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Linear incidence geometry

Sergey Fomin Incidence geometry and tiled surfaces Philippe60 Conference IPhT, Saclay, June 26, 2024 2 / 52



Pappus’ Theorem [≈340]

Sources
intheHistoryofMathematicsand

PhysicalSciences8

PAPPUSOF
ALEXANDRIA
BOOK7

OFTHECOLLECTION
PART1.INTRODUCTION,
TEXT,ANDTRANSLATION
PART2.COMMENTARY,
INDEX,ANDFIGURES'

Edited
WithTranslationandCommentaryby

ALEXANDERJONES

SpringerScience+BusinessMedia,LLC

Sergey Fomin Incidence geometry and tiled surfaces Philippe60 Conference IPhT, Saclay, June 26, 2024 3 / 52



Desargues’ Theorem [≈1639]

CAMBRIDGELIBRARYCOLLECTION

OEUVRESDE
DESARGUES

VOLUME1

EDITEDBY
NOËLGERMINALPOUDRA

Fig.3.

CAMBRIDGE

Sergey Fomin Incidence geometry and tiled surfaces Philippe60 Conference IPhT, Saclay, June 26, 2024 4 / 52



Möbius’ Theorem [1828]
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Big questions

Many more incidence theorems have been discovered over the years. . .

• Is there a system behind these incidence theorems?

• What kinds of other mathematics are these theorems related to?

In this talk, I will try to answer these questions.
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19th century: The golden age of projective geometry

J.-V. Poncelet M. Chasles J. Steiner K. von Staudt

Among the advances of the last fifty years in the field of geometry,
the development of projective geometry occupies the first place.

– F. Klein, The Erlangen Program, 1872

Since the 19th century, projective geometry has occupied a central
position in geometric research. [. . . ] The theorems relating to incidence
are by far the most important theorems of projective geometry.

– D. Hilbert and S. Cohn-Vossen, 1932
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The rise and fall of classical projective geometry

Projective geometry [...] had its heyday and then gradually faded away.
All the more elementary results were worked out and incorporated into
textbooks, and there wasn’t any new work for mathematicians to do.

– P. A. M. Dirac, 1972

Classical projective geometry was a beautiful field of mathematics.
It died, in our opinion, not because it ran out of theorems to prove, but
because it lacked organizing principles by which to select theorems that
were important. Also, it was isolated from the rest of mathematics.

– R. MacPherson and M. McConnell, 1988
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The curse of universality

There is no hope for a reasonable classification of incidence theorems,
even in the case of the projective plane. Indeed, the problem of
deciding whether a given matroid is representable over R is NP-hard.

• N. E. Mnëv, Varieties of combinatorial types of projective configurations and
convex polyhedra,

Dokl. Akad. Nauk SSSR 283 (1985), 1312–1314.

• N. E. Mnëv, The universality theorems on the classification problem of
configuration varieties and convex polytopes varieties,

Lecture Notes in Math. 1346 (1988), 527–543.

• P. W. Shor, Stretchability of pseudolines is NP-hard,

Applied geometry and discrete mathematics, 531–554, AMS, 1991.

• P. Vámos, The missing axiom of matroid theory is lost forever.

J. London Math. Soc. (2) 18 (1978), 403–408.

Sergey Fomin Incidence geometry and tiled surfaces Philippe60 Conference IPhT, Saclay, June 26, 2024 9 / 52



Mechanical theorem proving

Algorithms of modern computational commutative algebra provide
efficient automated proofs of theorems of linear incidence geometry.

Nowadays any incidence theorem of reasonable complexity can be
proved by a computer, with minimal human input.

• H. Li and Y. Wu, Automated theorem proving in incidence geometry—a
bracket algebra based elimination method,

Lecture Notes in Comput. Sci. 2061 (2001), 199–227.

• J. Richter-Gebert, Mechanical theorem proving in projective geometry,

Ann. Math. Artificial Intelligence 13 (1995), 139–172.

• B. Sturmfels, Computational algebraic geometry of projective configurations,

J. Symbolic Comput. 11 (1991), 595–618.
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Big questions revisited

Questions

• Where do the classical incidence theorems come from?

• Which of these theorems are important—and why?

• What kind of other mathematics are they related to?

We attempt to answer these questions via a “master theorem” of
real/complex linear incidence geometry, from which various—perhaps
all—incidence theorems can be obtained as special cases.

As a result, we obtain a unifying perspective on why all these
incidence theorems hold.
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Tiled surfaces

We will work with tilings of oriented surfaces by quadrilateral tiles.
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Figure 12: Results of our Mixed-Integer Quadrangulation ap-
proach

Table 1: Statistics of the Greedy Mixed-Integer Solver used for
computing the cross field (Section 4) and the parametrization (Sec-
tion 5). Dim refers to the initial dimension of the linear system, #Int
is the number of integer variables, #IS and #DS is the number of
calls to iterative and direct solvers respectively. Time is the total
time for the solution. Due to the global nature of the parametriza-
tion, the local and iterative search seldom lead to a gain of effi-
ciency and therefore Time refers solely to the direct solver.

of the quads affecting the angle as well as the edge length distribu-
tion. A comparison between [Huang et al. 2008] and our approach
can be found in Figure 11.

Quadrangulations computed by our technique typically have an-
gle distributions with a sharp peak around 90� and an edge length
distribution centered around the target edge length. However, for
aligned meshes, like the FANSIDK in Figure 10, further peaks,
which reflect the unavoidable stretch may occur in the edge length
histogram.

The geometrically complex examples shown in Figure 12 underline
the ability of our method to compute coarse, oriented quadrangula-
tions with naturally placed singularities.

All examples were computed on a 3.0GHz standard PC, the statis-
tics are shown Table 1. Interestingly the cross field computation is
less demanding to compute than the parametrization, even though
it requires practically two orders of magnitude more roundings.
This effect is due to the locality of the cross field energy (Equation
(1)). Rounding a period jump mainly affects a local neighborhood
on the mesh and the solution can be efficiently updated by local
Gauss-Seidel iterations. Whereas, rounding a corner point in the
parametrization domain usually has global impact. Motivated by
this observation and the typically low number of integer variables
for the parametrization, we restricted the greedy solver to sparse
Cholesky updates.

Finally Figure 8 demonstrates the robustness of the mixed-integer
quadrangulation approach w.r.t. different (degenerate) representa-
tions of a given object. The mesh in Figure 8 (a) contains almost
1000 triangles with vanishing area (the close-up shows a part of
the mesh where about 8 triangles are nearly colinear), the model in
Figure 8 (b) has been subjected to normal noise with a magnitude
of 0.3% of the bounding box diagonal and the right most model
(Figure 8 (c) ) was offset, yielding a mesh without sharp corners.
These fandisks and most of the other triangle meshes used in this
work (along with the extracted quad meshes) can be found in the
supplementary material of this paper.

7 Conclusion and Future Work

We have presented a complete quadrangulation method which starts
with a pre-process that finds reliable orientation constraints. Based
on these, possibly sparsely distributed, constraints we compute a
smooth cross field on the surface. The global optimization produces
a set of singularities that are automatically placed at geometrically
meaningful locations. The cross field is used as input for a global

Mixed-Integer Quadrangulation       •       77:9

ACM Transactions on Graphics, Vol. 28, No. 3, Article 77, Publication date: August 2009.
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Tiled surfaces

Figure 1: A 4⇥4 array of squares (left) fits on the square torus T1,0, which is conformally a quite thick round
torus (right). The diagonal grid lines – always meeting at right angles – help to show the conformality. They
form (1,±1) diagonals on the torus, each of which is a round (Villarceau) circle in space.

Figure 2: An 8⇥4 array of squares (left) fits on the rectangular torus T2,0, conformally a thinner round torus
(right). The diagonal grid lines again meet at right angles, but are now (2,±1) diagonals on the torus.

But other symmetric patterns fit most naturally on a rhombic torus. A lattice is rhombic if it is generated
by two vectors of equal length. (In the coordinates above, we have s = 1/2 or s2+ t2 = 1, depending on
whether the rhombus has an angle smaller than 60�). In particular, the symmetry groups 2⇤22 and ⇤⇥ fit on
any rhombic torus, while the five groups with three-fold symmetry (632, ⇤632, 333, ⇤333 and 3 ⇤ 3) use in
particular the hexagonal torus with (s, t) = (1/2,

p
3/2).

As we have noted, a nonrectangular torus (in particular, a rhombic torus other than the square torus) is
not conformally equivalent to any round torus or even to any torus embedded with mirror symmetry. To
embed it conformally in space, we need to twist things in some way. One way to understand this intuitively
is to note that the diagonals of the rhombus are unequal in length – thus the (1,1) and (1,�1) diagonals on
the torus must have unequal lengths (in the appropriate conformal sense).

Ulrich Pinkall [3] has described a nice way to isometrically embed any flat torus into S3 ⇢ R4 as a Hopf
torus, i.e., the lift (the preimage) of a closed curve g ⇢ S2 under the Hopf fibration S3 ! S2. Indeed, any
g that has length 4ps and encloses a fraction t of the area of the sphere will lift to the torus Ts,t . Again, by
stereographic projection, this isometric embedding in S3 yields a conformal embedding in R3.

On a Hopf torus, the (1,1) curves are still round (Hopf) circles, but the (1,�1) curves oscillate in
the same way g does, and are thus longer. Of course, given s and t, there is not a single natural choice
for the curve g . One idea is to minimize its elastic energy under the length and area constraints, perhaps
also imposing certain symmetry. If we do this, the resulting tori are known to be constrained Willmore
surfaces [1], that is, critical points for the Willmore bending energy given fixed conformal type. The surfaces
shown in Figures 4 and 5 were generated this way, using Brakke’s Evolver [2] to minimize the energy of g .

Sullivan

594

© J. Flick © J. Sullivan

Any such tiling (endowed with a bipartite labeling of its vertices) will
give rise to an incidence theorem.
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Coherent tiles

P = finite-dimensional projective space over R or C

Definition
Throughout this talk, a tile is a topological quadrilateral

A `

m B

with vertices labeled by points A,B ∈ P and hyperplanes `,m ∈ P∗.

Such a tile is called coherent if

• neither A nor B is incident to either ` or m;

• either A = B or ` = m or else the line (AB) and the
codimension 2 subspace ` ∩m have a nonempty intersection.
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Tile coherence in the projective plane

Simplest case: dimP = 2 (a real/complex projective plane).

Let A,B ∈ P be two distinct points.
Let `,m ⊂ P be two distinct lines that do
not pass through A or B.

The following are equivalent, by definition:

• the tile
A `

m B
is coherent;

• the lines (AB), `,m are concurrent;

• the points A,B, ` ∩m are collinear.
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The master theorem of linear incidence geometry

“Master theorem”
Consider a tiling T of a closed oriented surface by quadrilateral tiles,
with the vertices colored black and white in bipartite fashion. To each
black (resp., white) vertex, associate a point (resp., a hyperplane) in P,

so that for each edge A h, the point A does not lie on the hyperplane h.
If all tiles of T , with the exception of one, are coherent, then the
remaining tile is coherent as well.
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Proof of the master theorem

A `

m B

(A,B; `,m) = 〈A,`〉〈B,m〉
〈A,m〉〈B,`〉

Proof (sketch)

Coherence of a tile is equivalent to requiring that the corresponding
mixed cross-ratio is equal to 1. The product of mixed cross-ratios
over all tiles in the tiling is equal to 1. The claim follows.
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Special cases of the master theorem

Theorem
Each of the following results of linear incidence geometry can be
interpreted as a special case of our “master theorem:”

• the Desargues theorem;

• the Pappus theorem;

• the complete quadrangle theorem;

• the permutation theorem;

• Saam’s theorems;

• the Goodman-Pollack theorem;

• the bundle theorem;

• the sixteen points theorem;

• the Möbius theorem

—and there are many more!
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Example 1: Desargues’ theorem

r B

A s

D p

q C
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Example 2: Pappus’ theorem

p B q

A
D F

q r p

E C

F D

p B q
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Example 3: The complete quadrangle theorem
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Proof of the complete quadrangle theorem

Apply the master theorem to the following tiling of the sphere:

`23 P34

A4 `13

`12 P14 m13

m12 B4

P24 m23
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Example 4: The permutation theorem
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Proof of the permutation theorem

Apply the master theorem to the following tiling of the torus:

Q2 P1

s t r

P1 P2 Q1 Q2

r u s

Q2 P1
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Example 5: Twin stars of David [SF-PP]
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Proof of the twin stars of David theorem

Apply the master theorem to the following tiling of the torus:

A p′ A′ p A

B r′ B′ r B

C q′ C ′ q C

A p′ A′ p A
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Example 6: Möbius’ theorem
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Proof of Möbius’ theorem

Apply the master theorem to the following tiling of the torus:

◦ ◦ ◦

• •

◦ ◦ ◦

• •

◦ ◦ ◦
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Example 7: The thirteen lines theorem [SF-PP]
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Proof of the thirteen lines theorem

Apply the master theorem to this tiling of the genus 2 surface:

h11

h12 P1 h21 P2 h12

h22 h22

P6 P3

h21 h21

h11 P5 h22 P4 h11

h12 hij = `i ∩mj
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From an incidence theorem to a tiling

Problem 1
Can any theorem of linear incidence geometry in the real or complex
projective plane be obtained as a special case of our master theorem?

Problem 2
Is there an efficient algorithm for constructing a tiling that delivers a
proof of a given incidence theorem?

Problem 3
For each incidence theorem, determine the minimal genus of a tiling
that proves the theorem. Can this minimal genus be arbitrarily large?
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Triangulated surfaces

Graph duality

To any cellularly embedded graph one can associate a dual graph where
vertices and faces are inverted.

Following an edge in the primal graph is the same as crossing the dual
edge.

11 / 37

© A. de Mesmay

Sergey Fomin Incidence geometry and tiled surfaces Philippe60 Conference IPhT, Saclay, June 26, 2024 32 / 52



From triangulations to quadrilateral tilings
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From triangulations to quadrilateral tilings
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From triangulations to quadrilateral tilings

Sergey Fomin Incidence geometry and tiled surfaces Philippe60 Conference IPhT, Saclay, June 26, 2024 35 / 52



Incidence theorems from triangulations

Corollary
Let T be a triangulation of a closed oriented surface.

For each vertex v in T , choose a point Pv on the real/complex plane.
For each edge u e v in T , choose a point Pe on the line (PuPv).
Assume that all the chosen points are distinct.

For each triangle in T with sides a, b, c, consider the condition

(∗) the points Pa, Pb, and Pc are collinear.

Suppose that condition (∗) is known to hold for all triangles in the
triangulation T but one. Then it holds for the remaining triangle.
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Desargues’ theorem from a triangulated surface

Applying the last corollary to the triangulation of the sphere shown
below, we obtain Desargues’ theorem.

P2

P12

P24 P23

P1

P14 P13

P4 P34 P3
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Pappus’ theorem from a triangulated surface

Applying the last corollary to the triangulation of the torus shown
below, we obtain Pappus’ theorem.

A C1 B

C2 B3 A2 C3

B A1 C B1 A

C3 B2 A3 C2

A C1 B
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Master theorem from triangulated surface version

We can in fact deduce the tiling version of the master theorem from
the triangulated surface version:

B ` C B ` C

p A q ; p A A′ q

E m D E m D
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Equivalence of triangulations modulo Desargues

The following transformations of triangulations can be interpreted as
applications of Desargues’ theorem:

←→ ←→

Any two triangulations of a given surface can be connected to each
other by these transformations.

Proposition
Any two incidence theorems that come from triangulations of the
same surface are equivalent to each other modulo Desargues.
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Deducing the master theorem from Desargues and Pappus

Corollary
All theorems that come from triangulations of surfaces are equivalent
to each other modulo Desargues and Pappus.

Proof
We can deduce theorems corresponding to surfaces of genus g from
the theorems for genus g − 1, by applying the Pappus theorem.

GAFA GOE STATISTICS ON MODULI SPACE OF SURFACES 1587

Figure 1: A genus 2 surface S2,0 cut by different topological types of geodesics: Top, a non-separating
geodesic gives a surface S1,2 of genus one with two boundary components. Bottom, a separating
geodesic cuts the surface into two surfaces S1,1 of genus one with one boundary component, and
S2,1 of genus two with one boundary component.

2.2 Mirzakhani’s integration formula. A closed curve on a surface is essential if
it is not contractible, or freely homotopic to one of the boundary components if there
are any. Any essential closed curve on a hyperbolic surface is freely homotopic to a
unique geodesic. A closed curve is simple if it has no self intersections. Fix a simple
closed curve γ on the base surface Sg, and denote by Mod[γ] = {φγ : φ ∈ Mod} the
orbit of γ under the mapping class group, that is all curves of the same “topological
type” as γ. The different types are (see [FM12, §1.3.1] and Fig. 1):

– non-separating curves γ0, which cut the surface into a surface of signature (g −
1,2), i.e. Sg\γ0 is a surface of genus g − 1 with 2 boundary components, each
having length ℓ.

– For each i = 1, . . . , ⌊ g
2⌋ the separating curve γi cutting Sg into two components of

signatures (i,1) and (g − i,1), each having one boundary component of (equal)
length ℓ.

Given an essential curve γ on Sg, and a hyperbolic structure X ∈ T (Sg), denote
by ℓγ(X) the length (with respect to the metric determined by X) of the unique
geodesic in the free homotopy class of the curve γ. Let f : R+ → R be a function
on the positive reals. Define fγ(X) to be the sum of f (ℓα (X)) over the orbit5 of γ

under the mapping class group:

fγ(X) :=
∑

α Mod[γ]
f (ℓα (X)) .

This function is called a geometric function, and is invariant under changing γ by
Mod, hence descends to the moduli space Mg.

We will need to compute the expected value

EWP
g (fγ) = 1

Vg

∫

g

fγ(X)dVolW P (X).

5 So the sum is over the cosets Mod /StabMod(γ).

© Z. Rudnick
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Nodal (multi-)curves

The master theorem can be reformulated in terms of nodal curves
instead of tilings:

Desargues’ theorem
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Nodal curves for the Pappus and permutation theorems

Any nodal curve on an oriented surface yields an incidence theorem.
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Desargues flips

A flip in a tiling

←→

corresponds to an application of Desargues’ theorem.

These Desargues flips translate into local moves on nodal curves:

←→
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Classifying nodal curves up to local moves

Local moves on nodal curves

←→ Desargues flip

−→ simplification

−→ simplification

For a given closed oriented surface, equivalence classes of nodal
curves modulo these local moves correspond to equivalence classes of
incidence theorems modulo Desargues.
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Desargues’ theorem as 3D consistency

Desargues’ theorem can be interpreted as 3D consistency/integrability
of tile coherence in the sense of A. Bobenko and Yu. Suris.

line→ f123

points→ f23 f13 f12

lines→ f1 f2 f3

point→ f
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4D consistency of tile coherence

Theorem
The dynamics of Desargues flips exhibits 4D consistency.

point→ f1234

lines→ f123 f124 f134 f234

points→ f12 f13 f23 f14 f24 f34

lines→ f1 f2 f3 f4

point→ f
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4D consistency of tile coherence
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Tetrahedron equation for Desargues flips

Theorem
Desargues flips satisfy Zamolodchikov’s tetrahedron equation.

◦ •
• • ◦
◦ ◦ ◦ •
• ◦

◦ •
• • • ◦
◦ ◦ •
• ◦

◦ •
• • ◦ ◦
◦ ◦ •
• ◦∣∣∣ ∣∣∣

◦ •
• • ◦
◦ ◦ • •
• ◦

◦ •
• • ◦ ◦
◦ • •
• ◦∣∣∣ ∣∣∣

◦ •
• ◦ ◦
◦ ◦ • •
• ◦

◦ •
• ◦ ◦
◦ • • •
• ◦

◦ •
• ◦ ◦ ◦
◦ • •
• ◦
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Insights provided by the master theorem

The master theorem helps explain, in a conceptual way:

• why Pappus’ theorem is more powerful than Desargues’;

• why Pappus (and Desargues) imply all other theorems of planar
linear incidence geometry;

• why Desargues holds over noncommutative skew-fields whereas
Pappus does not;

• how to construct generalizations of existing incidence theorems;

• which incidence theorems can be formulated as “closure porisms”
(Schließungssätze) and which ones cannot;

and many other things.
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Further directions

Tiling-based techniques can be used to study:

• R. Schwartz’s pentagram map and it variations;

• S. Tabachnikov’s skewers;

• incidence theorems for circles and lines on the Möbius plane;

• incidence theorems for conics and algebraic curves of higher degree;

• incidence theorems involving tangency conditions;

• J.-V. Poncelet’s closure phenomena;

• incidence theorems for surfaces in 3D;

• incidence theorems over fields of finite characteristic;

• incidence theorems over noncommutative skew-fields;

• incidence theorems in elliptic and hyperbolic geometry,

and undoubtedly a lot more.
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The End

Congratulations, Philippe!
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