H = ≠
1
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Integrability guarantees that these quantities, and higher
charges that we do not give here, mutually commute,

#
G, Hl$

=
#
G, H

$
=

#
Hl

, H
$

= 0 . (10)

The existence of this hierarchy of commuting charges,
and their expressions, stem from the parent model [22].
Symmetries. The commuting charges (7)–(9) have sev-
eral transformation properties and symmetries.

Parity. Parity acts by reversal of the lattice sites
P(fi) = fN+1≠i. This preserves the anticommutation
relations (1) since N is odd. The TL generators trans-
form as P(ei) = eN≠i. The chiral hamiltonian (7) is not
invariant under parity, whence its name. It is a highly
nontrivial result that P(Hl) = ≠Hl [22]. We have

P(Hl) = ≠Hl
, P(H) = H , P(G) = G≠1

, (11)

where the last relation uses ti = ≠tN≠i.
Time reversal. We define time reversal as complex

conjugation of the coe�cients with respect to the Fock
basis f

+
i1

· · · f
+
iM

|?Í. Thus T(ei) = ei, and

T(Hl) = ≠Hl
, T(H) = H , T(G) = G . (12)

Since the hamiltonians (and their eigenstates) are PT-
invariant, their spectrum is real [27–30]. The same is
true for the ‘quasi-momentum’ p = ≠i log G.

Charge conjugation. Another simple operation, which
we interpret as the particle-hole transformation, ex-
changes the creation and annihilation operators

CÕ(fi) = f
+
i , CÕ(f+

i ) = fi . (13)

Then CÕ(ei) = ≠ei, preserving (4). Including a suitable
antilinear transformation U, see [22], gives charge conju-
gation C = CÕ U. It acts on the conserved charges by

C(Hl) = ≠Hl
, C(H) = H , C(G) = G . (14)

• Time reversal T (anti-linear): 
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is parity even, it is better suited for the role of hamil-
tonian. The extended symmetry (ii) requires special
‘quasi-periodic’ boundary conditions, which break uni-
tarity, cf. [23]. Nevertheless, by PT-invariance, the spec-
trum is real, cf. [25]. The reward for having complicated
interactions is that this spectrum is extremely simple as
in (iii): sums of quasiparticle energies with linear disper-
sions, comprising two branches that are associated with
even and odd mode numbers. Spin chains with linear
dispersions also arise in AdS3/CFT2 integrability [26].
The interaction in the quartic hamiltonian implements a
statistical selection rule, excluding occupation of succes-
sive mode numbers, that originates in the parent model
and matches the description of the HS chain via ‘mo-
tifs’ [15]. This selection rule comes with high degenera-
cies for the motifs to account for the full Hilbert space.
These degeneracies are caused by (ii), arising from the
parent model’s extended spin symmetry. The latter in-
cludes a global symmetry algebra that contains gl(1|1)
and is the commutant of the free-fermion TL algebra [5].
Due to the linear dispersions, there are many further ‘ac-
cidental’ degeneracies between di�erent motifs.
The model. Consider fermions hopping on a 1d lattice
with an odd number N sites. The simplest formulation
of our model uses non-unitary fermionic operators with
anticommutation relations [6]
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j } = 0 . (1)
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proliferation of factors of i and make the symmetries more
transparent. From the two-site fermionic operators
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where sij © (≠1)(i≠j)(i+j≠1)/2, and we set e[i,i] © ei.
Note that (5) is bilinear in the fermions (1). Finally set
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This is a quadratic (free-fermion) hamiltonian describing
long-range hopping. It is not translationally invariant:
the amplitudes h

l
ij do not only depend on the distance

i ≠ j, and sites N, 1 are not on the same footing as other
neighbours i, i + 1. Instead, the standard translation op-
erator is replaced by the quasi-translation operator

G = (1 + tN≠1 eN≠1) · · · (1 + t1 e1) , GN = 1 . (8)

The model is integrable: there exists a hierarchy of con-
served charges that commute with each other and (7).
We can explicitly write down the next charge, which is
a linear combination of anticommutators of the nested
commutators (5) with coe�cients like in (7),
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Integrability guarantees that these quantities, and higher
charges that we do not give here, mutually commute,

#
G, Hl$

=
#
G, H

$
=

#
Hl

, H
$

= 0 . (10)

The existence of this hierarchy of commuting charges,
and their expressions, stem from the parent model [22].
Symmetries. The commuting charges (7)–(9) have sev-
eral transformation properties and symmetries.

Parity. Parity acts by reversal of the lattice sites
P(fi) = fN+1≠i. This preserves the anticommutation
relations (1) since N is odd. The TL generators trans-
form as P(ei) = eN≠i. The chiral hamiltonian (7) is not
invariant under parity, whence its name. It is a highly
nontrivial result that P(Hl) = ≠Hl [22]. We have

P(Hl) = ≠Hl
, P(H) = H , P(G) = G≠1

, (11)

where the last relation uses ti = ≠tN≠i.
Time reversal. We define time reversal as complex

conjugation of the coe�cients with respect to the Fock
basis f

+
i1

· · · f
+
iM

|?Í. Thus T(ei) = ei, and

T(Hl) = ≠Hl
, T(H) = H , T(G) = G . (12)

Since the hamiltonians (and their eigenstates) are PT-
invariant, their spectrum is real [27–30]. The same is
true for the ‘quasi-momentum’ p = ≠i log G.

Charge conjugation. Another simple operation, which
we interpret as the particle-hole transformation, ex-
changes the creation and annihilation operators

CÕ(fi) = f
+
i , CÕ(f+

i ) = fi . (13)

Then CÕ(ei) = ≠ei, preserving (4). Including a suitable
antilinear transformation U, see [22], gives charge conju-
gation C = CÕ U. It acts on the conserved charges by

C(Hl) = ≠Hl
, C(H) = H , C(G) = G . (14)

2

is parity even, it is better suited for the role of hamil-
tonian. The extended symmetry (ii) requires special
‘quasi-periodic’ boundary conditions, which break uni-
tarity, cf. [23]. Nevertheless, by PT-invariance, the spec-
trum is real, cf. [25]. The reward for having complicated
interactions is that this spectrum is extremely simple as
in (iii): sums of quasiparticle energies with linear disper-
sions, comprising two branches that are associated with
even and odd mode numbers. Spin chains with linear
dispersions also arise in AdS3/CFT2 integrability [26].
The interaction in the quartic hamiltonian implements a
statistical selection rule, excluding occupation of succes-
sive mode numbers, that originates in the parent model
and matches the description of the HS chain via ‘mo-
tifs’ [15]. This selection rule comes with high degenera-
cies for the motifs to account for the full Hilbert space.
These degeneracies are caused by (ii), arising from the
parent model’s extended spin symmetry. The latter in-
cludes a global symmetry algebra that contains gl(1|1)
and is the commutant of the free-fermion TL algebra [5].
Due to the linear dispersions, there are many further ‘ac-
cidental’ degeneracies between di�erent motifs.
The model. Consider fermions hopping on a 1d lattice
with an odd number N sites. The simplest formulation
of our model uses non-unitary fermionic operators with
anticommutation relations [6]

{fi, f
+
j } = (≠1)i

”ij , {fi, fj} = {f
+
i , f

+
j } = 0 . (1)

They are related to canonical Jordan–Wigner fermions
as fj = (≠i)j

cj , f
+
j = (≠i)j

c
†
j . The fs will avoid a

proliferation of factors of i and make the symmetries more
transparent. From the two-site fermionic operators

gi © fi + fi+1 , g
+
i = f

+
i + f

+
i+1 , 1 6 i < N , (2)

we construct the quadratic combinations

ei © g
+
i gi , 1 6 i < N , (3)

which obey the free-fermion TL algebra relations

e
2
i = 0 , ei ei±1 ei = ei , [ei, ej ] = 0 if |i≠ j| > 1 . (4)

Further define the nested TL commutators [22, § C]

e[i,j] © [[· · · [ei, ei+1], · · · ], ej ]
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!
g

+
j gi + (≠1)i≠j

g
+
i gj

"
, i ”= j ,

(5)

where sij © (≠1)(i≠j)(i+j≠1)/2, and we set e[i,i] © ei.
Note that (5) is bilinear in the fermions (1). Finally set

tk © tan fik
N , tk,l ©

rl≠1
i=k ti (k < l) , tk,k © 1 . (6)

Then the chiral hamiltonian reads
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ÿ
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!
1 ≠ (≠1)i

t
2
n≠i,n

"
.

(7)

This is a quadratic (free-fermion) hamiltonian describing
long-range hopping. It is not translationally invariant:
the amplitudes h

l
ij do not only depend on the distance

i ≠ j, and sites N, 1 are not on the same footing as other
neighbours i, i + 1. Instead, the standard translation op-
erator is replaced by the quasi-translation operator

G = (1 + tN≠1 eN≠1) · · · (1 + t1 e1) , GN = 1 . (8)

The model is integrable: there exists a hierarchy of con-
served charges that commute with each other and (7).
We can explicitly write down the next charge, which is
a linear combination of anticommutators of the nested
commutators (5) with coe�cients like in (7),
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Integrability guarantees that these quantities, and higher
charges that we do not give here, mutually commute,
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, H
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= 0 . (10)

The existence of this hierarchy of commuting charges,
and their expressions, stem from the parent model [22].
Symmetries. The commuting charges (7)–(9) have sev-
eral transformation properties and symmetries.

Parity. Parity acts by reversal of the lattice sites
P(fi) = fN+1≠i. This preserves the anticommutation
relations (1) since N is odd. The TL generators trans-
form as P(ei) = eN≠i. The chiral hamiltonian (7) is not
invariant under parity, whence its name. It is a highly
nontrivial result that P(Hl) = ≠Hl [22]. We have

P(Hl) = ≠Hl
, P(H) = H , P(G) = G≠1

, (11)

where the last relation uses ti = ≠tN≠i.
Time reversal. We define time reversal as complex

conjugation of the coe�cients with respect to the Fock
basis f

+
i1

· · · f
+
iM

|?Í. Thus T(ei) = ei, and

T(Hl) = ≠Hl
, T(H) = H , T(G) = G . (12)

Since the hamiltonians (and their eigenstates) are PT-
invariant, their spectrum is real [27–30]. The same is
true for the ‘quasi-momentum’ p = ≠i log G.

Charge conjugation. Another simple operation, which
we interpret as the particle-hole transformation, ex-
changes the creation and annihilation operators

CÕ(fi) = f
+
i , CÕ(f+

i ) = fi . (13)

Then CÕ(ei) = ≠ei, preserving (4). Including a suitable
antilinear transformation U, see [22], gives charge conju-
gation C = CÕ U. It acts on the conserved charges by

C(Hl) = ≠Hl
, C(H) = H , C(G) = G . (14)

• Charge conjugation C (anti-linear): 
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tonian. The extended symmetry (ii) requires special
‘quasi-periodic’ boundary conditions, which break uni-
tarity, cf. [23]. Nevertheless, by PT-invariance, the spec-
trum is real, cf. [25]. The reward for having complicated
interactions is that this spectrum is extremely simple as
in (iii): sums of quasiparticle energies with linear disper-
sions, comprising two branches that are associated with
even and odd mode numbers. Spin chains with linear
dispersions also arise in AdS3/CFT2 integrability [26].
The interaction in the quartic hamiltonian implements a
statistical selection rule, excluding occupation of succes-
sive mode numbers, that originates in the parent model
and matches the description of the HS chain via ‘mo-
tifs’ [15]. This selection rule comes with high degenera-
cies for the motifs to account for the full Hilbert space.
These degeneracies are caused by (ii), arising from the
parent model’s extended spin symmetry. The latter in-
cludes a global symmetry algebra that contains gl(1|1)
and is the commutant of the free-fermion TL algebra [5].
Due to the linear dispersions, there are many further ‘ac-
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The model. Consider fermions hopping on a 1d lattice
with an odd number N sites. The simplest formulation
of our model uses non-unitary fermionic operators with
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Note that (5) is bilinear in the fermions (1). Finally set

tk © tan fik
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This is a quadratic (free-fermion) hamiltonian describing
long-range hopping. It is not translationally invariant:
the amplitudes h

l
ij do not only depend on the distance

i ≠ j, and sites N, 1 are not on the same footing as other
neighbours i, i + 1. Instead, the standard translation op-
erator is replaced by the quasi-translation operator

G = (1 + tN≠1 eN≠1) · · · (1 + t1 e1) , GN = 1 . (8)

The model is integrable: there exists a hierarchy of con-
served charges that commute with each other and (7).
We can explicitly write down the next charge, which is
a linear combination of anticommutators of the nested
commutators (5) with coe�cients like in (7),
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Integrability guarantees that these quantities, and higher
charges that we do not give here, mutually commute,
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The existence of this hierarchy of commuting charges,
and their expressions, stem from the parent model [22].
Symmetries. The commuting charges (7)–(9) have sev-
eral transformation properties and symmetries.

Parity. Parity acts by reversal of the lattice sites
P(fi) = fN+1≠i. This preserves the anticommutation
relations (1) since N is odd. The TL generators trans-
form as P(ei) = eN≠i. The chiral hamiltonian (7) is not
invariant under parity, whence its name. It is a highly
nontrivial result that P(Hl) = ≠Hl [22]. We have

P(Hl) = ≠Hl
, P(H) = H , P(G) = G≠1

, (11)

where the last relation uses ti = ≠tN≠i.
Time reversal. We define time reversal as complex

conjugation of the coe�cients with respect to the Fock
basis f

+
i1

· · · f
+
iM

|?Í. Thus T(ei) = ei, and

T(Hl) = ≠Hl
, T(H) = H , T(G) = G . (12)

Since the hamiltonians (and their eigenstates) are PT-
invariant, their spectrum is real [27–30]. The same is
true for the ‘quasi-momentum’ p = ≠i log G.

Charge conjugation. Another simple operation, which
we interpret as the particle-hole transformation, ex-
changes the creation and annihilation operators

CÕ(fi) = f
+
i , CÕ(f+

i ) = fi . (13)

Then CÕ(ei) = ≠ei, preserving (4). Including a suitable
antilinear transformation U, see [22], gives charge conju-
gation C = CÕ U. It acts on the conserved charges by

C(Hl) = ≠Hl
, C(H) = H , C(G) = G . (14)

invariant, their spectrum is real [27–30]. The same is
true for the ‘quasi-momentum’ p = ≠i log G.

Another simple operation, which



The spectrum for N odd 

The spectrum is given in  terms of collections of integers           reminiscent of the 
Haldane-Shastry motifs, with huge degeneracies

3

Global symmetry. The model can be seen as a long-
range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic
generators, which we denote by N, E and F1, F+

1 respec-
tively. The nontrivial (anti)commutation relations are
#
N, F1

$
= ≠F1 ,

#
N, F+

1
$

= F+
1 ,

)
F1, F+

1
*

= E , (15)

and E is central. This is just a fermionic version of
the usual spin algebra. Each site i carries a gl(1|1)-
representation generated by fi, f

+
i , the number operator

(≠1)i
f

+
i fi and central charge (≠1)i. From this perspec-

tive, (7)–(9) is a long-range gl(1|1) super-spin chain. For
odd length the alternating central charge breaks periodic
boundaries, which are replaced by (8). Our model has a
global gl(1|1)-symmetry generated by

F1 =
Nÿ

i=1
fi , F+

1 =
Nÿ

i=1
f

+
i ,

N =
Nÿ

i=1
(≠1)i

f
+
i fi , E =

Nÿ

i=1
(≠1)i = ≠1 ,

(16)

Indeed, these operators anticommute with all gi, g
+
j , and

thus commute with the conserved charges (7)–(9).
Since F2

1 = (F+
1 )2 = 0, gl(1|1) produces fewer descen-

dants than su(2) does for isotropic spin chains. This is
compensated by additional bosonic generators

F2 =
Nÿ

i<j

fi fj , F+
2 =

Nÿ

i<j

f
+
i f

+
j , (17)

which commute with the ei, whence with (7)–(9). To-
gether, (16)–(17) generate the full global-symmetry alge-
bra, called A1|1 [5]. It is the Uq sl(2)|q=i symmetry from
the parent model in fermionic language, cf. [6, §2.3].

Extended symmetry. The parent model has quantum-
a�ne sl(2) symmetry, which underpins the large degen-
eracies (21). As we will see, these are already visible in
the two-particle spectrum. A plausible guess is that it
relates to the Yangian of gl(1|1). A detailed study of this
extended symmetry will be performed elsewhere.

The spectrum. The spectrum and degeneracies of the
parent model are known explicitly [14, 19–21]. Like for
the HS chain, the quantum numbers are ‘motifs’ [15]
{µm}, consisting of integers 1 6 µm < N increasing as

µm+1 > µm + 1 , 1 6 m < M . (18)

Such a motif labels an M -fermion state with quasi-
momentum p = 2fi

N

q
m µm mod 2fi setting the eigenvalue

eip of G. Its energy is additive:

E
l
{µm} =

Mÿ

m=1
Á

l
µm

, E{µm} =
Mÿ

m=1
Áµm , (19)

Á
l

≠N

0

N

n

N

Á

0

N

n

0 N

Figure 1. The dispersion relations (20) alternate between two
linear branches, realising chiral and (up to a shift) ‘full’ mass-
less relativistic dispersions on the lattice.

with dispersions having two linear branches (Fig. 1):

Á
l
n =

;
n , n even ,
n ≠ N , n odd ,

Án = |Á
l
n| . (20)

This state has (often many) descendants due to the ex-
tended symmetry. Its multiplicity is [13, 21] N + 1 for
the empty motif (at M = 0), and otherwise

µ1 (N ≠ µM )
M≠1Ÿ

m=1
(µm+1 ≠ µm ≠ 1) . (21)

Given the extremely simple dispersion, further (‘acciden-
tal’) degeneracies between di�erent motifs occur much
more often than even for the HS chain.

The energy levels are equispaced with steps of 2. E
l is

bounded by ±(N2
≠ 1)/4 and reaches these extremes at

motifs {1, 3, . . . , N ≠2} and {2, 4, . . . , N ≠1}, cf. Fig. 1. H
has eigenvalues > 0, with E = 0 for the empty motif, and
maximal energy E = 2¸(3¸ + 1) or E = 2(¸ + 1)(3¸ + 1)
depending on whether N = 4¸ + 3 or N = 4¸ + 1, re-
spectively. This maximum corresponds to the one or two
motifs {1, 3, . . . , N ≠4, N ≠2} switching halfway between
the branches of Án in Fig. 1. Intriguingly, for H a few lev-
els near the maximum are missing.

Explicit diagonalisation. Let us (re)derive this spec-
trum from the fermionic representation. The key to defin-
ing a good basis of fermions is to start at one end of the
lattice and use the quasi-translation operator:

�i © G1≠i
f1 Gi≠1

, �+
i © G1≠i

f
+
1 Gi≠1

. (22)

These dressed fermions obey the periodicity

�i+N = �i , �+
i+N = �+

i , (23)

and have non-local anticommutation relations [22]
)

�i, �+
j

*
= ≠(1 + tj≠i) , {�i, �j} = {�+

i , �+
j } = 0 .

(24)
The nontrivial relation only depends on the distance. Set
a0 © i and an © in+1/2 else. The rescaled Fourier modes

�̃n ©
an

N

Nÿ

j=1
e≠2ifinj/N �j , �̃+

n ©
an

N

Nÿ

j=1
e2ifinj/N �+

j ,

(25)

Q-DEFORMED HALDANE–SHASTRY, SPIN-RUIJSENAARS AND MACDONALD POLYNOMIALS 11

Recall that a partition ⁄ = (⁄1 Ø ⁄2 Ø · · · Ø 0) is a weakly decreasing sequence of
integers. The length ¸(⁄) of ⁄ is the number of nonzero parts of ⁄. Then2

⁄m = µM≠m+1 ≠ 2 (M ≠ m) , 1 Æ m Æ M = ¸(⁄) = ¸(µ) ,(1.27a)

gives a bijection between MN and the set of partitions with ⁄1 Æ N ≠ 2 ¸(⁄) + 1. If
”M := (M ≠ 1, M ≠ 2, · · · ) denotes the staircase partition of length M ≠ 1 and µ+ is the
partition obtained from µ œ MN by reversal then this relation takes the succinct form

⁄ + 2 ”¸(µ) = µ+ ,(1.27b)
where addition and scalar multiplication are pointwise. See also Figure 33.

µ1 µ2 · · · µM

1 3 · · · 2M≠1 N≠1

⁄̄M ⁄̄M≠1
· · · ⁄̄1

Figure 3. The correspondence (1.271.27) between a motif µ œ MN of length
M := ¸(µ) Ø 1 and a partition with ⁄1 Æ N ≠ 2 M + 1 and ¸(⁄) = M ,
given by ⁄m = ⁄̄m + 1, 1 Æ m Æ M . Here ⁄̄ characterises the extent by
which µ di�ers from the left-most filled motif of length M , as shown.

With this notation in place the (unnormalised) wave function of |µÍ is the following
q-deformation of (1.41.4). The component where all magnons sit on the left remains simple:

(1.28) �µ(1, · · · , M) = ÈÈ1, · · · , M |µÍ = evÊ
Â�⁄(µ)(z1, · · · , zM ) .

Here ⁄(µ) denotes the partition associated to µ via (1.271.27) and Â�⁄ is a symmetric poly-
nomial in the magnon coordinates:

(1.29) Â�⁄(z1, · · · , zM ) :=
A

MŸ

m<n

(q zm ≠ q≠1zn) (q≠1zm ≠ q zn)
B

P ı
⁄ (z1, · · · , zM ) .

Besides the ‘symmetric square’ of the q-Vandermonde product it features the special case
of a Macdonald polynomial (§2.1.22.1.2) with parameters pı = qı = q2. The dependence on
q2 reflects a sort of symmetry of the Hamiltonian under q ‘æ ≠q, see app. In the notation
of Macdonald [Mac95Mac95,Mac98Mac98] the parameters of P ı

⁄ are related as qı = tı – for – = 1/2:
P ı

⁄ is a quantum spherical zonal function. See also Figure 44 on p. 2626. cf [Nou96Nou96], . . . ,

Cher-Matsuo corresp

[Kasatani Pasquier,

Kasatani Takeyama,

Stokman]?

The other components are more involved than in the isotropic case (1.41.4). They are
obtained from (1.291.29) by moving the magnons via q-deformed permutations (the Hecke
algebra, §2.1.12.1.1) before evaluation. Namely, let si be the permutation zi ¡ zi+1 and set in terms of a, b, cf §2.12.1?

(1.30) T pol
i := f≠1

i,i+1(si ≠ gi,i+1) , fi,i+1 := f(zi/zi+1) , gi,i+1 := g(zi/zi+1) ,

2 Note that ⁄ defined in (1.271.27) is the conjugate of the partition associated to µ in [Ugl95Ugl95] follow-
ing [JKK+95aJKK+95a]. See §3.2.33.2.3 for the reason of the conjugation.

M magnon motif

3

Global symmetry. The model can be seen as a long-
range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic
generators, which we denote by N, E and F1, F+

1 respec-
tively. The nontrivial (anti)commutation relations are
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= ≠F1 ,
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= F+
1 ,
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and E is central. This is just a fermionic version of
the usual spin algebra. Each site i carries a gl(1|1)-
representation generated by fi, f

+
i , the number operator

(≠1)i
f

+
i fi and central charge (≠1)i. From this perspec-

tive, (7)–(9) is a long-range gl(1|1) super-spin chain. For
odd length the alternating central charge breaks periodic
boundaries, which are replaced by (8). Our model has a
global gl(1|1)-symmetry generated by
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f
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N =
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f
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(16)

Indeed, these operators anticommute with all gi, g
+
j , and

thus commute with the conserved charges (7)–(9).
Since F2

1 = (F+
1 )2 = 0, gl(1|1) produces fewer descen-

dants than su(2) does for isotropic spin chains. This is
compensated by additional bosonic generators

F2 =
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fi fj , F+
2 =
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f
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i f

+
j , (17)

which commute with the ei, whence with (7)–(9). To-
gether, (16)–(17) generate the full global-symmetry alge-
bra, called A1|1 [5]. It is the Uq sl(2)|q=i symmetry from
the parent model in fermionic language, cf. [6, §2.3].

Extended symmetry. The parent model has quantum-
a�ne sl(2) symmetry, which underpins the large degen-
eracies (21). As we will see, these are already visible in
the two-particle spectrum. A plausible guess is that it
relates to the Yangian of gl(1|1). A detailed study of this
extended symmetry will be performed elsewhere.

The spectrum. The spectrum and degeneracies of the
parent model are known explicitly [14, 19–21]. Like for
the HS chain, the quantum numbers are ‘motifs’ [15]
{µm}, consisting of integers 1 6 µm < N increasing as

µm+1 > µm + 1 , 1 6 m < M . (18)

Such a motif labels an M -fermion state with quasi-
momentum p = 2fi

N

q
m µm mod 2fi setting the eigenvalue

eip of G. Its energy is additive:
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{µm} =
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Figure 1. The dispersion relations (20) alternate between two
linear branches, realising chiral and (up to a shift) ‘full’ mass-
less relativistic dispersions on the lattice.

with dispersions having two linear branches (Fig. 1):

Á
l
n =

;
n , n even ,
n ≠ N , n odd ,

Án = |Á
l
n| . (20)

This state has (often many) descendants due to the ex-
tended symmetry. Its multiplicity is [13, 21] N + 1 for
the empty motif (at M = 0), and otherwise

µ1 (N ≠ µM )
M≠1Ÿ

m=1
(µm+1 ≠ µm ≠ 1) . (21)

Given the extremely simple dispersion, further (‘acciden-
tal’) degeneracies between di�erent motifs occur much
more often than even for the HS chain.

The energy levels are equispaced with steps of 2. E
l is

bounded by ±(N2
≠ 1)/4 and reaches these extremes at

motifs {1, 3, . . . , N ≠2} and {2, 4, . . . , N ≠1}, cf. Fig. 1. H
has eigenvalues > 0, with E = 0 for the empty motif, and
maximal energy E = 2¸(3¸ + 1) or E = 2(¸ + 1)(3¸ + 1)
depending on whether N = 4¸ + 3 or N = 4¸ + 1, re-
spectively. This maximum corresponds to the one or two
motifs {1, 3, . . . , N ≠4, N ≠2} switching halfway between
the branches of Án in Fig. 1. Intriguingly, for H a few lev-
els near the maximum are missing.

Explicit diagonalisation. Let us (re)derive this spec-
trum from the fermionic representation. The key to defin-
ing a good basis of fermions is to start at one end of the
lattice and use the quasi-translation operator:

�i © G1≠i
f1 Gi≠1

, �+
i © G1≠i

f
+
1 Gi≠1

. (22)

These dressed fermions obey the periodicity

�i+N = �i , �+
i+N = �+

i , (23)

and have non-local anticommutation relations [22]
)

�i, �+
j

*
= ≠(1 + tj≠i) , {�i, �j} = {�+

i , �+
j } = 0 .

(24)
The nontrivial relation only depends on the distance. Set
a0 © i and an © in+1/2 else. The rescaled Fourier modes

�̃n ©
an

N

Nÿ

j=1
e≠2ifinj/N �j , �̃+

n ©
an

N

Nÿ

j=1
e2ifinj/N �+

j ,

(25)

• quasi-momentum
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Global symmetry. The model can be seen as a long-
range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic
generators, which we denote by N, E and F1, F+

1 respec-
tively. The nontrivial (anti)commutation relations are
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N, F1
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= ≠F1 ,
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N, F+

1
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= F+
1 ,
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F1, F+

1
*

= E , (15)

and E is central. This is just a fermionic version of
the usual spin algebra. Each site i carries a gl(1|1)-
representation generated by fi, f

+
i , the number operator

(≠1)i
f

+
i fi and central charge (≠1)i. From this perspec-

tive, (7)–(9) is a long-range gl(1|1) super-spin chain. For
odd length the alternating central charge breaks periodic
boundaries, which are replaced by (8). Our model has a
global gl(1|1)-symmetry generated by

F1 =
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i=1
fi , F+

1 =
Nÿ

i=1
f

+
i ,

N =
Nÿ

i=1
(≠1)i

f
+
i fi , E =

Nÿ

i=1
(≠1)i = ≠1 ,

(16)

Indeed, these operators anticommute with all gi, g
+
j , and

thus commute with the conserved charges (7)–(9).
Since F2

1 = (F+
1 )2 = 0, gl(1|1) produces fewer descen-

dants than su(2) does for isotropic spin chains. This is
compensated by additional bosonic generators

F2 =
Nÿ

i<j

fi fj , F+
2 =

Nÿ

i<j

f
+
i f

+
j , (17)

which commute with the ei, whence with (7)–(9). To-
gether, (16)–(17) generate the full global-symmetry alge-
bra, called A1|1 [5]. It is the Uq sl(2)|q=i symmetry from
the parent model in fermionic language, cf. [6, §2.3].

Extended symmetry. The parent model has quantum-
a�ne sl(2) symmetry, which underpins the large degen-
eracies (21). As we will see, these are already visible in
the two-particle spectrum. A plausible guess is that it
relates to the Yangian of gl(1|1). A detailed study of this
extended symmetry will be performed elsewhere.

The spectrum. The spectrum and degeneracies of the
parent model are known explicitly [14, 19–21]. Like for
the HS chain, the quantum numbers are ‘motifs’ [15]
{µm}, consisting of integers 1 6 µm < N increasing as

µm+1 > µm + 1 , 1 6 m < M . (18)

Such a motif labels an M -fermion state with quasi-
momentum p = 2fi
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Figure 1. The dispersion relations (20) alternate between two
linear branches, realising chiral and (up to a shift) ‘full’ mass-
less relativistic dispersions on the lattice.
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This state has (often many) descendants due to the ex-
tended symmetry. Its multiplicity is [13, 21] N + 1 for
the empty motif (at M = 0), and otherwise

µ1 (N ≠ µM )
M≠1Ÿ

m=1
(µm+1 ≠ µm ≠ 1) . (21)

Given the extremely simple dispersion, further (‘acciden-
tal’) degeneracies between di�erent motifs occur much
more often than even for the HS chain.

The energy levels are equispaced with steps of 2. E
l is

bounded by ±(N2
≠ 1)/4 and reaches these extremes at

motifs {1, 3, . . . , N ≠2} and {2, 4, . . . , N ≠1}, cf. Fig. 1. H
has eigenvalues > 0, with E = 0 for the empty motif, and
maximal energy E = 2¸(3¸ + 1) or E = 2(¸ + 1)(3¸ + 1)
depending on whether N = 4¸ + 3 or N = 4¸ + 1, re-
spectively. This maximum corresponds to the one or two
motifs {1, 3, . . . , N ≠4, N ≠2} switching halfway between
the branches of Án in Fig. 1. Intriguingly, for H a few lev-
els near the maximum are missing.

Explicit diagonalisation. Let us (re)derive this spec-
trum from the fermionic representation. The key to defin-
ing a good basis of fermions is to start at one end of the
lattice and use the quasi-translation operator:

�i © G1≠i
f1 Gi≠1

, �+
i © G1≠i

f
+
1 Gi≠1

. (22)

These dressed fermions obey the periodicity

�i+N = �i , �+
i+N = �+
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and have non-local anticommutation relations [22]
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= ≠(1 + tj≠i) , {�i, �j} = {�+

i , �+
j } = 0 .
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The nontrivial relation only depends on the distance. Set
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an
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2

is parity even, it is better suited for the role of hamil-
tonian. The extended symmetry (ii) requires special
‘quasi-periodic’ boundary conditions, which break uni-
tarity, cf. [23]. Nevertheless, by PT-invariance, the spec-
trum is real, cf. [25]. The reward for having complicated
interactions is that this spectrum is extremely simple as
in (iii): sums of quasiparticle energies with linear disper-
sions, comprising two branches that are associated with
even and odd mode numbers. Spin chains with linear
dispersions also arise in AdS3/CFT2 integrability [26].
The interaction in the quartic hamiltonian implements a
statistical selection rule, excluding occupation of succes-
sive mode numbers, that originates in the parent model
and matches the description of the HS chain via ‘mo-
tifs’ [15]. This selection rule comes with high degenera-
cies for the motifs to account for the full Hilbert space.
These degeneracies are caused by (ii), arising from the
parent model’s extended spin symmetry. The latter in-
cludes a global symmetry algebra that contains gl(1|1)
and is the commutant of the free-fermion TL algebra [5].
Due to the linear dispersions, there are many further ‘ac-
cidental’ degeneracies between di�erent motifs.
The model. Consider fermions hopping on a 1d lattice
with an odd number N sites. The simplest formulation
of our model uses non-unitary fermionic operators with
anticommutation relations [6]

{fi, f
+
j } = (≠1)i

”ij , {fi, fj} = {f
+
i , f

+
j } = 0 . (1)

They are related to canonical Jordan–Wigner fermions
as fj = (≠i)j

cj , f
+
j = (≠i)j

c
†
j . The fs will avoid a

proliferation of factors of i and make the symmetries more
transparent. From the two-site fermionic operators

gi © fi + fi+1 , g
+
i = f

+
i + f

+
i+1 , 1 6 i < N , (2)

we construct the quadratic combinations

ei © g
+
i gi , 1 6 i < N , (3)

which obey the free-fermion TL algebra relations

e
2
i = 0 , ei ei±1 ei = ei , [ei, ej ] = 0 if |i≠ j| > 1 . (4)

Further define the nested TL commutators [22, § C]

e[i,j] © [[· · · [ei, ei+1], · · · ], ej ]
= sij

!
g

+
j gi + (≠1)i≠j

g
+
i gj

"
, i ”= j ,

(5)

where sij © (≠1)(i≠j)(i+j≠1)/2, and we set e[i,i] © ei.
Note that (5) is bilinear in the fermions (1). Finally set

tk © tan fik
N , tk,l ©

rl≠1
i=k ti (k < l) , tk,k © 1 . (6)

Then the chiral hamiltonian reads

Hl = i
2

ÿ

16i6j<N

h
l
ij e[i,j] ,

h
l
ij ©

Nÿ

n=j+1
tn≠j,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
.

(7)

This is a quadratic (free-fermion) hamiltonian describing
long-range hopping. It is not translationally invariant:
the amplitudes h

l
ij do not only depend on the distance

i ≠ j, and sites N, 1 are not on the same footing as other
neighbours i, i + 1. Instead, the standard translation op-
erator is replaced by the quasi-translation operator

G = (1 + tN≠1 eN≠1) · · · (1 + t1 e1) , GN = 1 . (8)

The model is integrable: there exists a hierarchy of con-
served charges that commute with each other and (7).
We can explicitly write down the next charge, which is
a linear combination of anticommutators of the nested
commutators (5) with coe�cients like in (7),

H = ≠
1

4N

N≠1ÿ

i6j<k6l

!
h

l
ij;kl + h

r
ij;kl

" )
e[i,j], e[k,l]

*
, (9)

h
l
ij;kl © (≠1)k≠j

Nÿ

n(>l)
tn≠l,n≠j tn≠k,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
,

h
r
ij;kl © (≠1)l≠j+k≠i

h
l
N≠l,N≠k;N≠j,N≠i .

Integrability guarantees that these quantities, and higher
charges that we do not give here, mutually commute,

#
G, Hl$

=
#
G, H

$
=

#
Hl

, H
$

= 0 . (10)

The existence of this hierarchy of commuting charges,
and their expressions, stem from the parent model [22].
Symmetries. The commuting charges (7)–(9) have sev-
eral transformation properties and symmetries.

Parity. Parity acts by reversal of the lattice sites
P(fi) = fN+1≠i. This preserves the anticommutation
relations (1) since N is odd. The TL generators trans-
form as P(ei) = eN≠i. The chiral hamiltonian (7) is not
invariant under parity, whence its name. It is a highly
nontrivial result that P(Hl) = ≠Hl [22]. We have

P(Hl) = ≠Hl
, P(H) = H , P(G) = G≠1

, (11)

where the last relation uses ti = ≠tN≠i.
Time reversal. We define time reversal as complex

conjugation of the coe�cients with respect to the Fock
basis f

+
i1

· · · f
+
iM

|?Í. Thus T(ei) = ei, and

T(Hl) = ≠Hl
, T(H) = H , T(G) = G . (12)

Since the hamiltonians (and their eigenstates) are PT-
invariant, their spectrum is real [27–30]. The same is
true for the ‘quasi-momentum’ p = ≠i log G.

Charge conjugation. Another simple operation, which
we interpret as the particle-hole transformation, ex-
changes the creation and annihilation operators

CÕ(fi) = f
+
i , CÕ(f+

i ) = fi . (13)

Then CÕ(ei) = ≠ei, preserving (4). Including a suitable
antilinear transformation U, see [22], gives charge conju-
gation C = CÕ U. It acts on the conserved charges by

C(Hl) = ≠Hl
, C(H) = H , C(G) = G . (14)
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Global symmetry. The model can be seen as a long-
range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic
generators, which we denote by N, E and F1, F+

1 respec-
tively. The nontrivial (anti)commutation relations are
#
N, F1

$
= ≠F1 ,

#
N, F+

1
$

= F+
1 ,

)
F1, F+

1
*

= E , (15)

and E is central. This is just a fermionic version of
the usual spin algebra. Each site i carries a gl(1|1)-
representation generated by fi, f

+
i , the number operator

(≠1)i
f

+
i fi and central charge (≠1)i. From this perspec-

tive, (7)–(9) is a long-range gl(1|1) super-spin chain. For
odd length the alternating central charge breaks periodic
boundaries, which are replaced by (8). Our model has a
global gl(1|1)-symmetry generated by

F1 =
Nÿ

i=1
fi , F+

1 =
Nÿ

i=1
f

+
i ,

N =
Nÿ

i=1
(≠1)i

f
+
i fi , E =

Nÿ

i=1
(≠1)i = ≠1 ,

(16)

Indeed, these operators anticommute with all gi, g
+
j , and

thus commute with the conserved charges (7)–(9).
Since F2

1 = (F+
1 )2 = 0, gl(1|1) produces fewer descen-

dants than su(2) does for isotropic spin chains. This is
compensated by additional bosonic generators

F2 =
Nÿ

i<j

fi fj , F+
2 =

Nÿ

i<j

f
+
i f

+
j , (17)

which commute with the ei, whence with (7)–(9). To-
gether, (16)–(17) generate the full global-symmetry alge-
bra, called A1|1 [5]. It is the Uq sl(2)|q=i symmetry from
the parent model in fermionic language, cf. [6, §2.3].

Extended symmetry. The parent model has quantum-
a�ne sl(2) symmetry, which underpins the large degen-
eracies (21). As we will see, these are already visible in
the two-particle spectrum. A plausible guess is that it
relates to the Yangian of gl(1|1). A detailed study of this
extended symmetry will be performed elsewhere.

The spectrum. The spectrum and degeneracies of the
parent model are known explicitly [14, 19–21]. Like for
the HS chain, the quantum numbers are ‘motifs’ [15]
{µm}, consisting of integers 1 6 µm < N increasing as

µm+1 > µm + 1 , 1 6 m < M . (18)

Such a motif labels an M -fermion state with quasi-
momentum p = 2fi

N

q
m µm mod 2fi setting the eigenvalue

eip of G. Its energy is additive:

E
l
{µm} =
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Figure 1. The dispersion relations (20) alternate between two
linear branches, realising chiral and (up to a shift) ‘full’ mass-
less relativistic dispersions on the lattice.

with dispersions having two linear branches (Fig. 1):

Á
l
n =

;
n , n even ,
n ≠ N , n odd ,

Án = |Á
l
n| . (20)

This state has (often many) descendants due to the ex-
tended symmetry. Its multiplicity is [13, 21] N + 1 for
the empty motif (at M = 0), and otherwise

µ1 (N ≠ µM )
M≠1Ÿ

m=1
(µm+1 ≠ µm ≠ 1) . (21)

Given the extremely simple dispersion, further (‘acciden-
tal’) degeneracies between di�erent motifs occur much
more often than even for the HS chain.

The energy levels are equispaced with steps of 2. E
l is

bounded by ±(N2
≠ 1)/4 and reaches these extremes at

motifs {1, 3, . . . , N ≠2} and {2, 4, . . . , N ≠1}, cf. Fig. 1. H
has eigenvalues > 0, with E = 0 for the empty motif, and
maximal energy E = 2¸(3¸ + 1) or E = 2(¸ + 1)(3¸ + 1)
depending on whether N = 4¸ + 3 or N = 4¸ + 1, re-
spectively. This maximum corresponds to the one or two
motifs {1, 3, . . . , N ≠4, N ≠2} switching halfway between
the branches of Án in Fig. 1. Intriguingly, for H a few lev-
els near the maximum are missing.

Explicit diagonalisation. Let us (re)derive this spec-
trum from the fermionic representation. The key to defin-
ing a good basis of fermions is to start at one end of the
lattice and use the quasi-translation operator:

�i © G1≠i
f1 Gi≠1

, �+
i © G1≠i

f
+
1 Gi≠1

. (22)

These dressed fermions obey the periodicity

�i+N = �i , �+
i+N = �+

i , (23)

and have non-local anticommutation relations [22]
)

�i, �+
j

*
= ≠(1 + tj≠i) , {�i, �j} = {�+

i , �+
j } = 0 .

(24)
The nontrivial relation only depends on the distance. Set
a0 © i and an © in+1/2 else. The rescaled Fourier modes

�̃n ©
an

N

Nÿ

j=1
e≠2ifinj/N �j , �̃+

n ©
an

N

Nÿ

j=1
e2ifinj/N �+

j ,

(25)

• chiral Hamiltonian
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and E is central. This is just a fermionic version of
the usual spin algebra. Each site i carries a gl(1|1)-
representation generated by fi, f

+
i , the number operator

(≠1)i
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+
i fi and central charge (≠1)i. From this perspec-

tive, (7)–(9) is a long-range gl(1|1) super-spin chain. For
odd length the alternating central charge breaks periodic
boundaries, which are replaced by (8). Our model has a
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j , and
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which commute with the ei, whence with (7)–(9). To-
gether, (16)–(17) generate the full global-symmetry alge-
bra, called A1|1 [5]. It is the Uq sl(2)|q=i symmetry from
the parent model in fermionic language, cf. [6, §2.3].

Extended symmetry. The parent model has quantum-
a�ne sl(2) symmetry, which underpins the large degen-
eracies (21). As we will see, these are already visible in
the two-particle spectrum. A plausible guess is that it
relates to the Yangian of gl(1|1). A detailed study of this
extended symmetry will be performed elsewhere.

The spectrum. The spectrum and degeneracies of the
parent model are known explicitly [14, 19–21]. Like for
the HS chain, the quantum numbers are ‘motifs’ [15]
{µm}, consisting of integers 1 6 µm < N increasing as
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Figure 1. The dispersion relations (20) alternate between two
linear branches, realising chiral and (up to a shift) ‘full’ mass-
less relativistic dispersions on the lattice.
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the empty motif (at M = 0), and otherwise
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Given the extremely simple dispersion, further (‘acciden-
tal’) degeneracies between di�erent motifs occur much
more often than even for the HS chain.

The energy levels are equispaced with steps of 2. E
l is

bounded by ±(N2
≠ 1)/4 and reaches these extremes at
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maximal energy E = 2¸(3¸ + 1) or E = 2(¸ + 1)(3¸ + 1)
depending on whether N = 4¸ + 3 or N = 4¸ + 1, re-
spectively. This maximum corresponds to the one or two
motifs {1, 3, . . . , N ≠4, N ≠2} switching halfway between
the branches of Án in Fig. 1. Intriguingly, for H a few lev-
els near the maximum are missing.

Explicit diagonalisation. Let us (re)derive this spec-
trum from the fermionic representation. The key to defin-
ing a good basis of fermions is to start at one end of the
lattice and use the quasi-translation operator:
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Global symmetry. The model can be seen as a long-
range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic
generators, which we denote by N, E and F1, F+
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and E is central. This is just a fermionic version of
the usual spin algebra. Each site i carries a gl(1|1)-
representation generated by fi, f

+
i , the number operator

(≠1)i
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+
i fi and central charge (≠1)i. From this perspec-

tive, (7)–(9) is a long-range gl(1|1) super-spin chain. For
odd length the alternating central charge breaks periodic
boundaries, which are replaced by (8). Our model has a
global gl(1|1)-symmetry generated by
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Indeed, these operators anticommute with all gi, g
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j , and

thus commute with the conserved charges (7)–(9).
Since F2

1 = (F+
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which commute with the ei, whence with (7)–(9). To-
gether, (16)–(17) generate the full global-symmetry alge-
bra, called A1|1 [5]. It is the Uq sl(2)|q=i symmetry from
the parent model in fermionic language, cf. [6, §2.3].

Extended symmetry. The parent model has quantum-
a�ne sl(2) symmetry, which underpins the large degen-
eracies (21). As we will see, these are already visible in
the two-particle spectrum. A plausible guess is that it
relates to the Yangian of gl(1|1). A detailed study of this
extended symmetry will be performed elsewhere.

The spectrum. The spectrum and degeneracies of the
parent model are known explicitly [14, 19–21]. Like for
the HS chain, the quantum numbers are ‘motifs’ [15]
{µm}, consisting of integers 1 6 µm < N increasing as

µm+1 > µm + 1 , 1 6 m < M . (18)

Such a motif labels an M -fermion state with quasi-
momentum p = 2fi

N

q
m µm mod 2fi setting the eigenvalue

eip of G. Its energy is additive:
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Figure 1. The dispersion relations (20) alternate between two
linear branches, realising chiral and (up to a shift) ‘full’ mass-
less relativistic dispersions on the lattice.

with dispersions having two linear branches (Fig. 1):
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This state has (often many) descendants due to the ex-
tended symmetry. Its multiplicity is [13, 21] N + 1 for
the empty motif (at M = 0), and otherwise

µ1 (N ≠ µM )
M≠1Ÿ

m=1
(µm+1 ≠ µm ≠ 1) . (21)

Given the extremely simple dispersion, further (‘acciden-
tal’) degeneracies between di�erent motifs occur much
more often than even for the HS chain.

The energy levels are equispaced with steps of 2. E
l is

bounded by ±(N2
≠ 1)/4 and reaches these extremes at

motifs {1, 3, . . . , N ≠2} and {2, 4, . . . , N ≠1}, cf. Fig. 1. H
has eigenvalues > 0, with E = 0 for the empty motif, and
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spectively. This maximum corresponds to the one or two
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the branches of Án in Fig. 1. Intriguingly, for H a few lev-
els near the maximum are missing.

Explicit diagonalisation. Let us (re)derive this spec-
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ing a good basis of fermions is to start at one end of the
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gether, (16)–(17) generate the full global-symmetry alge-
bra, called A1|1 [5]. It is the Uq sl(2)|q=i symmetry from
the parent model in fermionic language, cf. [6, §2.3].

Extended symmetry. The parent model has quantum-
a�ne sl(2) symmetry, which underpins the large degen-
eracies (21). As we will see, these are already visible in
the two-particle spectrum. A plausible guess is that it
relates to the Yangian of gl(1|1). A detailed study of this
extended symmetry will be performed elsewhere.

The spectrum. The spectrum and degeneracies of the
parent model are known explicitly [14, 19–21]. Like for
the HS chain, the quantum numbers are ‘motifs’ [15]
{µm}, consisting of integers 1 6 µm < N increasing as

µm+1 > µm + 1 , 1 6 m < M . (18)
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tended symmetry. Its multiplicity is [13, 21] N + 1 for
the empty motif (at M = 0), and otherwise
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Given the extremely simple dispersion, further (‘acciden-
tal’) degeneracies between di�erent motifs occur much
more often than even for the HS chain.
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l is
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motifs {1, 3, . . . , N ≠2} and {2, 4, . . . , N ≠1}, cf. Fig. 1. H
has eigenvalues > 0, with E = 0 for the empty motif, and
maximal energy E = 2¸(3¸ + 1) or E = 2(¸ + 1)(3¸ + 1)
depending on whether N = 4¸ + 3 or N = 4¸ + 1, re-
spectively. This maximum corresponds to the one or two
motifs {1, 3, . . . , N ≠4, N ≠2} switching halfway between
the branches of Án in Fig. 1. Intriguingly, for H a few lev-
els near the maximum are missing.

Explicit diagonalisation. Let us (re)derive this spec-
trum from the fermionic representation. The key to defin-
ing a good basis of fermions is to start at one end of the
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the usual spin algebra. Each site i carries a gl(1|1)-
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i , the number operator
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which commute with the ei, whence with (7)–(9). To-
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bra, called A1|1 [5]. It is the Uq sl(2)|q=i symmetry from
the parent model in fermionic language, cf. [6, §2.3].
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a�ne sl(2) symmetry, which underpins the large degen-
eracies (21). As we will see, these are already visible in
the two-particle spectrum. A plausible guess is that it
relates to the Yangian of gl(1|1). A detailed study of this
extended symmetry will be performed elsewhere.

The spectrum. The spectrum and degeneracies of the
parent model are known explicitly [14, 19–21]. Like for
the HS chain, the quantum numbers are ‘motifs’ [15]
{µm}, consisting of integers 1 6 µm < N increasing as

µm+1 > µm + 1 , 1 6 m < M . (18)
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the empty motif (at M = 0), and otherwise
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Given the extremely simple dispersion, further (‘acciden-
tal’) degeneracies between di�erent motifs occur much
more often than even for the HS chain.
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l is

bounded by ±(N2
≠ 1)/4 and reaches these extremes at

motifs {1, 3, . . . , N ≠2} and {2, 4, . . . , N ≠1}, cf. Fig. 1. H
has eigenvalues > 0, with E = 0 for the empty motif, and
maximal energy E = 2¸(3¸ + 1) or E = 2(¸ + 1)(3¸ + 1)
depending on whether N = 4¸ + 3 or N = 4¸ + 1, re-
spectively. This maximum corresponds to the one or two
motifs {1, 3, . . . , N ≠4, N ≠2} switching halfway between
the branches of Án in Fig. 1. Intriguingly, for H a few lev-
els near the maximum are missing.

Explicit diagonalisation. Let us (re)derive this spec-
trum from the fermionic representation. The key to defin-
ing a good basis of fermions is to start at one end of the
lattice and use the quasi-translation operator:
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Global symmetry. The model can be seen as a long-
range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic
generators, which we denote by N, E and F1, F+
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and E is central. This is just a fermionic version of
the usual spin algebra. Each site i carries a gl(1|1)-
representation generated by fi, f

+
i , the number operator

(≠1)i
f

+
i fi and central charge (≠1)i. From this perspec-

tive, (7)–(9) is a long-range gl(1|1) super-spin chain. For
odd length the alternating central charge breaks periodic
boundaries, which are replaced by (8). Our model has a
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Indeed, these operators anticommute with all gi, g
+
j , and

thus commute with the conserved charges (7)–(9).
Since F2

1 = (F+
1 )2 = 0, gl(1|1) produces fewer descen-

dants than su(2) does for isotropic spin chains. This is
compensated by additional bosonic generators
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which commute with the ei, whence with (7)–(9). To-
gether, (16)–(17) generate the full global-symmetry alge-
bra, called A1|1 [5]. It is the Uq sl(2)|q=i symmetry from
the parent model in fermionic language, cf. [6, §2.3].

Extended symmetry. The parent model has quantum-
a�ne sl(2) symmetry, which underpins the large degen-
eracies (21). As we will see, these are already visible in
the two-particle spectrum. A plausible guess is that it
relates to the Yangian of gl(1|1). A detailed study of this
extended symmetry will be performed elsewhere.

The spectrum. The spectrum and degeneracies of the
parent model are known explicitly [14, 19–21]. Like for
the HS chain, the quantum numbers are ‘motifs’ [15]
{µm}, consisting of integers 1 6 µm < N increasing as

µm+1 > µm + 1 , 1 6 m < M . (18)

Such a motif labels an M -fermion state with quasi-
momentum p = 2fi
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Figure 1. The dispersion relations (20) alternate between two
linear branches, realising chiral and (up to a shift) ‘full’ mass-
less relativistic dispersions on the lattice.
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This state has (often many) descendants due to the ex-
tended symmetry. Its multiplicity is [13, 21] N + 1 for
the empty motif (at M = 0), and otherwise

µ1 (N ≠ µM )
M≠1Ÿ

m=1
(µm+1 ≠ µm ≠ 1) . (21)

Given the extremely simple dispersion, further (‘acciden-
tal’) degeneracies between di�erent motifs occur much
more often than even for the HS chain.

The energy levels are equispaced with steps of 2. E
l is

bounded by ±(N2
≠ 1)/4 and reaches these extremes at

motifs {1, 3, . . . , N ≠2} and {2, 4, . . . , N ≠1}, cf. Fig. 1. H
has eigenvalues > 0, with E = 0 for the empty motif, and
maximal energy E = 2¸(3¸ + 1) or E = 2(¸ + 1)(3¸ + 1)
depending on whether N = 4¸ + 3 or N = 4¸ + 1, re-
spectively. This maximum corresponds to the one or two
motifs {1, 3, . . . , N ≠4, N ≠2} switching halfway between
the branches of Án in Fig. 1. Intriguingly, for H a few lev-
els near the maximum are missing.

Explicit diagonalisation. Let us (re)derive this spec-
trum from the fermionic representation. The key to defin-
ing a good basis of fermions is to start at one end of the
lattice and use the quasi-translation operator:
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[Haldane, 88; Shastry, 88]



How to solve the model 

The model descends from a q-deformation of the Haldane-Shastry model with quantum 
affine symmetry (which explains the spectrum and the degeneracies)

We want to solve it in terms of (non-unitary) fermions           use quasi-translations
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the HS chain, the quantum numbers are ‘motifs’ [15]
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linear branches, realising chiral and (up to a shift) ‘full’ mass-
less relativistic dispersions on the lattice.
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the empty motif (at M = 0), and otherwise
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Given the extremely simple dispersion, further (‘acciden-
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more often than even for the HS chain.
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has eigenvalues > 0, with E = 0 for the empty motif, and
maximal energy E = 2¸(3¸ + 1) or E = 2(¸ + 1)(3¸ + 1)
depending on whether N = 4¸ + 3 or N = 4¸ + 1, re-
spectively. This maximum corresponds to the one or two
motifs {1, 3, . . . , N ≠4, N ≠2} switching halfway between
the branches of Án in Fig. 1. Intriguingly, for H a few lev-
els near the maximum are missing.

Explicit diagonalisation. Let us (re)derive this spec-
trum from the fermionic representation. The key to defin-
ing a good basis of fermions is to start at one end of the
lattice and use the quasi-translation operator:

�i © G1≠i
f1 Gi≠1

, �+
i © G1≠i

f
+
1 Gi≠1

. (22)

These dressed fermions obey the periodicity

�i+N = �i , �+
i+N = �+

i , (23)

and have non-local anticommutation relations [22]
)

�i, �+
j

*
= ≠(1 + tj≠i) , {�i, �j} = {�+

i , �+
j } = 0 .

(24)
The nontrivial relation only depends on the distance. Set
a0 © i and an © in+1/2 else. The rescaled Fourier modes
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e≠2ifinj/N �j , �̃+

n ©
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N

Nÿ

j=1
e2ifinj/N �+

j ,

(25)

• start with the first site and translate the fermions via 
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Global symmetry. The model can be seen as a long-
range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic
generators, which we denote by N, E and F1, F+

1 respec-
tively. The nontrivial (anti)commutation relations are
#
N, F1

$
= ≠F1 ,

#
N, F+

1
$

= F+
1 ,

)
F1, F+

1
*

= E , (15)

and E is central. This is just a fermionic version of
the usual spin algebra. Each site i carries a gl(1|1)-
representation generated by fi, f

+
i , the number operator

(≠1)i
f

+
i fi and central charge (≠1)i. From this perspec-

tive, (7)–(9) is a long-range gl(1|1) super-spin chain. For
odd length the alternating central charge breaks periodic
boundaries, which are replaced by (8). Our model has a
global gl(1|1)-symmetry generated by

F1 =
Nÿ

i=1
fi , F+

1 =
Nÿ

i=1
f

+
i ,

N =
Nÿ

i=1
(≠1)i

f
+
i fi , E =

Nÿ

i=1
(≠1)i = ≠1 ,

(16)

Indeed, these operators anticommute with all gi, g
+
j , and

thus commute with the conserved charges (7)–(9).
Since F2

1 = (F+
1 )2 = 0, gl(1|1) produces fewer descen-

dants than su(2) does for isotropic spin chains. This is
compensated by additional bosonic generators

F2 =
Nÿ

i<j

fi fj , F+
2 =

Nÿ

i<j

f
+
i f

+
j , (17)

which commute with the ei, whence with (7)–(9). To-
gether, (16)–(17) generate the full global-symmetry alge-
bra, called A1|1 [5]. It is the Uq sl(2)|q=i symmetry from
the parent model in fermionic language, cf. [6, §2.3].

Extended symmetry. The parent model has quantum-
a�ne sl(2) symmetry, which underpins the large degen-
eracies (21). As we will see, these are already visible in
the two-particle spectrum. A plausible guess is that it
relates to the Yangian of gl(1|1). A detailed study of this
extended symmetry will be performed elsewhere.

The spectrum. The spectrum and degeneracies of the
parent model are known explicitly [14, 19–21]. Like for
the HS chain, the quantum numbers are ‘motifs’ [15]
{µm}, consisting of integers 1 6 µm < N increasing as

µm+1 > µm + 1 , 1 6 m < M . (18)

Such a motif labels an M -fermion state with quasi-
momentum p = 2fi

N

q
m µm mod 2fi setting the eigenvalue

eip of G. Its energy is additive:

E
l
{µm} =

Mÿ

m=1
Á

l
µm

, E{µm} =
Mÿ

m=1
Áµm , (19)

Á
l

≠N

0

N

n

N

Á

0

N

n

0 N

Figure 1. The dispersion relations (20) alternate between two
linear branches, realising chiral and (up to a shift) ‘full’ mass-
less relativistic dispersions on the lattice.

with dispersions having two linear branches (Fig. 1):

Á
l
n =

;
n , n even ,
n ≠ N , n odd ,

Án = |Á
l
n| . (20)

This state has (often many) descendants due to the ex-
tended symmetry. Its multiplicity is [13, 21] N + 1 for
the empty motif (at M = 0), and otherwise

µ1 (N ≠ µM )
M≠1Ÿ

m=1
(µm+1 ≠ µm ≠ 1) . (21)

Given the extremely simple dispersion, further (‘acciden-
tal’) degeneracies between di�erent motifs occur much
more often than even for the HS chain.

The energy levels are equispaced with steps of 2. E
l is

bounded by ±(N2
≠ 1)/4 and reaches these extremes at

motifs {1, 3, . . . , N ≠2} and {2, 4, . . . , N ≠1}, cf. Fig. 1. H
has eigenvalues > 0, with E = 0 for the empty motif, and
maximal energy E = 2¸(3¸ + 1) or E = 2(¸ + 1)(3¸ + 1)
depending on whether N = 4¸ + 3 or N = 4¸ + 1, re-
spectively. This maximum corresponds to the one or two
motifs {1, 3, . . . , N ≠4, N ≠2} switching halfway between
the branches of Án in Fig. 1. Intriguingly, for H a few lev-
els near the maximum are missing.

Explicit diagonalisation. Let us (re)derive this spec-
trum from the fermionic representation. The key to defin-
ing a good basis of fermions is to start at one end of the
lattice and use the quasi-translation operator:

�i © G1≠i
f1 Gi≠1

, �+
i © G1≠i

f
+
1 Gi≠1

. (22)

These dressed fermions obey the periodicity

�i+N = �i , �+
i+N = �+

i , (23)

and have non-local anticommutation relations [22]
)
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= ≠(1 + tj≠i) , {�i, �j} = {�+

i , �+
j } = 0 .

(24)
The nontrivial relation only depends on the distance. Set
a0 © i and an © in+1/2 else. The rescaled Fourier modes
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• the transformation is periodic due to

2

is parity even, it is better suited for the role of hamil-
tonian. The extended symmetry (ii) requires special
‘quasi-periodic’ boundary conditions, which break uni-
tarity, cf. [23]. Nevertheless, by PT-invariance, the spec-
trum is real, cf. [25]. The reward for having complicated
interactions is that this spectrum is extremely simple as
in (iii): sums of quasiparticle energies with linear disper-
sions, comprising two branches that are associated with
even and odd mode numbers. Spin chains with linear
dispersions also arise in AdS3/CFT2 integrability [26].
The interaction in the quartic hamiltonian implements a
statistical selection rule, excluding occupation of succes-
sive mode numbers, that originates in the parent model
and matches the description of the HS chain via ‘mo-
tifs’ [15]. This selection rule comes with high degenera-
cies for the motifs to account for the full Hilbert space.
These degeneracies are caused by (ii), arising from the
parent model’s extended spin symmetry. The latter in-
cludes a global symmetry algebra that contains gl(1|1)
and is the commutant of the free-fermion TL algebra [5].
Due to the linear dispersions, there are many further ‘ac-
cidental’ degeneracies between di�erent motifs.
The model. Consider fermions hopping on a 1d lattice
with an odd number N sites. The simplest formulation
of our model uses non-unitary fermionic operators with
anticommutation relations [6]

{fi, f
+
j } = (≠1)i

”ij , {fi, fj} = {f
+
i , f

+
j } = 0 . (1)

They are related to canonical Jordan–Wigner fermions
as fj = (≠i)j

cj , f
+
j = (≠i)j

c
†
j . The fs will avoid a

proliferation of factors of i and make the symmetries more
transparent. From the two-site fermionic operators

gi © fi + fi+1 , g
+
i = f

+
i + f

+
i+1 , 1 6 i < N , (2)

we construct the quadratic combinations

ei © g
+
i gi , 1 6 i < N , (3)

which obey the free-fermion TL algebra relations

e
2
i = 0 , ei ei±1 ei = ei , [ei, ej ] = 0 if |i≠ j| > 1 . (4)

Further define the nested TL commutators [22, § C]

e[i,j] © [[· · · [ei, ei+1], · · · ], ej ]
= sij

!
g

+
j gi + (≠1)i≠j

g
+
i gj

"
, i ”= j ,

(5)

where sij © (≠1)(i≠j)(i+j≠1)/2, and we set e[i,i] © ei.
Note that (5) is bilinear in the fermions (1). Finally set

tk © tan fik
N , tk,l ©

rl≠1
i=k ti (k < l) , tk,k © 1 . (6)

Then the chiral hamiltonian reads

Hl = i
2

ÿ

16i6j<N

h
l
ij e[i,j] ,

h
l
ij ©

Nÿ

n=j+1
tn≠j,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
.

(7)

This is a quadratic (free-fermion) hamiltonian describing
long-range hopping. It is not translationally invariant:
the amplitudes h

l
ij do not only depend on the distance

i ≠ j, and sites N, 1 are not on the same footing as other
neighbours i, i + 1. Instead, the standard translation op-
erator is replaced by the quasi-translation operator

G = (1 + tN≠1 eN≠1) · · · (1 + t1 e1) , GN = 1 . (8)

The model is integrable: there exists a hierarchy of con-
served charges that commute with each other and (7).
We can explicitly write down the next charge, which is
a linear combination of anticommutators of the nested
commutators (5) with coe�cients like in (7),

H = ≠
1

4N

N≠1ÿ

i6j<k6l

!
h

l
ij;kl + h

r
ij;kl

" )
e[i,j], e[k,l]

*
, (9)

h
l
ij;kl © (≠1)k≠j

Nÿ

n(>l)
tn≠l,n≠j tn≠k,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
,

h
r
ij;kl © (≠1)l≠j+k≠i

h
l
N≠l,N≠k;N≠j,N≠i .

Integrability guarantees that these quantities, and higher
charges that we do not give here, mutually commute,

#
G, Hl$

=
#
G, H

$
=

#
Hl

, H
$

= 0 . (10)

The existence of this hierarchy of commuting charges,
and their expressions, stem from the parent model [22].
Symmetries. The commuting charges (7)–(9) have sev-
eral transformation properties and symmetries.

Parity. Parity acts by reversal of the lattice sites
P(fi) = fN+1≠i. This preserves the anticommutation
relations (1) since N is odd. The TL generators trans-
form as P(ei) = eN≠i. The chiral hamiltonian (7) is not
invariant under parity, whence its name. It is a highly
nontrivial result that P(Hl) = ≠Hl [22]. We have

P(Hl) = ≠Hl
, P(H) = H , P(G) = G≠1

, (11)

where the last relation uses ti = ≠tN≠i.
Time reversal. We define time reversal as complex

conjugation of the coe�cients with respect to the Fock
basis f

+
i1

· · · f
+
iM

|?Í. Thus T(ei) = ei, and

T(Hl) = ≠Hl
, T(H) = H , T(G) = G . (12)

Since the hamiltonians (and their eigenstates) are PT-
invariant, their spectrum is real [27–30]. The same is
true for the ‘quasi-momentum’ p = ≠i log G.

Charge conjugation. Another simple operation, which
we interpret as the particle-hole transformation, ex-
changes the creation and annihilation operators

CÕ(fi) = f
+
i , CÕ(f+

i ) = fi . (13)

Then CÕ(ei) = ≠ei, preserving (4). Including a suitable
antilinear transformation U, see [22], gives charge conju-
gation C = CÕ U. It acts on the conserved charges by

C(Hl) = ≠Hl
, C(H) = H , C(G) = G . (14)

• the price to pay is that the commutation relations are non-local (but translationally invariant)
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Global symmetry. The model can be seen as a long-
range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic
generators, which we denote by N, E and F1, F+

1 respec-
tively. The nontrivial (anti)commutation relations are
#
N, F1

$
= ≠F1 ,

#
N, F+

1
$

= F+
1 ,

)
F1, F+

1
*

= E , (15)

and E is central. This is just a fermionic version of
the usual spin algebra. Each site i carries a gl(1|1)-
representation generated by fi, f

+
i , the number operator

(≠1)i
f

+
i fi and central charge (≠1)i. From this perspec-

tive, (7)–(9) is a long-range gl(1|1) super-spin chain. For
odd length the alternating central charge breaks periodic
boundaries, which are replaced by (8). Our model has a
global gl(1|1)-symmetry generated by

F1 =
Nÿ

i=1
fi , F+

1 =
Nÿ

i=1
f

+
i ,

N =
Nÿ

i=1
(≠1)i

f
+
i fi , E =

Nÿ

i=1
(≠1)i = ≠1 ,

(16)

Indeed, these operators anticommute with all gi, g
+
j , and

thus commute with the conserved charges (7)–(9).
Since F2

1 = (F+
1 )2 = 0, gl(1|1) produces fewer descen-

dants than su(2) does for isotropic spin chains. This is
compensated by additional bosonic generators

F2 =
Nÿ

i<j

fi fj , F+
2 =

Nÿ

i<j

f
+
i f

+
j , (17)

which commute with the ei, whence with (7)–(9). To-
gether, (16)–(17) generate the full global-symmetry alge-
bra, called A1|1 [5]. It is the Uq sl(2)|q=i symmetry from
the parent model in fermionic language, cf. [6, §2.3].

Extended symmetry. The parent model has quantum-
a�ne sl(2) symmetry, which underpins the large degen-
eracies (21). As we will see, these are already visible in
the two-particle spectrum. A plausible guess is that it
relates to the Yangian of gl(1|1). A detailed study of this
extended symmetry will be performed elsewhere.

The spectrum. The spectrum and degeneracies of the
parent model are known explicitly [14, 19–21]. Like for
the HS chain, the quantum numbers are ‘motifs’ [15]
{µm}, consisting of integers 1 6 µm < N increasing as

µm+1 > µm + 1 , 1 6 m < M . (18)

Such a motif labels an M -fermion state with quasi-
momentum p = 2fi

N

q
m µm mod 2fi setting the eigenvalue

eip of G. Its energy is additive:

E
l
{µm} =

Mÿ

m=1
Á

l
µm

, E{µm} =
Mÿ

m=1
Áµm , (19)
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Figure 1. The dispersion relations (20) alternate between two
linear branches, realising chiral and (up to a shift) ‘full’ mass-
less relativistic dispersions on the lattice.

with dispersions having two linear branches (Fig. 1):

Á
l
n =

;
n , n even ,
n ≠ N , n odd ,

Án = |Á
l
n| . (20)

This state has (often many) descendants due to the ex-
tended symmetry. Its multiplicity is [13, 21] N + 1 for
the empty motif (at M = 0), and otherwise

µ1 (N ≠ µM )
M≠1Ÿ

m=1
(µm+1 ≠ µm ≠ 1) . (21)

Given the extremely simple dispersion, further (‘acciden-
tal’) degeneracies between di�erent motifs occur much
more often than even for the HS chain.

The energy levels are equispaced with steps of 2. E
l is

bounded by ±(N2
≠ 1)/4 and reaches these extremes at

motifs {1, 3, . . . , N ≠2} and {2, 4, . . . , N ≠1}, cf. Fig. 1. H
has eigenvalues > 0, with E = 0 for the empty motif, and
maximal energy E = 2¸(3¸ + 1) or E = 2(¸ + 1)(3¸ + 1)
depending on whether N = 4¸ + 3 or N = 4¸ + 1, re-
spectively. This maximum corresponds to the one or two
motifs {1, 3, . . . , N ≠4, N ≠2} switching halfway between
the branches of Án in Fig. 1. Intriguingly, for H a few lev-
els near the maximum are missing.

Explicit diagonalisation. Let us (re)derive this spec-
trum from the fermionic representation. The key to defin-
ing a good basis of fermions is to start at one end of the
lattice and use the quasi-translation operator:

�i © G1≠i
f1 Gi≠1

, �+
i © G1≠i

f
+
1 Gi≠1

. (22)

These dressed fermions obey the periodicity

�i+N = �i , �+
i+N = �+

i , (23)

and have non-local anticommutation relations [22]
)

�i, �+
j

*
= ≠(1 + tj≠i) , {�i, �j} = {�+

i , �+
j } = 0 .

(24)
The nontrivial relation only depends on the distance. Set
a0 © i and an © in+1/2 else. The rescaled Fourier modes

�̃n ©
an

N

Nÿ

j=1
e≠2ifinj/N �j , �̃+

n ©
an

N

Nÿ

j=1
e2ifinj/N �+

j ,

(25)

[Bernard, Gaudin, Haldane, Pasquier, 93; Cherednik 92; Uglov 95; Lamers 18; Lamers, Pasquier, D.S., 22]

As such, the highest weight wave functions are written in terms of particular Macdonald 
polynomials



How to solve the model 

• next we use the Fourier modes of the quasi-translated fermions
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Global symmetry. The model can be seen as a long-
range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic
generators, which we denote by N, E and F1, F+

1 respec-
tively. The nontrivial (anti)commutation relations are
#
N, F1

$
= ≠F1 ,

#
N, F+

1
$

= F+
1 ,

)
F1, F+

1
*

= E , (15)

and E is central. This is just a fermionic version of
the usual spin algebra. Each site i carries a gl(1|1)-
representation generated by fi, f

+
i , the number operator

(≠1)i
f

+
i fi and central charge (≠1)i. From this perspec-

tive, (7)–(9) is a long-range gl(1|1) super-spin chain. For
odd length the alternating central charge breaks periodic
boundaries, which are replaced by (8). Our model has a
global gl(1|1)-symmetry generated by

F1 =
Nÿ

i=1
fi , F+

1 =
Nÿ

i=1
f

+
i ,

N =
Nÿ

i=1
(≠1)i

f
+
i fi , E =
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i=1
(≠1)i = ≠1 ,

(16)

Indeed, these operators anticommute with all gi, g
+
j , and

thus commute with the conserved charges (7)–(9).
Since F2

1 = (F+
1 )2 = 0, gl(1|1) produces fewer descen-

dants than su(2) does for isotropic spin chains. This is
compensated by additional bosonic generators

F2 =
Nÿ

i<j

fi fj , F+
2 =

Nÿ

i<j

f
+
i f

+
j , (17)

which commute with the ei, whence with (7)–(9). To-
gether, (16)–(17) generate the full global-symmetry alge-
bra, called A1|1 [5]. It is the Uq sl(2)|q=i symmetry from
the parent model in fermionic language, cf. [6, §2.3].

Extended symmetry. The parent model has quantum-
a�ne sl(2) symmetry, which underpins the large degen-
eracies (21). As we will see, these are already visible in
the two-particle spectrum. A plausible guess is that it
relates to the Yangian of gl(1|1). A detailed study of this
extended symmetry will be performed elsewhere.

The spectrum. The spectrum and degeneracies of the
parent model are known explicitly [14, 19–21]. Like for
the HS chain, the quantum numbers are ‘motifs’ [15]
{µm}, consisting of integers 1 6 µm < N increasing as

µm+1 > µm + 1 , 1 6 m < M . (18)

Such a motif labels an M -fermion state with quasi-
momentum p = 2fi

N

q
m µm mod 2fi setting the eigenvalue

eip of G. Its energy is additive:
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l
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, E{µm} =
Mÿ

m=1
Áµm , (19)
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Figure 1. The dispersion relations (20) alternate between two
linear branches, realising chiral and (up to a shift) ‘full’ mass-
less relativistic dispersions on the lattice.

with dispersions having two linear branches (Fig. 1):

Á
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n =

;
n , n even ,
n ≠ N , n odd ,

Án = |Á
l
n| . (20)

This state has (often many) descendants due to the ex-
tended symmetry. Its multiplicity is [13, 21] N + 1 for
the empty motif (at M = 0), and otherwise

µ1 (N ≠ µM )
M≠1Ÿ

m=1
(µm+1 ≠ µm ≠ 1) . (21)

Given the extremely simple dispersion, further (‘acciden-
tal’) degeneracies between di�erent motifs occur much
more often than even for the HS chain.

The energy levels are equispaced with steps of 2. E
l is

bounded by ±(N2
≠ 1)/4 and reaches these extremes at

motifs {1, 3, . . . , N ≠2} and {2, 4, . . . , N ≠1}, cf. Fig. 1. H
has eigenvalues > 0, with E = 0 for the empty motif, and
maximal energy E = 2¸(3¸ + 1) or E = 2(¸ + 1)(3¸ + 1)
depending on whether N = 4¸ + 3 or N = 4¸ + 1, re-
spectively. This maximum corresponds to the one or two
motifs {1, 3, . . . , N ≠4, N ≠2} switching halfway between
the branches of Án in Fig. 1. Intriguingly, for H a few lev-
els near the maximum are missing.

Explicit diagonalisation. Let us (re)derive this spec-
trum from the fermionic representation. The key to defin-
ing a good basis of fermions is to start at one end of the
lattice and use the quasi-translation operator:

�i © G1≠i
f1 Gi≠1

, �+
i © G1≠i

f
+
1 Gi≠1

. (22)

These dressed fermions obey the periodicity

�i+N = �i , �+
i+N = �+

i , (23)

and have non-local anticommutation relations [22]
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= ≠(1 + tj≠i) , {�i, �j} = {�+

i , �+
j } = 0 .

(24)
The nontrivial relation only depends on the distance. Set
a0 © i and an © in+1/2 else. The rescaled Fourier modes
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Global symmetry. The model can be seen as a long-
range spin chain with alternating gl(1|1)-representations.
Recall that gl(1|1) has two bosonic and two fermionic
generators, which we denote by N, E and F1, F+

1 respec-
tively. The nontrivial (anti)commutation relations are
#
N, F1

$
= ≠F1 ,

#
N, F+

1
$

= F+
1 ,

)
F1, F+

1
*

= E , (15)

and E is central. This is just a fermionic version of
the usual spin algebra. Each site i carries a gl(1|1)-
representation generated by fi, f

+
i , the number operator

(≠1)i
f

+
i fi and central charge (≠1)i. From this perspec-

tive, (7)–(9) is a long-range gl(1|1) super-spin chain. For
odd length the alternating central charge breaks periodic
boundaries, which are replaced by (8). Our model has a
global gl(1|1)-symmetry generated by

F1 =
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1 =
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N =
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(≠1)i
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+
i fi , E =
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(16)

Indeed, these operators anticommute with all gi, g
+
j , and

thus commute with the conserved charges (7)–(9).
Since F2

1 = (F+
1 )2 = 0, gl(1|1) produces fewer descen-

dants than su(2) does for isotropic spin chains. This is
compensated by additional bosonic generators

F2 =
Nÿ

i<j

fi fj , F+
2 =

Nÿ
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f
+
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+
j , (17)

which commute with the ei, whence with (7)–(9). To-
gether, (16)–(17) generate the full global-symmetry alge-
bra, called A1|1 [5]. It is the Uq sl(2)|q=i symmetry from
the parent model in fermionic language, cf. [6, §2.3].

Extended symmetry. The parent model has quantum-
a�ne sl(2) symmetry, which underpins the large degen-
eracies (21). As we will see, these are already visible in
the two-particle spectrum. A plausible guess is that it
relates to the Yangian of gl(1|1). A detailed study of this
extended symmetry will be performed elsewhere.

The spectrum. The spectrum and degeneracies of the
parent model are known explicitly [14, 19–21]. Like for
the HS chain, the quantum numbers are ‘motifs’ [15]
{µm}, consisting of integers 1 6 µm < N increasing as

µm+1 > µm + 1 , 1 6 m < M . (18)

Such a motif labels an M -fermion state with quasi-
momentum p = 2fi

N

q
m µm mod 2fi setting the eigenvalue

eip of G. Its energy is additive:

E
l
{µm} =

Mÿ

m=1
Á

l
µm

, E{µm} =
Mÿ

m=1
Áµm , (19)

Á
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Figure 1. The dispersion relations (20) alternate between two
linear branches, realising chiral and (up to a shift) ‘full’ mass-
less relativistic dispersions on the lattice.

with dispersions having two linear branches (Fig. 1):

Á
l
n =

;
n , n even ,
n ≠ N , n odd ,

Án = |Á
l
n| . (20)

This state has (often many) descendants due to the ex-
tended symmetry. Its multiplicity is [13, 21] N + 1 for
the empty motif (at M = 0), and otherwise

µ1 (N ≠ µM )
M≠1Ÿ

m=1
(µm+1 ≠ µm ≠ 1) . (21)

Given the extremely simple dispersion, further (‘acciden-
tal’) degeneracies between di�erent motifs occur much
more often than even for the HS chain.

The energy levels are equispaced with steps of 2. E
l is

bounded by ±(N2
≠ 1)/4 and reaches these extremes at

motifs {1, 3, . . . , N ≠2} and {2, 4, . . . , N ≠1}, cf. Fig. 1. H
has eigenvalues > 0, with E = 0 for the empty motif, and
maximal energy E = 2¸(3¸ + 1) or E = 2(¸ + 1)(3¸ + 1)
depending on whether N = 4¸ + 3 or N = 4¸ + 1, re-
spectively. This maximum corresponds to the one or two
motifs {1, 3, . . . , N ≠4, N ≠2} switching halfway between
the branches of Án in Fig. 1. Intriguingly, for H a few lev-
els near the maximum are missing.

Explicit diagonalisation. Let us (re)derive this spec-
trum from the fermionic representation. The key to defin-
ing a good basis of fermions is to start at one end of the
lattice and use the quasi-translation operator:

�i © G1≠i
f1 Gi≠1

, �+
i © G1≠i

f
+
1 Gi≠1

. (22)

These dressed fermions obey the periodicity

�i+N = �i , �+
i+N = �+

i , (23)

and have non-local anticommutation relations [22]
)

�i, �+
j

*
= ≠(1 + tj≠i) , {�i, �j} = {�+

i , �+
j } = 0 .

(24)
The nontrivial relation only depends on the distance. Set
a0 © i and an © in+1/2 else. The rescaled Fourier modes

�̃n ©
an

N

Nÿ

j=1
e≠2ifinj/N �j , �̃+

n ©
an

N

Nÿ

j=1
e2ifinj/N �+

j ,

(25)
• to get canonical commutation relations we rescaled the Fourier modes  4

obey canonical anticommutation relations
)

�̃n, �̃+
m

*
= ”nm , {�̃n, �̃m} = {�̃+

n , �̃+
m} = 0 . (26)

They are covariant under quasi-translations in the sense

G �̃n G≠1 = e≠2ifin/N �̃n , G �̃+
n G≠1 = e2ifin/N �̃+

n .

(27)
The relation to the original fermions is strikingly simple.
The zero-modes commute with the hamiltonians: they
are just the fermionic gl(1|1) generators from (16) [22],

1
a0

�̃0 =
Nÿ

i=1
fi = F1 ,

1
a0

�̃+
0 =

Nÿ

i=1
f

+
i = F+

1 . (28)

The other modes are explicit linear combinations of the
two-site fermions (2), with coe�cients given in [22]:

1
an

�̃n =
N≠1ÿ

i=1
Mni gi ,

1
an

�̃+
n =

N≠1ÿ

i=1
M̄ni g

+
i . (29)

In terms of these fermionic modes, Hl is diagonal:

Hl =
N≠1ÿ

n=1
Á

l
n �̃+

n �̃n . (30)

Numerics for low N confirms the equality with (7). If |?Í

is the fermionic vacuum, then by (26) the Fock states

|n1, . . . , nM Í © �̃+
n1 . . . �̃+

nM
|?Í , (31)

form an eigenbasis for Hl labelled by all 2N fermionic
mode numbers {nm} with 0 6 n1 < · · · < nM < N . The
quasi-momentum of (31) is p = 2fi

N

q
m nm mod 2fi, and

its chiral energy E
l
{nm} =

q
m Á

l
nm

matches (19)–(20)
when {nm} is a motif. Observe that, cf. Fig. 1,

Á
l
n + Á

l
n+1 = Á

l
2n+1 mod N . (32)

Next, (9) takes the quartic form [22]:

H =
N≠1ÿ

n=1
Án �̃+

n �̃n +
ÿ

16m<n<N
16r<s<N

Ṽmn;rs �̃+
m �̃+

n �̃r �̃s . (33)

The commutation (10) only allows Ṽmn;rs ”= 0 if [22] the
quasi-momentum and chiral energy are conserved:

m + n = r + s mod N , Á
l
m + Á

l
n = Á

l
r + Á

l
s . (34)

Numerics for odd N 6 9 suggest the stronger selection
rule that m + n = r + s be odd, with nonzero values
Ṽ = ±4 determined by Ṽmn;rs = Ṽrs;mn and

Ṽmn;m+k,n≠k = (≠1)k+14 ”m odd , 0 6 2k < n≠m . (35)

For one-particle states |nÍ only the quadratic part of (33)
contributes, reproducing the non-chiral dispersion (20).
The quartic part implements the statistical repulsion
rule (18): H is genuinely interacting. Correspondingly,
the Fock states (31) are generally not eigenstates of H.
We illustrate this for the two-fermion spectrum:

• By global symmetry, the descendant |0, nÍ Ã F+
1 |nÍ,

cf. (28), is an H-eigenstate belonging to the motif {n}.
• Any |m, nÍ with 0 < m < n < N and n ≠ m even

is protected (Ṽ = 0) by the selection rules. It is an
H-eigenstate with motif {m, n}.

• Any |1, 2 n
Õ
Í is mixed with |1 + k, 2 n

Õ
≠ kÍ by (35):

– For |1, 2Í only k = 0 contributes, so it is again an
H-eigenstate, with energy Á1 + Á2 + Ṽ12;12 = Á3. It
is degenerate with |3Í for all charges, cf. (32), and
belongs to the motif {3}: |1, 2Í Ã ‚F+

1 |3Í for some
extended-symmetry generator ‚F+

1 .
– All |1, 2 n

Õ
Í with n

Õ
> 1 mix with |1 + k, 2 n

Õ
≠ kÍ,

k > 0. Diagonalising this n
Õ
◊ n

Õ block of H gives
eigenstates with ‘squeezed’ motifs {1 + k, 2 n

Õ
≠ k},

0 6 k 6 n
Õ
≠ 2, plus a state that is proportional to

‚F+
1 |2 n

Õ + 1Í or, if 2 n
Õ = N ≠ 1, to F+

2 |?Í.
• Likewise for |N ≠2 n

Õ +1, N ≠1Í Ã P |1, 2 n
Õ
Í by parity.

See [22] for examples at low N . Besides actually diag-
onalising the blocks, and matching the result with the
parent-model eigenstates at q = i, this gives the full two-
particle spectrum. Note the statistical repulsion in ac-
tion, ‘squeezing’ adjacent modes to extended-symmetry
descendants, cf. [31, §4.1.6]. A fermionic description of
the higher spectrum requires a deeper understanding of
the extended symmetry.

Outlook. We obtained and analysed a long-range fermi-
onic model with extended symmetry from the q æ i
limit of the xxz-type HS chain. A full understanding
requires an explicit fermionic realisation of the extended-
symmetry algebra. This, and a systematic construction
of all eigenvectors, which are known for the parent model,
is left for future work.

The case of even N needs separate treatment. Then
the parent hamiltonian diverges as q æ i, and regularisa-
tion sets all energies to zero. However, the wave functions
remain non-trivial, and numerics suggests the presence
of Jordan blocks up to size N/2 + 1. While indecompos-
able representations are expected, the size of the Jordan
blocks signal that these are not just zigzag modules ap-
pearing for systems with merely global symmetry [32].
We plan to report on this in the near future.

Another important direction is the continuum limit,
where we expect the system to exhibit conformal in-
variance. The explicit identification of the correspond-
ing CFT requires determining the extended symmetry.
Based on the isotropic HS chain we expect the CFT limit
to have Kac–Moody symmetry, perhaps level-1 gl(1|1)
[33]. It will be interesting to find the continuum coun-
terparts of the chiral Hamiltonian, which is reminiscent
of the Virasoro generator L0, and see what happens
with the staggering in the dispersion relation. While
the relativistic-like dispersion for odd length seems well
adapted for the continuum limit, it is at odds with the
vanishing spectrum for even length.

For the Heisenberg xxz chain other root-of-unity val-
ues of q, notably q3 = 1 [34], are special too. It would be
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G �̃n G≠1 = e≠2ifin/N �̃n , G �̃+
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(27)
The relation to the original fermions is strikingly simple.
The zero-modes commute with the hamiltonians: they
are just the fermionic gl(1|1) generators from (16) [22],

1
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�̃0 =
Nÿ

i=1
fi = F1 ,

1
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0 =

Nÿ

i=1
f
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1 . (28)

The other modes are explicit linear combinations of the
two-site fermions (2), with coe�cients given in [22]:

1
an

�̃n =
N≠1ÿ

i=1
Mni gi ,

1
an

�̃+
n =
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In terms of these fermionic modes, Hl is diagonal:

Hl =
N≠1ÿ

n=1
Á

l
n �̃+

n �̃n . (30)

Numerics for low N confirms the equality with (7). If |?Í

is the fermionic vacuum, then by (26) the Fock states

|n1, . . . , nM Í © �̃+
n1 . . . �̃+

nM
|?Í , (31)

form an eigenbasis for Hl labelled by all 2N fermionic
mode numbers {nm} with 0 6 n1 < · · · < nM < N . The
quasi-momentum of (31) is p = 2fi

N

q
m nm mod 2fi, and

its chiral energy E
l
{nm} =

q
m Á

l
nm

matches (19)–(20)
when {nm} is a motif. Observe that, cf. Fig. 1,

Á
l
n + Á

l
n+1 = Á

l
2n+1 mod N . (32)

Next, (9) takes the quartic form [22]:

H =
N≠1ÿ

n=1
Án �̃+

n �̃n +
ÿ

16m<n<N
16r<s<N

Ṽmn;rs �̃+
m �̃+

n �̃r �̃s . (33)

The commutation (10) only allows Ṽmn;rs ”= 0 if [22] the
quasi-momentum and chiral energy are conserved:

m + n = r + s mod N , Á
l
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l
n = Á

l
r + Á
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s . (34)

Numerics for odd N 6 9 suggest the stronger selection
rule that m + n = r + s be odd, with nonzero values
Ṽ = ±4 determined by Ṽmn;rs = Ṽrs;mn and

Ṽmn;m+k,n≠k = (≠1)k+14 ”m odd , 0 6 2k < n≠m . (35)

For one-particle states |nÍ only the quadratic part of (33)
contributes, reproducing the non-chiral dispersion (20).
The quartic part implements the statistical repulsion
rule (18): H is genuinely interacting. Correspondingly,
the Fock states (31) are generally not eigenstates of H.
We illustrate this for the two-fermion spectrum:

• By global symmetry, the descendant |0, nÍ Ã F+
1 |nÍ,

cf. (28), is an H-eigenstate belonging to the motif {n}.
• Any |m, nÍ with 0 < m < n < N and n ≠ m even

is protected (Ṽ = 0) by the selection rules. It is an
H-eigenstate with motif {m, n}.

• Any |1, 2 n
Õ
Í is mixed with |1 + k, 2 n

Õ
≠ kÍ by (35):

– For |1, 2Í only k = 0 contributes, so it is again an
H-eigenstate, with energy Á1 + Á2 + Ṽ12;12 = Á3. It
is degenerate with |3Í for all charges, cf. (32), and
belongs to the motif {3}: |1, 2Í Ã ‚F+

1 |3Í for some
extended-symmetry generator ‚F+
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– All |1, 2 n

Õ
Í with n

Õ
> 1 mix with |1 + k, 2 n

Õ
≠ kÍ,

k > 0. Diagonalising this n
Õ
◊ n

Õ block of H gives
eigenstates with ‘squeezed’ motifs {1 + k, 2 n

Õ
≠ k},

0 6 k 6 n
Õ
≠ 2, plus a state that is proportional to

‚F+
1 |2 n

Õ + 1Í or, if 2 n
Õ = N ≠ 1, to F+

2 |?Í.
• Likewise for |N ≠2 n

Õ +1, N ≠1Í Ã P |1, 2 n
Õ
Í by parity.

See [22] for examples at low N . Besides actually diag-
onalising the blocks, and matching the result with the
parent-model eigenstates at q = i, this gives the full two-
particle spectrum. Note the statistical repulsion in ac-
tion, ‘squeezing’ adjacent modes to extended-symmetry
descendants, cf. [31, §4.1.6]. A fermionic description of
the higher spectrum requires a deeper understanding of
the extended symmetry.

Outlook. We obtained and analysed a long-range fermi-
onic model with extended symmetry from the q æ i
limit of the xxz-type HS chain. A full understanding
requires an explicit fermionic realisation of the extended-
symmetry algebra. This, and a systematic construction
of all eigenvectors, which are known for the parent model,
is left for future work.

The case of even N needs separate treatment. Then
the parent hamiltonian diverges as q æ i, and regularisa-
tion sets all energies to zero. However, the wave functions
remain non-trivial, and numerics suggests the presence
of Jordan blocks up to size N/2 + 1. While indecompos-
able representations are expected, the size of the Jordan
blocks signal that these are not just zigzag modules ap-
pearing for systems with merely global symmetry [32].
We plan to report on this in the near future.

Another important direction is the continuum limit,
where we expect the system to exhibit conformal in-
variance. The explicit identification of the correspond-
ing CFT requires determining the extended symmetry.
Based on the isotropic HS chain we expect the CFT limit
to have Kac–Moody symmetry, perhaps level-1 gl(1|1)
[33]. It will be interesting to find the continuum coun-
terparts of the chiral Hamiltonian, which is reminiscent
of the Virasoro generator L0, and see what happens
with the staggering in the dispersion relation. While
the relativistic-like dispersion for odd length seems well
adapted for the continuum limit, it is at odds with the
vanishing spectrum for even length.

For the Heisenberg xxz chain other root-of-unity val-
ues of q, notably q3 = 1 [34], are special too. It would be

• the zero modes are generators of the gl(1|1) algebra
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In terms of these fermionic modes, Hl is diagonal:

Hl =
N≠1ÿ

n=1
Á

l
n �̃+

n �̃n . (30)

Numerics for low N confirms the equality with (7). If |?Í

is the fermionic vacuum, then by (26) the Fock states

|n1, . . . , nM Í © �̃+
n1 . . . �̃+

nM
|?Í , (31)

form an eigenbasis for Hl labelled by all 2N fermionic
mode numbers {nm} with 0 6 n1 < · · · < nM < N . The
quasi-momentum of (31) is p = 2fi

N

q
m nm mod 2fi, and

its chiral energy E
l
{nm} =

q
m Á

l
nm

matches (19)–(20)
when {nm} is a motif. Observe that, cf. Fig. 1,

Á
l
n + Á

l
n+1 = Á

l
2n+1 mod N . (32)
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contributes, reproducing the non-chiral dispersion (20).
The quartic part implements the statistical repulsion
rule (18): H is genuinely interacting. Correspondingly,
the Fock states (31) are generally not eigenstates of H.
We illustrate this for the two-fermion spectrum:
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1 |nÍ,
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See [22] for examples at low N . Besides actually diag-
onalising the blocks, and matching the result with the
parent-model eigenstates at q = i, this gives the full two-
particle spectrum. Note the statistical repulsion in ac-
tion, ‘squeezing’ adjacent modes to extended-symmetry
descendants, cf. [31, §4.1.6]. A fermionic description of
the higher spectrum requires a deeper understanding of
the extended symmetry.

Outlook. We obtained and analysed a long-range fermi-
onic model with extended symmetry from the q æ i
limit of the xxz-type HS chain. A full understanding
requires an explicit fermionic realisation of the extended-
symmetry algebra. This, and a systematic construction
of all eigenvectors, which are known for the parent model,
is left for future work.

The case of even N needs separate treatment. Then
the parent hamiltonian diverges as q æ i, and regularisa-
tion sets all energies to zero. However, the wave functions
remain non-trivial, and numerics suggests the presence
of Jordan blocks up to size N/2 + 1. While indecompos-
able representations are expected, the size of the Jordan
blocks signal that these are not just zigzag modules ap-
pearing for systems with merely global symmetry [32].
We plan to report on this in the near future.

Another important direction is the continuum limit,
where we expect the system to exhibit conformal in-
variance. The explicit identification of the correspond-
ing CFT requires determining the extended symmetry.
Based on the isotropic HS chain we expect the CFT limit
to have Kac–Moody symmetry, perhaps level-1 gl(1|1)
[33]. It will be interesting to find the continuum coun-
terparts of the chiral Hamiltonian, which is reminiscent
of the Virasoro generator L0, and see what happens
with the staggering in the dispersion relation. While
the relativistic-like dispersion for odd length seems well
adapted for the continuum limit, it is at odds with the
vanishing spectrum for even length.

For the Heisenberg xxz chain other root-of-unity val-
ues of q, notably q3 = 1 [34], are special too. It would be

• the other modes are linear combinations of the two-site operators

2

is parity even, it is better suited for the role of hamil-
tonian. The extended symmetry (ii) requires special
‘quasi-periodic’ boundary conditions, which break uni-
tarity, cf. [23]. Nevertheless, by PT-invariance, the spec-
trum is real, cf. [25]. The reward for having complicated
interactions is that this spectrum is extremely simple as
in (iii): sums of quasiparticle energies with linear disper-
sions, comprising two branches that are associated with
even and odd mode numbers. Spin chains with linear
dispersions also arise in AdS3/CFT2 integrability [26].
The interaction in the quartic hamiltonian implements a
statistical selection rule, excluding occupation of succes-
sive mode numbers, that originates in the parent model
and matches the description of the HS chain via ‘mo-
tifs’ [15]. This selection rule comes with high degenera-
cies for the motifs to account for the full Hilbert space.
These degeneracies are caused by (ii), arising from the
parent model’s extended spin symmetry. The latter in-
cludes a global symmetry algebra that contains gl(1|1)
and is the commutant of the free-fermion TL algebra [5].
Due to the linear dispersions, there are many further ‘ac-
cidental’ degeneracies between di�erent motifs.
The model. Consider fermions hopping on a 1d lattice
with an odd number N sites. The simplest formulation
of our model uses non-unitary fermionic operators with
anticommutation relations [6]

{fi, f
+
j } = (≠1)i

”ij , {fi, fj} = {f
+
i , f

+
j } = 0 . (1)

They are related to canonical Jordan–Wigner fermions
as fj = (≠i)j

cj , f
+
j = (≠i)j

c
†
j . The fs will avoid a

proliferation of factors of i and make the symmetries more
transparent. From the two-site fermionic operators

gi © fi + fi+1 , g
+
i = f

+
i + f

+
i+1 , 1 6 i < N , (2)

we construct the quadratic combinations

ei © g
+
i gi , 1 6 i < N , (3)

which obey the free-fermion TL algebra relations

e
2
i = 0 , ei ei±1 ei = ei , [ei, ej ] = 0 if |i≠ j| > 1 . (4)

Further define the nested TL commutators [22, § C]

e[i,j] © [[· · · [ei, ei+1], · · · ], ej ]
= sij

!
g

+
j gi + (≠1)i≠j

g
+
i gj

"
, i ”= j ,

(5)

where sij © (≠1)(i≠j)(i+j≠1)/2, and we set e[i,i] © ei.
Note that (5) is bilinear in the fermions (1). Finally set

tk © tan fik
N , tk,l ©

rl≠1
i=k ti (k < l) , tk,k © 1 . (6)

Then the chiral hamiltonian reads

Hl = i
2

ÿ

16i6j<N

h
l
ij e[i,j] ,

h
l
ij ©

Nÿ

n=j+1
tn≠j,n≠i

!
1 ≠ (≠1)i

t
2
n≠i,n

"
.

(7)

This is a quadratic (free-fermion) hamiltonian describing
long-range hopping. It is not translationally invariant:
the amplitudes h

l
ij do not only depend on the distance

i ≠ j, and sites N, 1 are not on the same footing as other
neighbours i, i + 1. Instead, the standard translation op-
erator is replaced by the quasi-translation operator
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The existence of this hierarchy of commuting charges,
and their expressions, stem from the parent model [22].
Symmetries. The commuting charges (7)–(9) have sev-
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relations (1) since N is odd. The TL generators trans-
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where the last relation uses ti = ≠tN≠i.
Time reversal. We define time reversal as complex

conjugation of the coe�cients with respect to the Fock
basis f

+
i1

· · · f
+
iM

|?Í. Thus T(ei) = ei, and

T(Hl) = ≠Hl
, T(H) = H , T(G) = G . (12)
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n G≠1 = e2ifin/N �̃+
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(27)
The relation to the original fermions is strikingly simple.
The zero-modes commute with the hamiltonians: they
are just the fermionic gl(1|1) generators from (16) [22],
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The other modes are explicit linear combinations of the
two-site fermions (2), with coe�cients given in [22]:
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In terms of these fermionic modes, Hl is diagonal:
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N≠1ÿ

n=1
Á
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n �̃+

n �̃n . (30)

Numerics for low N confirms the equality with (7). If |?Í

is the fermionic vacuum, then by (26) the Fock states

|n1, . . . , nM Í © �̃+
n1 . . . �̃+

nM
|?Í , (31)

form an eigenbasis for Hl labelled by all 2N fermionic
mode numbers {nm} with 0 6 n1 < · · · < nM < N . The
quasi-momentum of (31) is p = 2fi

N

q
m nm mod 2fi, and

its chiral energy E
l
{nm} =

q
m Á

l
nm

matches (19)–(20)
when {nm} is a motif. Observe that, cf. Fig. 1,

Á
l
n + Á

l
n+1 = Á

l
2n+1 mod N . (32)

Next, (9) takes the quartic form [22]:

H =
N≠1ÿ

n=1
Án �̃+

n �̃n +
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16m<n<N
16r<s<N

Ṽmn;rs �̃+
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The commutation (10) only allows Ṽmn;rs ”= 0 if [22] the
quasi-momentum and chiral energy are conserved:

m + n = r + s mod N , Á
l
m + Á

l
n = Á

l
r + Á

l
s . (34)

Numerics for odd N 6 9 suggest the stronger selection
rule that m + n = r + s be odd, with nonzero values
Ṽ = ±4 determined by Ṽmn;rs = Ṽrs;mn and

Ṽmn;m+k,n≠k = (≠1)k+14 ”m odd , 0 6 2k < n≠m . (35)

For one-particle states |nÍ only the quadratic part of (33)
contributes, reproducing the non-chiral dispersion (20).
The quartic part implements the statistical repulsion
rule (18): H is genuinely interacting. Correspondingly,
the Fock states (31) are generally not eigenstates of H.
We illustrate this for the two-fermion spectrum:

• By global symmetry, the descendant |0, nÍ Ã F+
1 |nÍ,

cf. (28), is an H-eigenstate belonging to the motif {n}.
• Any |m, nÍ with 0 < m < n < N and n ≠ m even

is protected (Ṽ = 0) by the selection rules. It is an
H-eigenstate with motif {m, n}.

• Any |1, 2 n
Õ
Í is mixed with |1 + k, 2 n

Õ
≠ kÍ by (35):

– For |1, 2Í only k = 0 contributes, so it is again an
H-eigenstate, with energy Á1 + Á2 + Ṽ12;12 = Á3. It
is degenerate with |3Í for all charges, cf. (32), and
belongs to the motif {3}: |1, 2Í Ã ‚F+

1 |3Í for some
extended-symmetry generator ‚F+

1 .
– All |1, 2 n

Õ
Í with n

Õ
> 1 mix with |1 + k, 2 n

Õ
≠ kÍ,

k > 0. Diagonalising this n
Õ
◊ n

Õ block of H gives
eigenstates with ‘squeezed’ motifs {1 + k, 2 n

Õ
≠ k},

0 6 k 6 n
Õ
≠ 2, plus a state that is proportional to

‚F+
1 |2 n

Õ + 1Í or, if 2 n
Õ = N ≠ 1, to F+

2 |?Í.
• Likewise for |N ≠2 n

Õ +1, N ≠1Í Ã P |1, 2 n
Õ
Í by parity.

See [22] for examples at low N . Besides actually diag-
onalising the blocks, and matching the result with the
parent-model eigenstates at q = i, this gives the full two-
particle spectrum. Note the statistical repulsion in ac-
tion, ‘squeezing’ adjacent modes to extended-symmetry
descendants, cf. [31, §4.1.6]. A fermionic description of
the higher spectrum requires a deeper understanding of
the extended symmetry.

Outlook. We obtained and analysed a long-range fermi-
onic model with extended symmetry from the q æ i
limit of the xxz-type HS chain. A full understanding
requires an explicit fermionic realisation of the extended-
symmetry algebra. This, and a systematic construction
of all eigenvectors, which are known for the parent model,
is left for future work.

The case of even N needs separate treatment. Then
the parent hamiltonian diverges as q æ i, and regularisa-
tion sets all energies to zero. However, the wave functions
remain non-trivial, and numerics suggests the presence
of Jordan blocks up to size N/2 + 1. While indecompos-
able representations are expected, the size of the Jordan
blocks signal that these are not just zigzag modules ap-
pearing for systems with merely global symmetry [32].
We plan to report on this in the near future.

Another important direction is the continuum limit,
where we expect the system to exhibit conformal in-
variance. The explicit identification of the correspond-
ing CFT requires determining the extended symmetry.
Based on the isotropic HS chain we expect the CFT limit
to have Kac–Moody symmetry, perhaps level-1 gl(1|1)
[33]. It will be interesting to find the continuum coun-
terparts of the chiral Hamiltonian, which is reminiscent
of the Virasoro generator L0, and see what happens
with the staggering in the dispersion relation. While
the relativistic-like dispersion for odd length seems well
adapted for the continuum limit, it is at odds with the
vanishing spectrum for even length.

For the Heisenberg xxz chain other root-of-unity val-
ues of q, notably q3 = 1 [34], are special too. It would be
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quasi-momentum and chiral energy are conserved:

m + n = r + s mod N , Á
l
m + Á

l
n = Á

l
r + Á

l
s . (34)

Numerics for odd N 6 9 suggest the stronger selection
rule that m + n = r + s be odd, with nonzero values
Ṽ = ±4 determined by Ṽmn;rs = Ṽrs;mn and

Ṽmn;m+k,n≠k = (≠1)k+14 ”m odd , 0 6 2k < n≠m . (35)

For one-particle states |nÍ only the quadratic part of (33)
contributes, reproducing the non-chiral dispersion (20).
The quartic part implements the statistical repulsion
rule (18): H is genuinely interacting. Correspondingly,
the Fock states (31) are generally not eigenstates of H.
We illustrate this for the two-fermion spectrum:

• By global symmetry, the descendant |0, nÍ Ã F+
1 |nÍ,

cf. (28), is an H-eigenstate belonging to the motif {n}.
• Any |m, nÍ with 0 < m < n < N and n ≠ m even

is protected (Ṽ = 0) by the selection rules. It is an
H-eigenstate with motif {m, n}.

• Any |1, 2 n
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Í is mixed with |1 + k, 2 n
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≠ kÍ by (35):

– For |1, 2Í only k = 0 contributes, so it is again an
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is degenerate with |3Í for all charges, cf. (32), and
belongs to the motif {3}: |1, 2Í Ã ‚F+

1 |3Í for some
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See [22] for examples at low N . Besides actually diag-
onalising the blocks, and matching the result with the
parent-model eigenstates at q = i, this gives the full two-
particle spectrum. Note the statistical repulsion in ac-
tion, ‘squeezing’ adjacent modes to extended-symmetry
descendants, cf. [31, §4.1.6]. A fermionic description of
the higher spectrum requires a deeper understanding of
the extended symmetry.

Outlook. We obtained and analysed a long-range fermi-
onic model with extended symmetry from the q æ i
limit of the xxz-type HS chain. A full understanding
requires an explicit fermionic realisation of the extended-
symmetry algebra. This, and a systematic construction
of all eigenvectors, which are known for the parent model,
is left for future work.

The case of even N needs separate treatment. Then
the parent hamiltonian diverges as q æ i, and regularisa-
tion sets all energies to zero. However, the wave functions
remain non-trivial, and numerics suggests the presence
of Jordan blocks up to size N/2 + 1. While indecompos-
able representations are expected, the size of the Jordan
blocks signal that these are not just zigzag modules ap-
pearing for systems with merely global symmetry [32].
We plan to report on this in the near future.

Another important direction is the continuum limit,
where we expect the system to exhibit conformal in-
variance. The explicit identification of the correspond-
ing CFT requires determining the extended symmetry.
Based on the isotropic HS chain we expect the CFT limit
to have Kac–Moody symmetry, perhaps level-1 gl(1|1)
[33]. It will be interesting to find the continuum coun-
terparts of the chiral Hamiltonian, which is reminiscent
of the Virasoro generator L0, and see what happens
with the staggering in the dispersion relation. While
the relativistic-like dispersion for odd length seems well
adapted for the continuum limit, it is at odds with the
vanishing spectrum for even length.

For the Heisenberg xxz chain other root-of-unity val-
ues of q, notably q3 = 1 [34], are special too. It would be
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Ṽ = ±4 determined by Ṽmn;rs = Ṽrs;mn and

Ṽmn;m+k,n≠k = (≠1)k+14 ”m odd , 0 6 2k < n≠m . (35)

For one-particle states |nÍ only the quadratic part of (33)
contributes, reproducing the non-chiral dispersion (20).
The quartic part implements the statistical repulsion
rule (18): H is genuinely interacting. Correspondingly,
the Fock states (31) are generally not eigenstates of H.
We illustrate this for the two-fermion spectrum:

• By global symmetry, the descendant |0, nÍ Ã F+
1 |nÍ,

cf. (28), is an H-eigenstate belonging to the motif {n}.
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is protected (Ṽ = 0) by the selection rules. It is an
H-eigenstate with motif {m, n}.

• Any |1, 2 n
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Í is mixed with |1 + k, 2 n

Õ
≠ kÍ by (35):

– For |1, 2Í only k = 0 contributes, so it is again an
H-eigenstate, with energy Á1 + Á2 + Ṽ12;12 = Á3. It
is degenerate with |3Í for all charges, cf. (32), and
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particle spectrum. Note the statistical repulsion in ac-
tion, ‘squeezing’ adjacent modes to extended-symmetry
descendants, cf. [31, §4.1.6]. A fermionic description of
the higher spectrum requires a deeper understanding of
the extended symmetry.

Outlook. We obtained and analysed a long-range fermi-
onic model with extended symmetry from the q æ i
limit of the xxz-type HS chain. A full understanding
requires an explicit fermionic realisation of the extended-
symmetry algebra. This, and a systematic construction
of all eigenvectors, which are known for the parent model,
is left for future work.

The case of even N needs separate treatment. Then
the parent hamiltonian diverges as q æ i, and regularisa-
tion sets all energies to zero. However, the wave functions
remain non-trivial, and numerics suggests the presence
of Jordan blocks up to size N/2 + 1. While indecompos-
able representations are expected, the size of the Jordan
blocks signal that these are not just zigzag modules ap-
pearing for systems with merely global symmetry [32].
We plan to report on this in the near future.

Another important direction is the continuum limit,
where we expect the system to exhibit conformal in-
variance. The explicit identification of the correspond-
ing CFT requires determining the extended symmetry.
Based on the isotropic HS chain we expect the CFT limit
to have Kac–Moody symmetry, perhaps level-1 gl(1|1)
[33]. It will be interesting to find the continuum coun-
terparts of the chiral Hamiltonian, which is reminiscent
of the Virasoro generator L0, and see what happens
with the staggering in the dispersion relation. While
the relativistic-like dispersion for odd length seems well
adapted for the continuum limit, it is at odds with the
vanishing spectrum for even length.

For the Heisenberg xxz chain other root-of-unity val-
ues of q, notably q3 = 1 [34], are special too. It would be
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H-eigenstate, with energy Á1 + Á2 + Ṽ12;12 = Á3. It
is degenerate with |3Í for all charges, cf. (32), and
belongs to the motif {3}: |1, 2Í Ã ‚F+

1 |3Í for some
extended-symmetry generator ‚F+

1 .
– All |1, 2 n

Õ
Í with n

Õ
> 1 mix with |1 + k, 2 n

Õ
≠ kÍ,

k > 0. Diagonalising this n
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◊ n

Õ block of H gives
eigenstates with ‘squeezed’ motifs {1 + k, 2 n
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≠ k},

0 6 k 6 n
Õ
≠ 2, plus a state that is proportional to
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Õ + 1Í or, if 2 n
Õ = N ≠ 1, to F+
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• Likewise for |N ≠2 n

Õ +1, N ≠1Í Ã P |1, 2 n
Õ
Í by parity.

See [22] for examples at low N . Besides actually diag-
onalising the blocks, and matching the result with the
parent-model eigenstates at q = i, this gives the full two-
particle spectrum. Note the statistical repulsion in ac-
tion, ‘squeezing’ adjacent modes to extended-symmetry
descendants, cf. [31, §4.1.6]. A fermionic description of
the higher spectrum requires a deeper understanding of
the extended symmetry.

Outlook. We obtained and analysed a long-range fermi-
onic model with extended symmetry from the q æ i
limit of the xxz-type HS chain. A full understanding
requires an explicit fermionic realisation of the extended-
symmetry algebra. This, and a systematic construction
of all eigenvectors, which are known for the parent model,
is left for future work.

The case of even N needs separate treatment. Then
the parent hamiltonian diverges as q æ i, and regularisa-
tion sets all energies to zero. However, the wave functions
remain non-trivial, and numerics suggests the presence
of Jordan blocks up to size N/2 + 1. While indecompos-
able representations are expected, the size of the Jordan
blocks signal that these are not just zigzag modules ap-
pearing for systems with merely global symmetry [32].
We plan to report on this in the near future.

Another important direction is the continuum limit,
where we expect the system to exhibit conformal in-
variance. The explicit identification of the correspond-
ing CFT requires determining the extended symmetry.
Based on the isotropic HS chain we expect the CFT limit
to have Kac–Moody symmetry, perhaps level-1 gl(1|1)
[33]. It will be interesting to find the continuum coun-
terparts of the chiral Hamiltonian, which is reminiscent
of the Virasoro generator L0, and see what happens
with the staggering in the dispersion relation. While
the relativistic-like dispersion for odd length seems well
adapted for the continuum limit, it is at odds with the
vanishing spectrum for even length.

For the Heisenberg xxz chain other root-of-unity val-
ues of q, notably q3 = 1 [34], are special too. It would be
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quasi-momentum and chiral energy are conserved:

m + n = r + s mod N , Á
l
m + Á

l
n = Á

l
r + Á

l
s . (34)

Numerics for odd N 6 9 suggest the stronger selection
rule that m + n = r + s be odd, with nonzero values
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contributes, reproducing the non-chiral dispersion (20).
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rule (18): H is genuinely interacting. Correspondingly,
the Fock states (31) are generally not eigenstates of H.
We illustrate this for the two-fermion spectrum:

• By global symmetry, the descendant |0, nÍ Ã F+
1 |nÍ,

cf. (28), is an H-eigenstate belonging to the motif {n}.
• Any |m, nÍ with 0 < m < n < N and n ≠ m even

is protected (Ṽ = 0) by the selection rules. It is an
H-eigenstate with motif {m, n}.

• Any |1, 2 n
Õ
Í is mixed with |1 + k, 2 n
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≠ kÍ by (35):

– For |1, 2Í only k = 0 contributes, so it is again an
H-eigenstate, with energy Á1 + Á2 + Ṽ12;12 = Á3. It
is degenerate with |3Í for all charges, cf. (32), and
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See [22] for examples at low N . Besides actually diag-
onalising the blocks, and matching the result with the
parent-model eigenstates at q = i, this gives the full two-
particle spectrum. Note the statistical repulsion in ac-
tion, ‘squeezing’ adjacent modes to extended-symmetry
descendants, cf. [31, §4.1.6]. A fermionic description of
the higher spectrum requires a deeper understanding of
the extended symmetry.

Outlook. We obtained and analysed a long-range fermi-
onic model with extended symmetry from the q æ i
limit of the xxz-type HS chain. A full understanding
requires an explicit fermionic realisation of the extended-
symmetry algebra. This, and a systematic construction
of all eigenvectors, which are known for the parent model,
is left for future work.

The case of even N needs separate treatment. Then
the parent hamiltonian diverges as q æ i, and regularisa-
tion sets all energies to zero. However, the wave functions
remain non-trivial, and numerics suggests the presence
of Jordan blocks up to size N/2 + 1. While indecompos-
able representations are expected, the size of the Jordan
blocks signal that these are not just zigzag modules ap-
pearing for systems with merely global symmetry [32].
We plan to report on this in the near future.

Another important direction is the continuum limit,
where we expect the system to exhibit conformal in-
variance. The explicit identification of the correspond-
ing CFT requires determining the extended symmetry.
Based on the isotropic HS chain we expect the CFT limit
to have Kac–Moody symmetry, perhaps level-1 gl(1|1)
[33]. It will be interesting to find the continuum coun-
terparts of the chiral Hamiltonian, which is reminiscent
of the Virasoro generator L0, and see what happens
with the staggering in the dispersion relation. While
the relativistic-like dispersion for odd length seems well
adapted for the continuum limit, it is at odds with the
vanishing spectrum for even length.

For the Heisenberg xxz chain other root-of-unity val-
ues of q, notably q3 = 1 [34], are special too. It would be
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Ṽmn;rs �̃+
m �̃+

n �̃r �̃s . (33)

The commutation (10) only allows Ṽmn;rs ”= 0 if [22] the
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Ṽmn;m+k,n≠k = (≠1)k+14 ”m odd , 0 6 2k < n≠m . (35)

For one-particle states |nÍ only the quadratic part of (33)
contributes, reproducing the non-chiral dispersion (20).
The quartic part implements the statistical repulsion
rule (18): H is genuinely interacting. Correspondingly,
the Fock states (31) are generally not eigenstates of H.
We illustrate this for the two-fermion spectrum:

• By global symmetry, the descendant |0, nÍ Ã F+
1 |nÍ,

cf. (28), is an H-eigenstate belonging to the motif {n}.
• Any |m, nÍ with 0 < m < n < N and n ≠ m even

is protected (Ṽ = 0) by the selection rules. It is an
H-eigenstate with motif {m, n}.

• Any |1, 2 n
Õ
Í is mixed with |1 + k, 2 n

Õ
≠ kÍ by (35):

– For |1, 2Í only k = 0 contributes, so it is again an
H-eigenstate, with energy Á1 + Á2 + Ṽ12;12 = Á3. It
is degenerate with |3Í for all charges, cf. (32), and
belongs to the motif {3}: |1, 2Í Ã ‚F+

1 |3Í for some
extended-symmetry generator ‚F+
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– All |1, 2 n
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• Likewise for |N ≠2 n
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See [22] for examples at low N . Besides actually diag-
onalising the blocks, and matching the result with the
parent-model eigenstates at q = i, this gives the full two-
particle spectrum. Note the statistical repulsion in ac-
tion, ‘squeezing’ adjacent modes to extended-symmetry
descendants, cf. [31, §4.1.6]. A fermionic description of
the higher spectrum requires a deeper understanding of
the extended symmetry.

Outlook. We obtained and analysed a long-range fermi-
onic model with extended symmetry from the q æ i
limit of the xxz-type HS chain. A full understanding
requires an explicit fermionic realisation of the extended-
symmetry algebra. This, and a systematic construction
of all eigenvectors, which are known for the parent model,
is left for future work.

The case of even N needs separate treatment. Then
the parent hamiltonian diverges as q æ i, and regularisa-
tion sets all energies to zero. However, the wave functions
remain non-trivial, and numerics suggests the presence
of Jordan blocks up to size N/2 + 1. While indecompos-
able representations are expected, the size of the Jordan
blocks signal that these are not just zigzag modules ap-
pearing for systems with merely global symmetry [32].
We plan to report on this in the near future.

Another important direction is the continuum limit,
where we expect the system to exhibit conformal in-
variance. The explicit identification of the correspond-
ing CFT requires determining the extended symmetry.
Based on the isotropic HS chain we expect the CFT limit
to have Kac–Moody symmetry, perhaps level-1 gl(1|1)
[33]. It will be interesting to find the continuum coun-
terparts of the chiral Hamiltonian, which is reminiscent
of the Virasoro generator L0, and see what happens
with the staggering in the dispersion relation. While
the relativistic-like dispersion for odd length seems well
adapted for the continuum limit, it is at odds with the
vanishing spectrum for even length.

For the Heisenberg xxz chain other root-of-unity val-
ues of q, notably q3 = 1 [34], are special too. It would be
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Ṽmn;rs �̃+
m �̃+

n �̃r �̃s . (33)

The commutation (10) only allows Ṽmn;rs ”= 0 if [22] the
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1 .
– All |1, 2 n

Õ
Í with n

Õ
> 1 mix with |1 + k, 2 n

Õ
≠ kÍ,

k > 0. Diagonalising this n
Õ
◊ n

Õ block of H gives
eigenstates with ‘squeezed’ motifs {1 + k, 2 n

Õ
≠ k},

0 6 k 6 n
Õ
≠ 2, plus a state that is proportional to

‚F+
1 |2 n

Õ + 1Í or, if 2 n
Õ = N ≠ 1, to F+

2 |?Í.
• Likewise for |N ≠2 n

Õ +1, N ≠1Í Ã P |1, 2 n
Õ
Í by parity.

See [22] for examples at low N . Besides actually diag-
onalising the blocks, and matching the result with the
parent-model eigenstates at q = i, this gives the full two-
particle spectrum. Note the statistical repulsion in ac-
tion, ‘squeezing’ adjacent modes to extended-symmetry
descendants, cf. [31, §4.1.6]. A fermionic description of
the higher spectrum requires a deeper understanding of
the extended symmetry.

Outlook. We obtained and analysed a long-range fermi-
onic model with extended symmetry from the q æ i
limit of the xxz-type HS chain. A full understanding
requires an explicit fermionic realisation of the extended-
symmetry algebra. This, and a systematic construction
of all eigenvectors, which are known for the parent model,
is left for future work.

The case of even N needs separate treatment. Then
the parent hamiltonian diverges as q æ i, and regularisa-
tion sets all energies to zero. However, the wave functions
remain non-trivial, and numerics suggests the presence
of Jordan blocks up to size N/2 + 1. While indecompos-
able representations are expected, the size of the Jordan
blocks signal that these are not just zigzag modules ap-
pearing for systems with merely global symmetry [32].
We plan to report on this in the near future.

Another important direction is the continuum limit,
where we expect the system to exhibit conformal in-
variance. The explicit identification of the correspond-
ing CFT requires determining the extended symmetry.
Based on the isotropic HS chain we expect the CFT limit
to have Kac–Moody symmetry, perhaps level-1 gl(1|1)
[33]. It will be interesting to find the continuum coun-
terparts of the chiral Hamiltonian, which is reminiscent
of the Virasoro generator L0, and see what happens
with the staggering in the dispersion relation. While
the relativistic-like dispersion for odd length seems well
adapted for the continuum limit, it is at odds with the
vanishing spectrum for even length.

For the Heisenberg xxz chain other root-of-unity val-
ues of q, notably q3 = 1 [34], are special too. It would be



To do list

• Study the system for even length:  spectrum identically zero; Jordan blocks 

• Identify the extended symmetry: gl(1|1) Yangian? 

• Interpret the staggering & the linear dispersion relations in the odd case 

• CFT limit: gl(1|1) Kac-Moody algebra?  

• Free field realisation and vertex operators algebra 

• Wave functions in the fermionic representation & Macdonald polynomials 

• Other roots of unity: q^3=1 and gl(2|1) symmetry 



Happy birthday Philippe!


