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The six-vertex model
[Lieb’67] [Sutherland’67]
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The Domain Wall boundary conditions
[Korepin’82]
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Arctic curves
A=—1/2
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[Lyberg,Korepin,Viti’18]
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» Exact analytic expressions have been around for some time
[FC-Pronko’09] [FC-Pronko-ZinnJustin-10]

» Rigorous proof provided for the sole A = 1/2 case
[Aggarwal’19]
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[Lyberg,Korepin,Viti’ 18]




Interface fluctuations




Interface fluctuations

» two different statistics:
P intersection of most external path with diagonal
»> maximum deviation of most external path
» for A = 0, the model is in correspondence with Airy, process;
first statistics is governed by GUE TW [Johansson’00], and
consequently [Corwin-Quastel-Remenik’13] second statistics is
governed by GOE TW




Interface fluctuations (A = 1/2)

Strong numerical evidence that interface fluctuations follow GUE TW
[Prauhofer-Spohn’19] (private communication)
[Korepin-Lyberg-Viti’23] [Prauhofer-Spohn’24]

Collapse of distributions of hy(0) for ASM
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Interface fluctuations (A = 1/2)

Strong numerical evidence that interface fluctuations follow GUE TW
[Prauhofer-Spohn’19] (private communication)
[Korepin-Lyberg-Viti’23] [Prauhofer-Spohn’24]

Collapse of distributions of hy(0) for ASM
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Moreover, indirect but strong hint from [Ayyer-Chhita-Johansson’23],
where GOE TW was proven for the maximum of the most external
path.
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Partition function

° Zy = Z a" bl
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Zy evaluated as an I-K or Hankel determinant [Korepin’82] [Izergin’87]



One-point boundary correlation function H,(Vr)




One-point boundary correlation function H,(Vr)

H,(Vr) evaluated as an |-K or Hankel determinant with one modified column

[Bogoliubov-Pronko-Zvonarev’02]
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Emptiness Formation Probability (EFP) F{/**
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» dicriminates the transition between top-left ordered region and central
disordered region of the curve

> expected stepwise behaviour in correspondence of the Arctic curve
» Multiple Integral Representations (MIRs) provided [FC-Pronko’08][’21]



Multiple Integral Representation for EFP

Generating function of the one-point boundary correlator:
N

hu(z) =Y H{z ™t (1) =1
r=1

Now define:

S

1

hN,s(Zl’ ceey Zs) = m

k _s—k
det [(Zj = 1)z hv—sii(z) I

- symmetric polynomials of order N — 1.

- they provide a new, alternative representation (wrt Izergin-Korepin'one)
for the partially inhomogeneous partition function Zy(A1,..., \s).

- two important properties:

hN,S(Zla ceeyZs—1, 1) — hN,s—l(Zla CRI) Zsfl)
hns(zi, ..., 2s-1,0) = hy(0) hy—1s—1(21, . .., Zs—1)



Multiple Integral Representation for EFP

[FC-Pronko’08]
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Multiple Integral Representation for EFP

B % 7{ —2At)zj + 157
o Jazg FH(E-1P Rak

zj = 2

X H
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At A =0, this reduces to a = 2 random matrix model;

hALS(zly"‘

[FC-Pronko’08]
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and indeed, following [Johansson’00], one recovers T-W distribution F>(x)
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Multiple Integral Representation for EFP
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At A =0, this reduces to a § = 2 random matrix model;

[FC-Pronko’08]
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and indeed, following [Johansson’00], one recovers T-W distribution Fp(x)



Multiple Integral Representation for EFP

B % 7{ —2At)z + 157
o Jazg FHE-1P Rak

zj — 2

X H
2. .
\<isk<s t°zizi — 2Atz; + 1

At A =0, this reduces to a § = 2 random matrix model;

hALS(zly"‘

[FC-Pronko’08]

27i)s

and indeed, following [Johansson’00], one recovers T-W distribution Fp(x)

From now on:
» for simplicity, we set t = 1

> we restrict to the case of square EFP, r = N — s and set

Fﬁf):::FkN_S§)



1) change variables: z; — z.*l, j=1,...,s
F) = f 7{ SNz, ..., z5) Az,

1 li[ [1—2A + z]*
Lz - 1)t

Zi — Zk
X H J hN75(Zl,...,ZS).

1—-2Az Ziz
1<j<k<s kT 22k

2) deform integration contours. Miracolously, poles from double products
give vanishing contribution [FC-Di Giulio-Pronko’21]. Thus

() :7{ 7{ SNz, 2)d°z.
G UG G UG

:kzs%/k, ’k—ZHj{ dz,Hj[dsz( 71, ., 25)

|S|=ki€eS jese

that is:



Two lemmas

Lemma
For arbitrary values of A,

/EI”GS...I”GSJ(S)Z .., Z) = 1.
0= res zs:1’V(1’ , Zs)

(Actually holds for generic values of t as well).

Lemma
At the ice point, A =1/2, t =1

s = res ... res J,(\,S)(zl, ooy zs) = (=1)°hy - hy—sy1,
z1=0 zs=0

where hy = hy(0), etc.

Proof is elementary



And when k # 0,57

Recall:
; o YA
STk ics ¢ 2mi jese /G 2mi <1 2 (z—1)
Zi — zk
X H J hN75(Zl, e ,ZS)
1<j<k<s 1—-2Az + Zjzy

where

hy s = v det {(z — 1)" 2 K hy «(zj) ’

e A5(21, SRR Zs) ! J e Jk=1

View I's as (complicate) polynomials in hy(z), hy—1(2), ..., hy—s+1(2)

and derivatives, evaluated at z=0and z =1
These are ~ s quantities... too many...



Two types of identities (type I)
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Two types of identities (type II)

When A = 1/2 and t = 1 [Zeilberger’96]

h(z) = ((2’\,9)",’\’1125 <__,\£/J\;JI;2N'Z> '

It is easy to derive:
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Two types of identities (type II)

When A = 1/2 and t = 1 [Zeilberger’96]

hn(z) = WQ 1 <_—N2;Jlr’2lv'z> .

It is easy to derive:

@_M_lzo

hy  hy-1 2

Wy Wy By o T
N N-1 TN pTN=2 T

hn - hn-1 hy hny-1 2

» These two sets of identities allow to express the /;'s in terms of
solely 2s — 1 formally independent objects, namely
hN—st1s--- by, and By, ... A
(recall: hy = hn(0), etc.).




Determinant structure
Inspired by [Tracy-Widom’08] [Saenz-Tracy-Widom’22] we assume that, for

each s, an s x s matrix A= A(N, s) exists, such that

s
> Al = det(1 — MA)
k=0
Clearly, from last lemma, detsA = I, for any s.
Below, we shall also observe that
> A is such that by eliminating its last row and colum, the reduction
s—~s—1, N— N —1 is made;
» A can be given explicitely in a factorized form A = DLU.



Determinant structure
Inspired by [Tracy-Widom’08] [Saenz-Tracy-Widom’22] we assume that, for

each s, an s x s matrix A= A(N, s) exists, such that

S
> Al = det(1 — MA)
k=0
Clearly, from last lemma, detsA = I, for any s.
Below, we shall also observe that
> A is such that by eliminating its last row and colum, the reduction
s—~s—1, N— N —1 is made;
» A can be given explicitely in a factorized form A = DLU.
To proceed, it is convenient to introduce the abbreviated notations

bi=hy_j, i=0,1,2,...,5s—1,
and
/ " "
I€/~ _ UN—i li// _ UN—i m __ N—i
| 9 i 9 i )
hn—i hn—i hn—i

Recall that hy = hy(0), hy, = h)(0), etc.



Case s=1
(1) _ 1 dz
Fv' = f{CIUCO 2(z 1) hn(2)7

= hn(1) — hn(0)
=1-by

That is
h=1 h = —bg

as we already knew from our two lemmas.
We are looking for 1 x 1 matrix A such that
det1(1 - A) =1-— by

Thus:
A= by



Case s=2

h=1
h = —by — boky — bokghly_1(1) = —trA
I = boby =detA

Use first identity of type |, namely A}, ;(1) = k{ — 1, and get

=1
lh = —by — bo(kb)? = —trA
h = boby =detA

If 2 x 2 matrix A exists , it must be such that when by = 0 its top-left
entries is by. Thus

. b1 bl(/il — 1)
A= <b0(/<56+1) o112 )

with DLU factorization:

(b1 0 (1 o0 (1 k-1
0=(3 ) t=(air 1) v=(o ™)



Case s=3
=1
1!

2
11:—b2—b1(,‘€/1)2—b0 [(?—Ke) +2:‘€6—11 = —trA

ig
2
I3 = —bgby by =detA

2
1
Iy = byby + boby (k})* + boby [1 — kg(1+ k) + } = §[(trA)2 —tr A%]

NB1: here first two identities of type | have been used
NB2: setting by = 0 one recover the s = 2 case, modulo the replacement
bo, b1, ki — b1, ba, ki, thatis N — N — 1.

We may thus obtaine the top-left 2 x 2 block from the s = 2 case.
Completing the sudoku, we get A = DLU, with

b, 0 0 1 0 0 1 ki—1 Ikg—1
D=0 b O0]f,L= Ky +1 1 ol,u=1{o 1 K+ 1
0 0 by k0 —2kg+1 Ky—1 1 0 0 1

NB3: Iy, 1, 5 are easily reproduced. But / is only recovered modulo a term
proportional to k; — k{ + % which however vanish, due to first identity of type Il !



Case s=4

D = diag(bs, by, b1, bg),

1 0 0 0
[ Ky + 1 1 0 0
§H1—2/€1+1 “1_1 1 0

%Hg/—lﬁ — Ky +1 l -1 krp+1 1

1 wp—1 Lef—1 éné”nwo%no*l
u—lo 1 ki +1 30 — 2K+ 1

0 0 1 fﬂ6—1

0 0 0 1



Case s=4

D = diag(bs, by, b1, byp),

1 0 0 0
. kh+1 1 0 0
| -2+ k-1 1 0

e R RS A RS I

1wy =1 3af—1 gng' — 3ng +3rp— 1
g o 1 W *"50*26+1

0 0 1 —1

0 o0 0 "1



Case s=4

D = diag(bs, by, b1, byp),

1 0 0 0

L— :‘€2+1 1 0 O
| -2+ k-1 1 0

A N I W

1 wh—1 L —1 Ly —3kf+3kp—1
u—lo 1 Wt 30 — 2kp+1
“lo o 1 Ko — 1

0 0 0 1
Lo(x) =1 Li(x) = —x+1,

2 3 3x?
() =5 ~2x+1  Lsx) =~ + 5 ~3x+1



Case s=4

D = diag(bs, by, b1, byp),

1 0 0 0
L— :‘€2+1 1 0 O
| -2+ k-1 1 0
I S = B G SR U
1ok 1 b -1 b B a1
U 0 1 K]+ 1 *H0*26+1
0 0 1 rg — 1
0 0 0 1
1 0
(x) — L9 (x) = 1 00 - ()= —x 1



Case s=4

D = diag(bs, bo, b1, by),

goc 1)+L(a) ( )

1 0 0 0

L— :‘€2+1 1 0 O
B G e N S S S

1/// 1 1

6o — 5“0 — Ko

+1 ikf—-1 ky+1

L wp—1 a1 —1 grg' — 3rg +3rp — 1
U= 0 1 Ky +1 *50*26+1

0 0 1 Ko — 1

0 0 0 1

L7000 + L0 = —x +1
x> 3x?

Lgi)()—l—L()() 6+7_3X+1



The conjecture

For t =1and A =1/2, and for r = N — s, the EFP can be given as
dets(/ — A) where the s x s matrix A is given as A= DLU and

Lj= (h:,)(’(;; [LS:})(@) + (—1)'.71Li07)171(82)} i),
1y

Uy = gy [0+ (/L1 00)] he(a)

z=0

where functions hj(z) are the Gauss hypergeometric functions given above.



The conjecture

For t =1and A =1/2, and for r = N — s, the EFP can be given as
dets(/ — A) where the s x s matrix A is given as A= DLU and

Lij _ (_1)f—f [Ls_})(az) + (_1)’.71L,'07)j—1(82)} hH_,'(Z)

hr+i(0) - =
Uy = oy (67000 + (L0 hsta)|

where functions hj(z) are the Gauss hypergeometric functions given above.

» note that dependence on parameter s is both via the size of the
matrix, and the parameter r = N — s

» Appearance of Laguerre polynomials does not come as a surprise, if
one recalls relations such as

/c Wf(Z)dz = (-1)"L5(0.)F(2)|



The conjecture
For t =1 and A =1/2, and for r = N — s, the original MIR for EFP,

H S 1)
7{&) %_—0 5 —1)s—Jj+1

Zi— Z dsz
) k hN75(217 ceey ZS) (27‘(1)5

X

zZizk — z; +1
1<jches TPk T F T

can be given as dets(/ — A) where the s x s matrix A = A(N, s) reads

) dzdw
A, = .7.:17"‘7 )
J »%Co ]{Co 1—z—w (27)?’ hJ s (+)

with



The conjecture

v

crucial in this derivation were our two sets of identities;

» and also our ansatz, fixing at step s, all entries of an
(s —1) x (s —1) sub-block of A, so that s new conditions at each
step were sufficient;

» however nice is the result, it is still just a guess;

v

unable to proceed with our calculation beyond s = 4;

» desperately seeking a proof.

]{f{ Jdzdw = s ()
Ai cJe lfsz (27r1) E A

with



Check

Check the s =5 case: evaluate with Mathematica both our conjectural
expression and the MIR, for N =7,...,13:

eterminan
N Det t MIR
7 0 0
8 0 0
9 0 0
10 61347 61347
43178090900 43178090900
11 49711519 49711519
1636618150125 1636618150125
12 54886057499 54886057499
221251085257500 221251085257500
13 3870965779057 3870965779057

3266307568354500 3266307568354500



Integral form for matrix A

As said, the matrix A admits the following integral representation

) dzdw
Aj = jeql,...
¥ ﬁoﬁo 1fsz (2mi)?’ J €L s),

(]'_Zf)l(l—i-( ].) )hr-l-i(z)v

er(W) = m (1+ (1Y w) A j(w).

where

Or, equivalently,

> dzdw
Aii :j){ 7{ eb(z)eV(w / pletw=1tq 22 Re(z+w) <1
= f f e | T Re(ztw)




Fredholm determinant

Let k[O,oo) be a linear integral operator acting on functions defined on R™
according to the rule

(Roso)F)(11) = /O " K (b, 1) F(t2)dts

with kernel
dzdw
Kot = el e
G JG (2mi)

Proposition

Given matrix A = A(N, s) as in (x), for any finite integer s, we have
dst(l — A) = det (]_ — K[O,oo))

Remark

The kernel K(t1,t2) is not ‘of integrable form’ (in the sense of
[Its—IzeTgin—Korepin—Sla'unov’92]).



Scaling limit

We want to study the behaviour of the kernel K(t1, t) in the scaling limit,
i.e. (recall that r = N —s)

s = [yN], y €(0,1/2], N — oo



Scaling limit

We want to study the behaviour of the kernel K(t1, t) in the scaling limit,
i.e. (recall that r = N —s)

s = [yN], y €(0,1/2], N — oo
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Scaling limit

We want to study the behaviour of the kernel K(t1, t) in the scaling limit,
i.e. (recall that r = N —s)

s = [yN], y €(0,1/2], N — oo

In this limit
K(t1, t2) 7{ 7{ Jat(w=3)e Ne(w)+e()] £(5, 1) dZG}W
G /G (27i)2
where
1—w (1—2W)(2—W)(1+W)+2(1_W+W2)3/2

g(w) = ylog " + log V3 w)?

while f(z, w) is some complicate but explicit function.



Saddle points
Saddle-point equation
y 1—V1—w+ w?

EW) = Ty T e "

has two solutions

14+ +/1—8y +4y?

2

W4 =

g

which collide when y = y. :=1—%2 recall, y € (0, 3].



Saddle points
Saddle-point equation

‘(W) = y _1—\/1—W—|—W2:0
& w(w — 1) w(w — 1)

has two solutions

14+ +/1—8y+4y2

2

W4 =

which collide when y = y. := 1 — § . recall, y € (0,1].

» y. happens to correspond to the intersection of the arctic curve with
the main diagonal

» for values y € (0, y.) i.e. outside the arctic curve (frozen region) wy
are both real, with an exponential decay of the integrals, ruled by w_

» for values y € (y¢,1/2) , i.e. inside the arctic curve (disordered
region) wy are complex conjugate, and contribute both to the
integrals, producing an oscillatory behaviour

in analogy with dimer models [Kenyon-Okounkov-Sheffield’06]



y close to y.
Let us study K(t1, t2) in the vicinity of y = y..
Lety =y.—mn, and w = % + A, with n, A small. We have
4

3V3
which sets the scales A = O(N~Y/3), n = O(N—2/3).

g(W)|,_1 iy =4nA = =27+ O(A)

@)

&

Co
/A
E

N[

and similarly for z = % + g1, with o = O(N~1/3).



y close to y.
We now rescale
~ . 22/3 1/3
A= qA, A= qu, q= 31/6N

and
o=—n= 24/331/6,\,2/377.
q

where X , i , and o are O(NO).
We also rescale the variables t; and t» and the kernel itself
K(ti, ) :=qK(gti,qt2), g>0, 1,1t €[0,00)

obtaining

- elitit A +o(A+)—(N+7%)/3 q3d
K(tl,tz)z—// S M2
5J5 A+ fi (27i)



Summing up

N—o0

lim (dets(l _A) (1) ) — det (1 - f?[o,oo)>

2 ) 24/331767
with kernel
. ettt A to (M) —(N+7)/3 g5 d
K(t17t2)__// ~ - lé
5J5 A+t (2mi)



Summing up

lim (dets(l _A) (1) ) — det (1 - iA?[o,oo)>
- 2

N—oo _24/331/60
with kernel
. ettt A to (M) —(N+7)/3 g5 d
K(t17t2)__// ~ - lé
5J5 A+t (2mi)
Proposition

Let KAi the linear integral operator on the real line, with kernel

Ai(ty) Ai'(t) — Ai'(t1) Ai(ta)

KA (1, 1) = Pa— :

One has

A

det (1— Ko = det (1- KAL) ) = Fo(o),



Conclusions

Conjecture
At ice point, A = % , the following holds

FC) = dety(1— A)
where A = A(N, s) is the s X s matrix given in ().

Theorem
Given the s x s matrix A = A(N,s), see (x), the following holds

s:N(l_@_waU) = F2(0).

24/331/6

lim <dets(1 —A)

N— oo

The above result is in full agreeement with the numerical simulations in
[Korepin-Lyberg-Viti’23] [Prauhofer-Spohn’24].

Also, it implies, via [Corwin-Quastel-Remenik’13], that maximal deviations
are governed by Fi(0), as proved in [Ayyer-Chhita-Johansson’23].



Bon Anniversaire, Philippe! :




