Many new conjectures

on Fully-Packed Loop configurations

Andrea Sportiello

work in collaboration with L. Cantini
At the crossroads of physics and mathematics: the joy of integrable combinatorics - A conference in the honor of Philippe Di Francesco's 60th birthday IPhT, CEA Paris-Saclay, 24-26 June 2024

$$
\#\{\mathbf{O}\}+\#\{\mathbf{O}\}=2
$$

Simple general facts on algebras

An algebra Λ with linear basis $\left\{f_{\alpha}\right\}$ is determined by its structure constants

$$
f_{\alpha} f_{\beta}=\sum_{\gamma} c_{\alpha \beta}^{\gamma} f_{\gamma}
$$

If we have a scalar product $\langle\cdot \mid \cdot\rangle$, the dual basis is the set of functions $\left\{g^{\alpha}\right\}$ such that $\left\langle g^{\alpha} \mid f_{\beta}\right\rangle=\delta_{\alpha \beta}$. The dual basis comes with its own structure constants

$$
g^{\alpha} g^{\beta}=\sum_{\gamma} d_{\gamma}^{\alpha \beta} g^{\gamma}
$$

For pairs of indices, define the 'skew' combinations

$$
g^{\gamma / \beta}:=\sum_{\alpha} c_{\alpha \beta}^{\gamma} g^{\alpha} \text { and } f_{\gamma / \beta}:=\sum_{\alpha} d_{\gamma}^{\alpha \beta} f_{\alpha} .
$$

Then it is easily seen that the following properties hold

$$
\begin{aligned}
\left\langle g^{\gamma / \beta} \mid h\right\rangle & =\left\langle g^{\gamma} \mid h f_{\beta}\right\rangle & & \forall h \in \Lambda \\
\left\langle h \mid f_{\gamma / \beta}\right\rangle & =\left\langle h g^{\beta} \mid f_{\gamma}\right\rangle & & \forall h \in \Lambda
\end{aligned}
$$

Simple general facts on algebras

Given an algebra as before, and a linear change of basis $\hat{f}_{\alpha}=\sum_{\beta} B_{\alpha}{ }^{\beta} f_{\beta}$, call $\bar{B}:=B^{-T}$. In order to have $\left\langle\hat{g}^{\alpha} \mid \hat{f}_{\beta}\right\rangle=\delta_{\alpha \beta}$, we must set $\hat{g}^{\alpha}=\sum_{\beta} \bar{B}_{\beta}^{\alpha} g^{\beta}$. Then the new structure constants $\hat{c}_{\alpha \beta}^{\gamma}, \hat{d}_{\gamma}^{\alpha \beta}$

$$
\hat{f}_{\alpha} \hat{f}_{\beta}=\sum_{\gamma} \hat{c}_{\alpha \beta}^{\gamma} \hat{f}_{\gamma} \quad \hat{g}^{\alpha} \hat{g}^{\beta}=\sum_{\gamma} \hat{d}_{\gamma}^{\alpha \beta} \hat{g}^{\gamma}
$$

$$
\hat{c}_{\alpha \beta}^{\gamma}=\sum_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime}} B_{\alpha}^{\alpha^{\prime}} B_{\beta}^{\beta^{\prime}} \bar{B}_{\gamma^{\prime}}^{\gamma} c_{\alpha^{\prime} \beta^{\prime}}^{\gamma^{\prime}}
$$

$$
\hat{d}_{\gamma}^{\alpha \beta}=\sum_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime}} \bar{B}_{\alpha^{\prime}}^{\alpha} \bar{B}_{\beta^{\prime}}^{\beta} B_{\gamma} \gamma^{\prime} d_{\gamma^{\prime}}^{\alpha^{\prime} \beta^{\prime}}
$$

If Λ is a algebra of functions, a Cauchy identity is an identity of the form

$$
\sum g^{\alpha}(x) f_{\alpha}(y)=Z(x, y)
$$

Then, it is easily seen that also $\sum_{\alpha} \hat{g}^{\alpha}(x) \hat{f}_{\alpha}(y)=Z(x, y)$.

A few well-known facts about Schur Functions

$$
\text { For } n \in \mathbb{N} \text {, call } \delta_{n}=(n-1, n-2, \ldots, 1)
$$

A famous fact (coming from the Weyl character formula) is that the Schur polynomials can be written as the ratio of two determinants

$$
\begin{aligned}
& s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{\Delta(\vec{x})} \operatorname{det}\left(\left(x_{i}^{\left(\lambda+\delta_{n}\right)_{j}}\right)_{i, j=1, \ldots, n}\right) \\
& \Delta(\vec{x})=\operatorname{det}\left(\left(x_{i}^{\left(\delta_{n}\right)_{j}}\right)_{i, j=1, \ldots, n}\right)=\prod_{i<j}\left(x_{i}-x_{j}\right) \\
& \text { Call }\left\{\begin{array}{l}
e_{k}(\vec{x})=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}} \cdots x_{i_{k}} \\
h_{k}(\vec{x})=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{k}} x_{i_{1}} \cdots x_{i_{k}}
\end{array}\right.
\end{aligned}
$$

We can also write $s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ as polynomials in the e_{k} 's, or the h_{k} 's. This allows to define Schur functions, also over infinite alphabets.

A few well-known facts about Schur Functions

The expressions of s_{λ} in terms of e_{k} 's and h_{k} 's are given by the Jacobi-Trudi and dual Jacobi-Trudi formulas

$$
\begin{aligned}
s_{\lambda} & =\operatorname{det}\left(\left(h_{\lambda_{i}+j-i}\right)_{i, j=1, \ldots, \ell(\lambda)}\right) & & (J T) \\
& =\operatorname{det}\left(\left(e_{\lambda_{i}^{\prime}+j-i}\right)_{i, j=1, \ldots, \lambda_{1}}\right) & & (d J T)
\end{aligned}
$$

One useful class of infinite alphabets is induced by the ('supersymmetry') ω-involution, that exchanges e_{k} 's and h_{k} 's. That is, we have Schur functions (in fact, polynomials) depending
on a 'finite supersymmetric alphabet', $s_{\lambda}\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)$ It turns out that $s_{\lambda}\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)=s_{\lambda^{\prime}}\left(y_{1}, \ldots, y_{m} \mid x_{1}, \ldots, x_{n}\right)$

A few well-known facts about Schur Functions

The skew Schur polynomials defined as a sum over skew semi-standard Young Tableaux

$$
s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right)=\sum_{T \in \operatorname{SSY} T(\lambda / \mu, n)} \prod_{i=1}^{n} x_{i}^{\#\{i \in T\}}
$$

coincide with the ones induced by $\left\langle h \mid f_{\lambda / \mu}\right\rangle=\left\langle h g^{\mu} \mid f_{\lambda}\right\rangle \forall h$ in the scalar product $\langle\cdot \mid \cdot\rangle$ such that the Schur basis is self-dual

$$
\left\langle s_{\lambda} \mid s_{\mu}\right\rangle=\delta_{\lambda \mu}
$$

(this is called the Hall scalar product)

A few well-known facts about Schur Functions

It follows that

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right)=\sum_{\mu} s_{\mu}\left(x_{1}, \ldots, x_{n}\right) s_{\lambda / \mu}\left(x_{n+1}, \ldots, x_{n+m}\right)
$$

	4	5	5	9
3	5	6		
4	7	7		
9				

$T_{1} \in \operatorname{SSY} T(\lambda, n+m)$

	23			
	44			
6				
$T_{3} \in \operatorname{SSY} T(\lambda / \mu, m)$				

(this is evident for finite alphabets, but the formula $s_{\lambda}(\vec{x} \cup \vec{y})=\sum_{\mu} s_{\mu}(\vec{x}) s_{\lambda / \mu}(\vec{y})$ holds also for infinite alphabets)

The structure constants $c_{\mu \nu}^{\lambda}$ of the algebra $\Lambda=\operatorname{span}_{\mathbb{K}}\left(s_{\lambda}(\vec{x})\right)_{\lambda}$ are non-negative integers known as Littlewood-Richardson coefficients

$$
s_{\mu}(\vec{x}) s_{\nu}(\vec{x})=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}(\vec{x}) \quad c_{\mu \nu}^{\lambda} \in \mathbb{N}
$$

A few well-known facts about Schur Functions

What we said above implies that the three problems

$$
\left\{\begin{aligned}
s_{\mu}(\vec{x}) s_{\nu}(\vec{x}) & =\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}(\vec{x}) \\
s_{\lambda / \mu}(\vec{x}) & =\sum^{\lambda} c_{\mu \nu}^{\lambda} s_{\nu}(\vec{x}) \\
s_{\lambda}(\vec{x} \cup \vec{y}) & =\sum_{\mu, \nu} c_{\mu \nu}^{\lambda} s_{\mu}(\vec{x}) s_{\nu}(\vec{y})
\end{aligned}\right.
$$

are all solved by the same Littlewood-Richardson coefficients

Many other interesting basis of symmetric functions (Hall-Littlewood, Grothendieck, Borodin's 2014 'symmetric rational functions', ...) generalise the Schur case in some sense, but, if we insist on keeping the Hall $\left(\left\langle s_{\lambda} \mid s_{\mu}\right\rangle=\delta_{\lambda \mu}\right)$ scalar product, self-duality is not present in general

Representation of Schur polynomials as Vertex Models

(Skew-)Schur polynomials can be represented as partition functions of tiling models, namely as free-fermionic $\mathcal{U}_{q}\left(\widehat{s}_{2}\right)$ Yang-Baxter integrable Vertex Models with homogeneous vertical spectral parameters, the horizontal ones determine the alphabet
$s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right)$ is described by an infinite horizontal strip, of height n, where all non-trivial tiles occur within a width $\lambda_{1}+\ell(\lambda)$ The partitions λ and μ fix the top and bottom boundary conditions

Representation of Schur polynomials as Vertex Models

Lozenge tilings are nice, but, in order to describe in a symmetric way the 'supersymmetric' (skew-)Schur functions, we shall rather shear the triangular lattice into the square lattice

Representation of Schur polynomials as Vertex Models

Lozenge tilings are nice, but, in order to describe in a symmetric way the 'supersymmetric' (skew-)Schur functions, we shall rather shear the triangular lattice into the square lattice

$T\left(x_{i}\right):$
\square
\square 1
\square 1

x_{i}
$\begin{array}{ll}\square x_{i} & \square 1\end{array}$

Representation of Schur polynomials as Vertex Models

Lozenge tilings are nice, but, in order to describe in a symmetric way the 'supersymmetric' (skew-)Schur functions, we shall rather shear the triangular lattice into the square lattice

$U\left(x_{i}\right):$
$\square 1 \quad \square 1$

$\square \wedge 1 \quad \square 1$

Representation of Schur polynomials as Vertex Models

$$
T\left(x_{i}\right):
$$

A supersymmetric skew Schur polynomial:

$$
\begin{array}{ll}
\square & \square 1 \\
\square 1 & \boxtimes x_{i} \\
\square x_{i} & \square 1 \\
\bar{T}\left(y_{i}\right): & \\
\square y_{i} & \square 1 \\
\square 1 & \square \\
\square y_{i} & \square 1
\end{array}
$$

$$
s_{\#} \text { 㕩 }\left(x_{1}, \ldots, x_{6} \mid y_{1}, \ldots, y_{4}\right)=\cdots+x_{1}^{2} x_{2}^{3} x_{3} x_{4}^{2} x_{6}^{2} y_{1}^{4} y_{3} y_{4}^{3}+\cdots
$$

Representation of Schur polynomials as Vertex Models

$$
U\left(x_{i}\right):
$$

A supersymmetric skew Schur polynomial:

$\nabla_{1} \nabla_{1}$

\square \# x_{i}
71 $\bar{U}\left(y_{i}\right)$:入 $\nabla_{1} \nabla_{1}$琽 \square \1 Δ_{1}

$$
s_{\#}^{\#}\left(x_{1}, \ldots, x_{6} \mid y_{1}, \ldots, y_{4}\right)=\cdots+x_{1}^{2} x_{2}^{3} x_{3} x_{4}^{2} x_{6}^{2} y_{1}^{4} y_{3} y_{4}^{3}+\cdots
$$

Representation of Schur polynomials as Vertex Models

The operators $T(x)$ and $\bar{T}(y)$ are 'transfer matrices'.
They act on the Hilbert space indexed by integer partitions, as

$$
\begin{aligned}
& \langle\mu| T(x)|\lambda\rangle= \begin{cases}x^{|\lambda / \mu|} & \mu \preceq \lambda ; \lambda / \mu \text { is a 'horizontal strip' (no } \\
0 & \text { otherwise }\end{cases} \\
& \langle\mu| \bar{T}(y)|\lambda\rangle= \begin{cases}y^{|\lambda / \mu|} & \mu \preceq \lambda ; \lambda / \mu \text { is a 'vertical strip' (no } \\
0 & \text { otherwise }\end{cases} \\
& s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)=\langle\mu| T\left(x_{1}\right) \cdots T\left(x_{n}\right) \bar{T}\left(y_{1}\right) \cdots \bar{T}\left(y_{m}\right)|\lambda\rangle \\
& \text { In particular }\langle\mu| T(x)|\lambda\rangle=\left\langle\mu^{\prime}\right| \bar{T}(x)\left|\lambda^{\prime}\right\rangle
\end{aligned}
$$

Of course, by definition of transpose operator,

$$
\langle\mu| T^{+}(x)|\lambda\rangle=\langle\lambda| T(x)|\mu\rangle \text { and }\langle\mu| \bar{T}^{+}(x)|\lambda\rangle=\langle\lambda| \bar{T}(x)|\mu\rangle
$$

Operators $T(x), \bar{T}(y)$ and their transpose form an interesting algebra

Schur processes

Operators $T(x), \bar{T}(y)$ and their transpose form an interesting algebra

$$
\begin{gathered}
T(x)|\varnothing\rangle=\bar{T}(x)|\varnothing\rangle=|\varnothing\rangle \quad\langle\varnothing| T^{+}(x)=\langle\varnothing| \bar{T}^{+}(x)=\langle\varnothing| \\
{[T(x), T(y)]=[\bar{T}(x), \bar{T}(y)]=[T(x), \bar{T}(y)]=0} \\
T(x) T^{+}(y)=\frac{1}{1-x y} T^{+}(y) T(x) \\
T(x) \bar{T}^{+}(y)=(1+x y) \bar{T}^{+}(y) T(x) \\
\bar{T}(x)=\frac{1}{1-x y} \bar{T}^{+}(y) \bar{T}(x) T^{+}(y)=(1+x y) T^{+}(y) \bar{T}(x)
\end{gathered}
$$

This is proven through the Yang-Baxter equation for the corresponding 'free-fermionic 5-Vertex Model with electric fields'.
Partition functions and correlation functions of several dimer models (lozenges, domino tilings,...) can be calculated in this way【< \rangle A. Okounkov and N. Reshetikhin, Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Amer. Math. Soc. 16 (2003)

Littlewood-Richardson coefficients as a Vertex Model

Remarkably, also the Littlewood-Richardson coefficients are described by an integrable Vertex Model, this time of square-triangle tilings, with underlying $\mathcal{U}_{q}\left(\widehat{s}_{3}\right)$ symmetry.
【\& A. Knutson and T. Tao, Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J. 119 (2003); P. Zinn-Justin, Littlewood-Richardson Coefficients and Integrable Tilings, EJC 16 (2009)
The key idea is to express the two sides of the coproduct identity $s_{\lambda}(\vec{x} \mid \vec{y})=\sum_{\mu, \nu} c_{\mu \nu}^{\lambda} s_{\mu}(\vec{x}) s_{\nu^{\prime}}(\vec{y})$ as partition functions in a rank-2 model (i.e., with particles of three colours)
The three Schur terms, $s_{\lambda}(\vec{x} \mid \vec{y}), s_{\mu}(\vec{x})$ and $s_{\nu^{\prime}}(\vec{y})$, are realised within the three possible embeddings of $\widehat{s l}_{2}$ in $\widehat{s l}_{3}$ that is, the three choices of two colours among three

The identity is a consequence of commutation of transfer matrices, which in turns comes from the Yang-Baxter equation of the rank-2 model

Littlewood-Richardson coefficients as a Vertex Model

Littlewood-Richardson coefficients as a Vertex Model

Some Razumov－Stroganov nostalgia

jophancios a curnal mechanics．Theory and Experiment

A refined Razumov－Stoganov conjecture
acoser必 ，

The many Razumov-Stroganov conjectures

There exists a whole class of Razumov-Stroganov conjectures
(4)A.V. Razumov and Yu.G. Stroganov, Combinatorial nature of ground state vector of $O(1)$ loop model, Theor. Math. Phys. 138 (2004); —, O(1) loop model with different boundary conditions and symmetry classes of alternating-sign matrices,
Theor. Math. Phys. 142 (2005); J. de Gier, Loops, matchings and alternating-sign matrices, Discr. Math. 298 (2005); S. Mitra, B. Nienhuis, J. de Gier and
M.T. Batchelor, Exact expressions for correlations in the ground state of the dense O(1) loop model, JSTAT (2004); J. de Gier and V. Rittenberg, Refined Razumov-Stroganov conjectures for open boundaries, JSTAT (2004); Ph. Duchon, On the link pattern distribution of quarter-turn symmetric FPL configurations, FPSAC 2008;
P. Di Francesco, A refined Razumov-Stroganov conjecture (I and II), JSTAT (2004)

Formulated in the early 2000's, they relate the probabilities of some connectivity patterns in two different integrable models: the $O(1)$ Dense Loop Model and the Fully-Packed Loop Model

A nice fact is that they can be formulated in purely combinatorial way, despite the fact that they are related to the "physics" of the XXZ Quantum Spin Chain and of the 6-Vertex Model

Link patterns

A link pattern $\pi \in L P(2 n)$ is a pairing of $\{1,2, \ldots, 2 n\}$ having no pairs $(a, c),(b, d)$ such that $a<b<c<d$ (i.e., the drawing consists of n non-crossing arcs).

They are $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ (the n-th Catalan number), and are in easy bijection with Dyck Paths of length $2 n$ that is, integer partitions $\lambda \preceq \delta_{n}$

$$
\pi=((1,6),(2,3),(4,5),(7,10),(8,9)) \quad \lambda(\pi)=(3,3,1) \preceq \delta_{5}
$$

O(1) Dense Loop Model / XXZ $\Delta=-\frac{1}{2}$ spin chain

Consider dense loop configurations on a semi-infinite cylinder i.e. tilings of $\{1, \ldots, 2 n\} \times \mathbb{N}$ with the two tiles $\sqrt[\square]{\square}$ (with the uniform measure)
Link patterns are naturally associated to these configurations (despite the fact that they are infinite!)

O(1) Dense Loop Model / XXZ $\Delta=-\frac{1}{2}$ spin chain

Consider dense loop configurations on a semi-infinite cylinder i.e. tilings of $\{1, \ldots, 2 n\} \times \mathbb{N}$ with the two tiles $\sqrt[\square]{\square}$ (with the uniform measure)
Link patterns are naturally associated to these configurations (despite the fact that they are infinite!)

O(1) Dense Loop Model $/ \mathrm{XXZ} \Delta=-\frac{1}{2}$ spin chain

Consider dense loop configurations on a semi-infinite cylinder i.e. tilings of $\{1, \ldots, 2 n\} \times \mathbb{N}$ with the two tiles $\boldsymbol{\square}$ (with the uniform measure)
Link patterns are naturally associated to these configurations (despite the fact that they are infinite!)

O(1) Dense Loop Model / XXZ $\Delta=-\frac{1}{2}$ spin chain

Consider dense loop configurations on a semi-infinite cylinder i.e. tilings of $\{1, \ldots, 2 n\} \times \mathbb{N}$ with the two tiles \square, \square (with the uniform measure)
Link patterns are naturally associated to these configurations (despite the fact that they are infinite!)

Fully－Packed Loops

Fully－Packed Loop configurations are tilings of the $n \times n$ square using the six tiles 日回 日 and with black／white alternating boundary conditions

Again，a link pattern π is naturally associated，according to the connectivities among the black terminations on the boundary

Note that，by now，we ignore the link pattern associated to white， and the potential presence of loops

Fully-Packed Loops

Fully-Packed Loop configurations are tilings of the $n \times n$ square using the six tiles 日明 and with black/white alternating boundary conditions

Again, a link pattern π is naturally associated, according to the connectivities among the black terminations on the boundary

Note that, by now, we ignore the link pattern associated to white, and the potential presence of loops

The dihedral Razumov-Stroganov correspondence

$\tilde{\Psi}_{n}(\pi)$: probability of π

$\Psi_{n}(\pi)$: probability of π for FPL with uniform measure in the $n \times n$ square

The dihedral Razumov-Stroganov correspondence

$\tilde{\Psi}_{n}(\pi)$: probability of π

$\Psi_{n}(\pi)$: probability of π for FPL with uniform measure in the $n \times n$ square

Razumov-Stroganov correspondence

(conjecture: Razumov and Stroganov, 2001a for the $n \times n$ square; proof: AS and Cantini, 2010, for all the 'dihedral domains')

$$
\tilde{\Psi}_{n}(\pi)=\Psi_{n}(\pi)
$$

Dihedral symmetry of FPL

A corollary of the Razumov-Stroganov correspondence. . . (...that was known before the Razumov-Stroganov conjecture) call R the operator that rotates a link pattern by one position

Dihedral symmetry of FPL
 (proof: Wieland, 2000)

$$
\Psi_{n}(\pi)=\Psi_{n}(R \pi)
$$

Domains with dihedral Razumov-Stroganov correspondence

In the case of the dihedral Razumov-Stroganov correspondence, Wieland gyration (and its generalisations) has been a crucial ingredient.

Not surprisingly, understanding the most general family of domains for which the correspondence holds has been inspiring

No black+white Razumov-Stroganov conjecture

Remark: What is natural to consider in Wieland gyration lemma is the triple $\left(\pi_{b}, \pi_{w}, \ell\right)$ for the black and white link patterns, and the total number of loops (black+white)

However, we have no candidate replacing the $O(1)$ Dense Loop Model in a black+white version of the Razumov-Stroganov conjecture! (...no, the Rotor Model doesn't seem to work...)

A Vertical Razumov-Stroganov Conjecture

$\tilde{\Psi}_{n}^{V}(\pi)$: probability of π in the $O(1)$ Dense Loop Model in the $\{1, \ldots, 2 n\} \times \mathbb{N}$ strip

$\Psi_{n}^{V}(\pi)$: probability of π for vertically-symmetric FPL with uniform measure in the $(2 n+1) \times(2 n+1)$ square

A Vertical Razumov-Stroganov Conjecture

$\tilde{\Psi}_{n}^{V}(\pi)$: probability of π
in the $O(1)$ Dense Loop Model in the $\{1, \ldots, 2 n\} \times \mathbb{N}$ strip

$\Psi_{n}^{V}(\pi)$: probability of π for vertically-symmetric FPL with uniform measure in the $(2 n+1) \times(2 n+1)$ square

Vertical Razumov-Stroganov conjecture

(Razumov and Stroganov, 2001b for the square of side $2 n+1$)

$$
\tilde{\Psi}_{n}^{V}(\pi)=\Psi_{n}^{V}(\pi)
$$

Domains with Vertical Razumov-Stroganov correspondence

The Vertical Razumov-Stroganov conjectures are a whole second family They involve FPL with some version of reflecting wall and the $O(1)$ Dense Loop Model on a strip with a boundary.
Our proof methods do not seem to work for any of the Vertical Razumov-Stroganov conjectures, which are all open at present.

But at least we think we know the precise list of domains with Vertical RS

$$
3+x+7 y+2 x y+4 y^{2}+x y^{2} \quad 6+2 x+14 y+4 x y+8 y^{2}+2 x y^{2}
$$

Our gift to Philippe: a new puzzling question to think about!

Looking at UASM more closely

We shall "smash together the two failures" above: (1) we haven't proven any flavour of the Vertical Razumov-Stroganov conjectures; (2) we never devised any flavour of Razumov-Stroganov conjectures, not even dihedral, involving the triple enumeration $\Psi_{n}\left(\pi_{b}, \pi_{w}, \ell\right)$

We will look more closely at the full list of FPL's in the simplest instance of Vertical RS, that is U-turn ASM's (UASM).

The many conjectures on the enumerations $\Psi_{\pi_{b}, \pi_{\omega}}(\tau)$

Let us call $\Psi_{n}^{V}\left(\pi_{b}, \pi_{w}, \tau, y\right)$ the generating function of UASM's at size n, with black/white link patterns π_{b} and π_{w}, and weight $\tau^{\ell} y \# n$
Known: $Z_{n}^{V}(y)=\sum_{\pi_{b}, \pi_{w}} \Psi_{n}^{V}\left(\pi_{b}, \pi_{w}, 1, y\right)$ has an overall factor $(1+y)^{n}$
【< G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, Ann. of Math. 156 (2002)

Luigi Cantini and myself conjectured, also long ago, that this factorisation holds for the RS components

$$
\Psi_{n}^{V}\left(\pi_{b}, y\right)=\sum_{\pi_{w}} \Psi_{n}^{V}\left(\pi_{b}, \pi_{w}, 1, y\right)=(1+y)^{n} \tilde{\Psi}_{n}^{V}\left(\pi_{b}\right)
$$

The new numerical investigation leads to the first of our "new conjectures":

Conjecture 1

$$
\begin{aligned}
& \Psi_{n}^{V}\left(\pi_{b}, \pi_{w}, \tau, y\right)=(1+y)^{n} \Psi_{\pi_{b}, \pi_{w}}(\tau) \quad \forall n, \tau, \pi_{b}, \pi_{w} \\
& \text { (only proven: }(1+y)^{2} \text { divides } \Psi_{n}^{V}\left(\pi_{b}, \pi_{w}, \tau, y\right) \text { for } n \geq 2 \text {) }
\end{aligned}
$$

The many conjectures on the enumerations $\Psi_{\pi_{b}, \pi_{w}}(\tau)$

These sets of polynomials are better visualised as tables π_{b} vs. $\pi_{w} \ldots$

	(n)	\square	-	(n)	$\bigcirc \square$
n	0	0	0	0	1
an	0	0	1	1	2τ
ค	0	1	τ	τ	$\tau^{2}+1$
ค)	0	1	τ	τ	$\tau^{2}+1$
ค	1	2τ	$\tau^{2}+1$	$\tau^{2}+1$	$\tau^{3}+3 \tau$

The many conjectures on the enumerations $\Psi_{\pi_{b}, \pi_{w}}(\tau)$

	Δ^{0}	$\Delta \underbrace{1}$	$\theta \theta^{2}$	Δ^{2}	Δ^{3}
Δ^{0}	0	0	0	0	1
$\Delta \Delta^{1}$	0	0	1	1	2τ
$\theta \theta^{2}$	0	1	τ	τ	$\tau^{2}+1$
$\Delta \lambda^{2}$	0	1	τ	τ	$\tau^{2}+1$
Δ^{3}	1	2τ	$\tau^{2}+1$	$\tau^{2}+1$	$\tau^{3}+3 \tau$

	0		θ^{2}	θ^{2}	\hat{y}^{3}	x^{3}	Δ^{3}	\hat{S}		S	θ	S		x^{6}
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Q^{1}	0	0	0	0	0	0	0	0	0	0	1	1	1	3τ
名 2	0	0	0	0	0	0	0	1	1	1	2τ	2τ	2	$2+3 \tau^{2}$
Q 2	0	0	0	0	0	0	0	1	1	1	2τ	2τ	2	$2+3 \tau^{2}$
$\hat{\theta}^{3}$	0	0	0	0	0	0	1	τ	τ	τ	$1+\tau$	$1+\tau^{2}$		$\tau\left(3+\tau^{2}\right)$
Q^{3}	0	0	0	0	0	0	1	τ	τ	τ	$1+\tau$	$1+\tau^{2}$		$\tau\left(3+\tau^{2}\right)$
θ^{3}	0	0	0	0	1	1	2	4τ	3τ	4τ	$3+4$	$2+4{ }^{2}$		($\left.0+5 \tau^{2}\right)$
S^{4}	0	0	1	1	τ	τ	4τ	$2+3 \tau^{2}$	$1+2$	$2+3$	$T(5+2$	$4+2 \tau^{2}$		$\tau^{2}+2 T^{4}$
$\hat{2}^{4}$	0	0	1	1	τ	τ	3τ	$1+2 T^{2}$	τ^{2}	$1+2$	${ }_{T}(2+$	$\left(2+\tau^{2}\right.$		$4 \tau^{2}+\tau^{4}$
\sum^{4}	0	0	1	1	τ	τ	4τ	$2+3 T^{2}$	$1+2$	$2+3$	$-(5+2$	$4+2 T$		$T^{2}+2 T^{4}$
θ^{5}	0	1	2τ	2τ	$1+\tau^{2}$	$1+\tau^{2}$	$3+4 T^{2}$	$\pi(5+2 \pi$	$\frac{)}{\tau}(2+$	$-(5+2$	$\begin{gathered} 2 \\ 2+5 \tau^{2} \end{gathered}$	$\tau^{2}+$		$\left.T^{4}+\tau^{4}\right)$
\hat{x}^{5}	0	1	2τ	2τ	$1+\tau^{2}$	$1+\tau^{2}$	$2+4 T_{T}^{2}$	$4+2 \pi$	$\frac{)}{\tau}(2+$	$\tau_{1}(4+2$	$\begin{aligned} & \text { 2) } \\ & 2+5 \tau^{2}, \end{aligned}$	$T^{2}+$		$\left.T^{4}+\tau^{4}\right)$
Q^{5}	0	1	2τ	2τ	$1+\tau^{2}$	$1+\tau^{2}$	$3+4 T_{T}^{2}$	$5+2 T$	$(2+$	$(5+2$	${ }^{2}{ }^{2}+5 \tau^{2}$	$\tau^{2}+$		$\left.\frac{4}{\tau^{2}}+\tau^{4}\right)$
y^{6}	1	3τ	$2+3 \tau^{2}$	$2+3 T^{2}$	$T\left(3+\tau^{2}\right) T($	$\tau\left(3+\tau_{\tau}^{2}\right)$	$\left(10+5 \tau^{2}+\right.$	$\begin{aligned} & \text {) } \\ & +9 \tau^{2}+ \end{aligned}$	$\begin{aligned} & T^{4} \\ & +4 T^{2} \end{aligned}$	$\tau^{4}+9 \tau^{2}$	$\begin{aligned} & 2 \tau^{4} \\ & 10+7 \tau^{2} \\ & \tau(10 \end{aligned}$	$\begin{gathered} \left.{ }^{-4}\right) \\ T^{2}+\tau \\ \tau(1) \end{gathered}$		$\left.{ }^{4}\right)_{4}+\tau^{6}$

The many conjectures on the enumerations $\Psi_{\pi_{b}, \pi_{w}}(\tau)$

In the following, with abuse of notation, $\Psi_{\lambda \rho}(\tau) \equiv \Psi_{\pi_{b}, \pi_{w}}(\tau)$

Conjecture 2

$$
\operatorname{deg}\left(\Psi_{\lambda \rho}(\tau)\right)=|\lambda|+|\rho|-\left|\delta_{n}\right|
$$

In particular, $\Psi_{\lambda \rho}(\tau)=0$ if $|\lambda|+|\rho|<\binom{n}{2}$.

Conjecture 3

The $\Psi_{\lambda \rho}(\tau)$'s are polynomials of defined parity.

Conjecture 4

The table has three involutions: (1) $\Psi_{\lambda \rho}(\tau)=\Psi_{\rho \lambda}(\tau)$;
(2) $\Psi_{\lambda \rho}(\tau)=\Psi_{\rho^{\prime} \lambda^{\prime}}(\tau)$; $3 \Psi_{\lambda \rho}(\tau)=\Psi_{\lambda \rho^{\prime}}(\tau)$.
(1) easily proven (Wieland + swap b/w);
(2) easily corollary of Conjecture 1 (vertical reflection + swap b/w);
(3) rather mysterious.

The many conjectures on the enumerations $\Psi_{\pi_{b}, \pi_{w}}(\tau)$

Conjecture 5

The entries s.t. $|\lambda|+|\rho|=\left|\delta_{n}\right|$ are the Littlewood-Richardson coefficients $\Psi_{\lambda \rho}(\tau)=c_{\lambda \rho}^{\delta_{n}}$.

			Q	Q	Δ	Δ	Δ
	$\wedge \wedge$	$\begin{aligned} & \hat{\lambda} \\ & \hat{\Delta} \\ & \hat{\Delta} \\ & \hat{\Delta} \\ & \hat{\Delta} \end{aligned}$	0	0	0	0	1
$\begin{aligned} & \wedge \\ & \Delta \end{aligned}$	01		0	0	1	1	2τ
	$1{ }^{1}$		0	1	τ	τ	$\tau^{2}+1$
			0	1	τ	τ	$\tau^{2}+1$
			1	2τ	$\tau^{2}+1$	$\tau^{2}+1$	$\tau^{3}+3 \tau$

A property of the Littlewood-Richardson coefficients

Conjecture 4

(1) $\Psi_{\lambda \rho}=\Psi_{\rho \lambda} ;$ (2) $\Psi_{\lambda \rho}=\Psi_{\rho^{\prime} \lambda^{\prime}} ;$ (3) $\Psi_{\lambda \rho}=\Psi_{\lambda \rho^{\prime}}$.

Conjecture 5

When $|\lambda|+|\rho|=\left|\delta_{n}\right|$ we have $\Psi_{\lambda \rho}=c_{\lambda \rho}^{\delta_{n}}$ (Littlewood-Richardson)
Are these two conjectures even compatible? Indeed, (1) and (2) are simple symmetries of LR coeffs
(with (2) using the fact $\delta_{n}=\left(\delta_{n}\right)^{\prime}$),
but why on Earth should we have $c_{\mu \nu}^{\lambda}=c_{\mu \nu^{\prime}}^{\lambda}$?
Call $\mathcal{T}=\left\{\delta_{n}\right\}_{n \geq 1}$ and $\mathcal{M}=\left\{\lambda \mid c_{\mu \nu}^{\lambda}=c_{\mu \nu^{\prime}}^{\lambda} \forall \mu, \nu\right\}$

Lemma

$$
\mathcal{T}=\mathcal{M}
$$

A property of the Littlewood-Richardson coefficients

Lemma
$\mathcal{T}=\left\{\delta_{n}\right\}_{n \geq 1}$ and $\mathcal{M}=\left\{\lambda \mid c_{\mu \nu}^{\lambda}=c_{\mu \nu^{\prime}}^{\lambda} \forall \mu, \nu\right\}$ coincide.
Proof. The implication $\lambda \notin \mathcal{T} \Rightarrow \lambda \notin \mathcal{M}$ is easy
(recognise that $\lambda \notin \mathcal{T} \Leftrightarrow \lambda=[\alpha \circ \circ \bullet \beta]$ or $\lambda=[\alpha \circ \bullet \bullet \beta]$, call $\mu=[\alpha \bullet \circ \circ \beta]$ or $\mu=[\alpha \bullet \bullet \circ \beta]$, and evaluate $\left.c_{\mu(2)}^{\lambda}, c_{\mu(1,1)}^{\lambda}\right)$

The implication $\lambda \in \mathcal{T} \Rightarrow \lambda \in \mathcal{M}$ is interesting.
The crucial observation is that $T(x)\left|\delta_{n}\right\rangle=\bar{T}(x)\left|\delta_{n}\right\rangle$
that, using the commutation of T 's and $\overline{\bar{T}}$'s, implies on supersymmetric skew Schur functions $s_{\delta_{n} / \mu}(\vec{x} \mid \vec{y})=s_{\delta_{n} / \mu}(\vec{y} \mid \vec{x})$
by the coproduct definition of LR's:
$\sum_{\nu} c_{\mu \nu}^{\delta_{n}} s_{\nu}(\vec{x} \mid \vec{y})=s_{\delta_{n} / \mu}(\vec{x} \mid \vec{y})=s_{\delta_{n} / \mu}(\vec{y} \mid \vec{x})=\sum_{\nu} c_{\mu \nu}^{\delta_{n}} s_{\nu}(\vec{y} \mid \vec{x})=$
$\sum_{\nu} c_{\mu \nu}^{\delta_{n}} s_{\nu^{\prime}}(\vec{x} \mid \vec{y})=\sum_{\nu} c_{\mu \nu^{\prime}}^{\delta_{n}} s_{\nu}(\vec{x} \mid \vec{y})$. By the linear independence of Schur functions $c_{\mu \nu}^{\delta_{n}}=c_{\mu \nu^{\prime}}^{\delta_{n}}$

A mystery plot

We have mentioned that there exists several deformations of Schur functions (Grothendiek, Hall-Littlewood, ...), many of them allow for a representation as an integrable Vertex Model, and even some representation à la Zinn-Justin of the corresponding structure constants (i.e., with the trick "s $/_{2}$ embeds into $s / 3$ in three ways").

【< \gg M. Wheeler and P. Zinn-Justin, Littlewood-Richardson coefficients for Grothendieck polynomials from integrability, J. für die Reine und Angewandte Math. 757 (2017); - Hall polynomials, inverse Kostka polynomials and puzzles, JCT-A 159 (2018).

Maybe there exists a basis/dual-basis of symmetric functions $\left\{f_{\lambda}\right\},\left\{g^{\lambda}\right\}$, which are a τ-deformation of Schur fns., such that

$$
\Psi_{\lambda \rho}(\tau)=c_{\lambda \rho}^{\delta_{n}} \text { or } \Psi_{\lambda \rho}(\tau)=d_{\delta_{n}}^{\lambda \rho}, \text { for all pairs } \lambda, \rho \preceq \delta_{n} ?
$$

Maybe we will have a result of the form $\Psi_{\lambda \rho}(\tau)=\sum_{P \in \mathcal{P}_{\lambda, \rho, \delta_{n}}} \tau^{\chi(P)}$ with $\mathcal{P}_{\lambda, \rho, \delta_{n}}$ some variant of Knutson-Tao puzzles, and $x(P)$ the number of tiles of some kind?

A not-free-fermionic deformation of $T(x)$ and $\bar{T}(y)$

$T(x)$ and $\bar{T}(y)$ for the (non-free-fermionic) 5-Vertex Model
are unambiguously given by

A similar procedure for the (non-free-fermionic) 6-Vertex Model gives, again unambiguously

$$
\bar{T}^{6 v}\left(y_{i}\right)=T^{6 v}\left(\omega / y_{i}\right)
$$

Note that now the $f_{\lambda / \mu}(\vec{x})$'s are Laurent polynomials in x_{i} 's

Non-FF 5VM and dual Canonical Grothendieck polynomials

The FF 5VM operators T and \bar{T} act on integer partitions as

$$
\begin{array}{rll}
\langle\mu| T \quad(x)|\lambda\rangle & = \begin{cases}x^{|\lambda / \mu|} & \mu \preceq \lambda ; \lambda / \mu \text { hor. strip } \\
0 & \text { otherwise }\end{cases} \\
\langle\mu| \bar{T} \quad(y)|\lambda\rangle & = \begin{cases}y^{|\lambda / \mu|} & \mu \preceq \lambda ; \lambda / \mu \text { vert. strip } \\
0 & \text { otherwise }\end{cases}
\end{array}
$$

$$
s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)=\langle\mu| T \quad\left(x_{1}\right) \cdots T \quad\left(x_{n}\right) \bar{T} \quad\left(y_{1}\right) \cdots \bar{T} \quad\left(y_{m}\right)|\lambda\rangle
$$

$$
x_{1}^{2} x_{2} x_{3}^{2} x_{4}^{4} x_{6}^{2}
$$

Non-FF 5VM and dual Canonical Grothendieck polynomials

The non-FF 5VM operators T and \bar{T} act on integer partitions as

$$
\begin{aligned}
\langle\mu| T^{5 v}(x)|\lambda\rangle & = \begin{cases}x^{K(\lambda / \mu)}(x-\tau)^{|\lambda / \mu|-K(\lambda / \mu)} & \mu \preceq \lambda ; \lambda / \mu \text { hor. strip } \\
0 & \text { otherwise }\end{cases} \\
\langle\mu| \bar{T}^{5 v}(y)|\lambda\rangle & = \begin{cases}y^{K(\lambda / \mu)}(y-\tau)^{|\lambda / \mu|-K(\lambda / \mu)} & \mu \preceq \lambda ; \lambda / \mu \text { vert. strip } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
f_{\lambda / \mu}\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)=\langle\mu| T^{5 v}\left(x_{1}\right) \cdots T^{5 v}\left(x_{n}\right) \bar{T}^{5 v}\left(y_{1}\right) \cdots \bar{T}^{5 v}\left(y_{m}\right)|\lambda\rangle
$$

$$
x_{1}\left(x_{1}-\tau\right) x_{2} x_{3}^{2} x_{4}^{2}\left(x_{4}-\tau\right)^{2} x_{6}^{2}
$$

Schur vs. f_{λ} : an example

$$
T\left(x_{i}\right): \quad \text { A supersymmetric skew Schur function: }
$$

$$
\begin{aligned}
& \square \mathbb{D}_{1} \\
& \mathbb{T}^{1} \mathbb{E}_{x_{i}} \\
& \square x_{x} \text { Er } \\
& \bar{T}\left(y_{i}\right): \\
& \square y_{i} \quad \square 1 \\
& \square 1 \quad \square \\
& \square y_{i} \quad \square 1
\end{aligned}
$$

Schur vs．f_{λ} ：an example

$T\left(x_{i}\right):$
 A supersymmetric skew f_{λ} function：

$$
\begin{aligned}
& \square \square 1 \\
& \mathbb{T} \mathbb{E}_{x} x_{1} r_{b}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{T}\left(y_{i}\right): \\
& \text { 乌 } y_{i}-\tau \text { 【 } 1 \\
& \square 1 \quad \square \\
& \square y_{i} \quad \text { 亿 } 1
\end{aligned}
$$

$$
\begin{aligned}
s_{\text {㢼 }}\left(x_{1}, \ldots, x_{6} \mid y_{1}, \ldots, y_{4}\right)= & \cdots+x_{1}^{2} x_{2}^{2} x_{3} x_{4} x_{6}^{2} y_{1}^{3} y_{3} y_{4}^{2} \\
& \cdot\left(x_{2}-\tau\right)\left(x_{4}-\tau\right)\left(y_{1}-\tau\right)\left(y_{4}-\tau\right)+\cdots
\end{aligned}
$$

Towards an expansion of f_{λ} 's over Schur functions

Remark: $f_{\lambda / \mu}(\vec{x} \mid \vec{y})$ are homogeneous of degree $|\lambda / \mu|$ in x_{i} 's, y_{j} 's and τ (so that in fact only the cases $\tau=0$ (Schur) and $\tau=1$ do matter)

As a result, we cannot hope that the structure constants of the f_{λ} 's are tout court our $\Psi_{\lambda \rho}(\tau)$. Our best hope is that they reproduce the leading coefficient of the polynomials, i.e. the coeff. of degree $|\lambda|+|\rho|-\binom{n}{2}$ in τ. It is easily seen that $f_{\lambda}=\sum_{\mu \preceq \lambda} B_{\lambda}{ }^{\mu} \tau^{|\lambda / \mu|} s_{\mu}$, where \preceq is the inclusion order, and $B_{\lambda}{ }^{\mu} \in \mathbb{Z}$.

Expansion of f_{λ} 's and g^{λ} 's over Schur functions

$$
\begin{gathered}
f_{\lambda}=\sum_{\substack{\mu \leq \lambda \\
\ell(\mu)=\ell(\lambda)}} B_{\lambda}{ }^{\mu} \tau^{|\lambda / \mu|} s_{\mu} \quad g^{\nu}=\sum_{\substack{\mu \succeq \nu \\
\ell(\mu)=\ell(\nu)}} \tau^{|\mu / \nu|} s_{\mu}\left(B^{-1}\right)_{\mu}{ }^{\nu} \\
B_{\lambda}{ }^{\mu}=(-1)^{|\lambda / \mu|} \operatorname{det}\left[\binom{\lambda_{i}-1}{\mu_{j}-j+i-1}\right]_{i, j=1 \ldots, \ell} \\
\left(B^{-1}\right)^{\lambda}{ }_{\mu}=\operatorname{det}\left[\binom{\lambda_{i}-i+j-1}{\mu_{j}-1}\right]_{i, j=1 . ., \ell}
\end{gathered}
$$

Expansion of f_{λ} 's and g^{λ} 's over Schur functions

$$
\begin{gathered}
f_{\lambda}=\sum_{\substack{\mu \preceq \lambda \\
\ell(\mu)=\ell(\lambda)}} B_{\lambda}{ }^{\mu} \tau^{|\lambda / \mu|} s_{\mu} \quad g^{\nu}=\sum_{\substack{\mu \succeq \nu \\
\ell(\mu)=\ell(\nu)}} \tau^{|\mu / \nu|} s_{\mu}\left(B^{-1}\right)_{\mu}^{\nu} \\
B_{\lambda}^{\mu}=(-1)^{|\lambda / \mu|} \operatorname{det}\left[\binom{\lambda_{i}-1}{\mu_{j}-j+i-1}\right]_{i, j=1 \ldots, \ell} \\
\left(B^{-1}\right)^{\lambda}{ }_{\mu}=\operatorname{det}\left[\binom{\lambda_{i}-i+j-1}{\mu_{j}-1}\right]_{i, j=1 \ldots, \ell}
\end{gathered}
$$

Determinantal formulas for the f_{λ} 's

Weyl-type determinantal formula for f_{λ}
(minimal alphabet)

$$
f_{\lambda}\left(x_{1}, \ldots, x_{\ell}\right)=\frac{1}{\Delta(\vec{x})} \operatorname{det}\left[\left(x_{j}-\tau\right)^{\lambda_{i}-1} x_{j}^{\ell-i+1}\right]_{i, j=1 \ldots, \ell} \quad \ell=\ell(\lambda)
$$

Jacobi-Trudi-type determinantal formula for f_{λ}

$$
\begin{aligned}
& f_{\lambda}(\vec{x})=\operatorname{det}\left(\left(h_{\left[\lambda_{i}-1, j-i+1\right]}\right)_{i, j=1, \ldots, \ell(\lambda)}\right) \\
& h_{[a, b]}:=\sum_{c=0}^{a}\binom{a}{c}(-\tau)^{c} h_{a+b-c}=\left[z^{a+b}\right](1-\tau z)^{a} \prod \frac{1}{1-z x_{i}}
\end{aligned}
$$

The Jacobi-Trudi-type formula indeed generalises the one for Schur, recalling that $s_{\lambda}=\operatorname{det}\left(\left(h_{\lambda_{i}+j-i}\right)_{i, j=1, \ldots, \ell(\lambda)}\right)$ and observing that $h_{[a, b]}=h_{a+b}$ when $\tau=0$.
Also, it is stable, i.e. you can take matrices of dimension $d \geq \ell(\lambda)$

so the f_{λ}＇s are Canonical Grothendieck polynomials

All these results allow to identify the f_{λ}＇s with functions that have already arised in various places in the literature

【＜A．Borodin，On a family of symmetric rational functions，Adv．in Math． 306 （2014）［Sect．8．4，identified by the Weyl－type formula］

【＜K．Motegi and T．Scrimshaw，Refined Dual Grothendieck Polynomials，Integrability，and the Schur Measure，SLC 85 （2021） ［ex．3．7，with $t_{i} \rightarrow \tau$ ，identified by the formula for $B_{\lambda}{ }^{\mu}$ ］

【\＆D A．Gunna and P．Zinn－Justin，Vertex models for Canonical Grothendieck polynomials and their duals，Alg．Combin． 6 （2023） ［Sect．3．4．3，identified from the branching rule］
Note that in these papers the f_{λ}＇s arise from a bosonic Vertex Model！

What about the $g^{\lambda} \mathrm{s}$?

Now that we have our favourite f_{λ} 's, how can we determine the duals g^{λ} 's?
(1) you feel lucky, and search for a τ-deformation of $U(x)$ and $\bar{U}(y)$;
(2) you go the safe way, and evaluate the branching rule of the g^{λ} 's, that is

$$
\tau^{|\lambda / \rho|} g^{\lambda / \rho}(x)=\sum_{\substack{\nu \preceq \rho \\ \ell(\nu)=\ell(\rho)}} \sum_{\substack{\mu \succeq \lambda \\ \ell(\mu)=\ell(\lambda)}} B_{\rho}^{\nu} s_{\mu / \nu}(\tau x)\left(B^{-1}\right)_{\mu}^{\lambda}
$$

Remark: $g^{\lambda / \mu}(\vec{x} \mid \vec{y})$ are homogeneous of degree $|\lambda / \mu|$ in x_{i} 's, y_{j}^{\prime} 's and τ^{-1}

Determinantal formulas for the $g^{\lambda \prime}$ s

Weyl-type determinantal formula for g^{λ}
(minimal alphabet)

$$
g^{\lambda}\left(x_{1}, \ldots, x_{\ell}\right)=\frac{1}{\Delta(\vec{x})} \operatorname{det}\left[\left(\frac{x_{j}}{1-\tau x_{j}}\right)^{\lambda_{i}} x_{j}^{\ell-i}\right]_{i, j=1 \ldots, \ell} \quad \ell=\ell(\lambda)
$$

Jacobi-Trudi-type determinantal formula for g^{λ}

$$
\begin{aligned}
& g^{\lambda}(\vec{x})=\operatorname{det}\left(\left(h_{\left\{\lambda_{i}-1, j-i+1\right\}}\right)_{i, j=1, \ldots, \ell(\lambda)}\right) \\
& h_{\{a, b\}}:=\sum_{c \geq 0}\binom{a+c}{a} \tau^{c} h_{a+b+c}=\left[z^{a+b}\right](1-\tau / z)^{-a-1} \prod \frac{1}{1-z x_{i}}
\end{aligned}
$$

Our best conjecture so far. . .

So, we had hopes that the structure constants of our new basis $\left\{f_{\lambda}\right\}$ may be related to our UASM enumeration vectors, but, due to the homogeneity in $\operatorname{deg}(\vec{x})+\operatorname{deg}(\tau)$, only for the leading coefficient of the enumeration polynomials, namely

Conjecture

$$
f_{\mu}(\vec{x}) f_{\nu}(\vec{x})=\sum_{\lambda} c_{\mu \nu}^{\lambda} f_{\lambda}(\vec{x}) \quad\left[\tau^{|\lambda|+|\rho|-\binom{n}{2}}\right] \Psi_{\lambda \rho}(\tau)=c_{\lambda \rho}^{\delta_{n}}
$$

This conjecture indeed holds up to $n=5$
Recall that consistency with our conjectures requires

$$
\left[\tau^{|\lambda|+|\rho|-\binom{n}{2}}\right]\left(\Psi_{\lambda \rho}(\tau)-\Psi_{\lambda \rho^{\prime}}(\tau)\right)=c_{\lambda \rho}^{\delta_{n}}-c_{\lambda \rho^{\prime}}^{\delta_{n}}=0
$$

Indeed our proof works out of the box for the coproduct coefficients,
i.e., starting from $g^{\lambda}(\vec{x} \cup \vec{y}):=\sum_{\mu, \nu} c_{\mu \nu}^{\lambda} g^{\mu}(\vec{x}) g^{\nu}(\vec{y})$, and establishing $U(x)\left|\delta_{n}\right\rangle=\bar{U}(x)\left|\delta_{n}\right\rangle$, which implies a "triangular=magic" lemma also in this case.

The non-FF 6VM extension

Can we hope of going besides the leading coefficient?
Recall that we have proposed a higher level of generalisation, involving a 6-Vertex Model extension

$$
\begin{array}{cl}
T^{6 v}\left(x_{i}\right) \not \square \frac{\omega}{x_{i}} & \square 1 \\
\square 1 & \square x_{i} \\
\square x_{i}+\frac{\omega}{x_{i}}+\tau & \boxed{\square} 1
\end{array}
$$

$$
\bar{T}^{6 v}\left(y_{i}\right)=T^{6 v}\left(\omega / y_{i}\right)
$$

Now the $f_{\lambda / \mu}(\vec{x})$'s are Laurent polynomials in the x_{i} 's, and are homogeneous in x_{i} 's, τ and $\sqrt{\omega}$

The 5 VM case is obtained via the singular limits $\lim _{\omega \rightarrow 0} T^{6 v}(x)=T^{5 v}(x-\tau)$ and $\lim _{\omega \rightarrow 0} T^{6 v}(\omega / x)=\bar{T}^{5 v}(x-\tau)$

Homogeneity allows to fix one parameter among τ and ω

$$
\text { (e.g., w.l.o.g., fix } \omega=-1 \text {, or } 0 \text {, or }+1 \text {) }
$$

and have an algebra of functions where τ really matters

The branching rule for $T^{6 v}$

In the case $\omega=1$, the 6 VM operators T act on integer partitions as

$$
\begin{aligned}
& \langle\mu| T^{6 v}(x)|\lambda\rangle= \begin{cases}\left(x+x^{-1}+\tau\right)^{K(\lambda / \mu)} x^{\#\{\bullet\}-\#\{\bullet\}} \\
0 & \mu \preceq \lambda ; \lambda / \mu \text { a 'ribbon' (no } \boxplus) \\
\text { otherwise }\end{cases} \\
& \quad \begin{array}{l}
f_{\lambda / \mu}^{6 v}\left(x_{1}, \ldots, x_{n}\right)=\langle\mu| T^{6 v}\left(x_{1}\right) \cdots T^{6 v}\left(x_{n}\right)|\lambda\rangle
\end{array} \\
& \hline \square
\end{aligned}
$$

The algebra of $f_{\lambda / \mu}^{6 v}$'s

Now, as the $f_{\lambda}^{6 v}$'s are Laurent polynomials in the x_{i} 's, it is not even clear that they induce an algebra that coincides with $\operatorname{span}_{\mathbb{K}}\left(\left\{f_{\lambda}^{6 v}\right\}\right)$ (instead of being strictly larger)

Nonetheless, we conjecture

Conjecture

$$
\begin{aligned}
f_{\mu}^{6 v} f_{\nu}^{6 v} & =\sum_{\lambda} c_{\mu \nu}^{\lambda} f_{\lambda}^{6 v} & & c_{\mu \nu}^{\lambda} \in \mathbb{N}(\tau,-\omega) \\
f_{\lambda / \mu}^{6 v} & =\sum_{\nu} d_{\lambda}^{\mu \nu} f_{\nu}^{6 v} & & d_{\lambda}^{\mu \nu} \in \mathbb{N}(\tau,-\omega)
\end{aligned}
$$

Interestingly, the coefficients $c_{\mu \nu}^{\lambda}$ have both the right degree and the parity property for a " $\Psi_{\lambda \rho}(\tau)=c_{\lambda \rho}^{\delta_{n}}$ " conjecture (although, unfortunately, this very conjecture is false)

A work in progress

This is clearly a work in progress, with many things going on... I summarise my perspective through a few questions that I find interesting:

- How can we prove our conjectures on the $\Psi_{\lambda \rho}(\tau)$ enumerations?
- There is any hope for a conjecture of the form $\Psi_{\lambda \rho}(\tau)=c_{\lambda \rho}^{\delta_{n}}$, for some family of functions?
- There is a puzzle description of the $c_{\mu \nu}^{\lambda}$ and $d_{\lambda}^{\mu \nu}$ structure constants, for the 5 VM and the 6 VM generalisations of the T, \bar{T} formalism?
[this should be work in progress of A. Gunna and P. Zinn-Justin]

Thank you for listening!

