Branes and Quivers In honor of Philippe Di Francesco's @ 60

Amihay Hanany Jun 2024

Branes and Supersymmetric Gauge Theories Outline

- Branes on Gorenstein singularities
- Brane Tilings
- Cluster Algebras
- Branes and tropical geometry
- Branes and symplectic singularities

Branes on Gorenstein Singularities 1998

Type IIB superstring (10) D3 branes (4) on Gorenstein singularities (6)

- N D3 branes on Gorenstein singularities of cplx dim 3
- Fractional branes
- Open strings between the different branes
- Gauge fields, matter fields, interactions Quiver Q with a superpotential W
- Problem compute the Q & W for a given singularity

i,j

Quiver & Superpotential $\mathbb{C}^3/(\mathbb{Z}_3 \times \mathbb{Z}_3)$ Graph taken from the work of Philippe & Jean-Bernard (1989)

Fig. 9. Graph of the $\mathbb{Z}_3 \times \mathbb{Z}_3$ subgroup of SU(3); points with the same symbol (\bullet , \otimes , etc.) have to be identified.

Branes Tilings 2005

Brane Tilings 2005

Conifold tiling 2005

brane tiling

Seiberg Duality Urban Renewal — quiver mutation

Cluster Algebras

Duality tree for dP_0 , also known as $\mathbb{C}^3/\mathbb{Z}_3$ 2003

 $3n_1$

 n_3

 n_2

$n_1^2 + n_2^2 + n_3^2 = 3n_1n_2n_3$

Markov Numbers

Quiver 3 block model

Quiver	α	eta	γ	a	b	С	X	у	\mathbf{Z}	K^2	surface
	1	1	1	3	3	3	1	1	1	9	dP_0
	1	1	2	2	2	4	1	1	1	8	F_0
dP_3	1	2	3	1	2	3	1	1	1	6	dP_3
	1	1	5	1	2	5	1	2	1	5	dP_4
dP_5	2	2	4	1	1	2	1	1	1	4	dP_5
dP ₆	3	3	3	1	1	1	1	1	1	3	$dP_6 I$
	2	1	6	1	1	3	1	2	1	3	$dP_6 II$
dP ₇	4	4	2	1	1	1	1	1	2	2	$dP_7 I$
	1	1	8	1	1	4	2	2	1	2	$dP_7 II$
	3	1	6	1	1	2	1	3	1	2	$dP_7 III$
dP ₈	1	1	9	1	1	3	3	3	1	1	$dP_8 I$
	8	2	1	2	1	1	1	2	4	1	$dP_8 II$
	2	3	6	1	1	1	3	2	1	1	$dP_8 III$
	5	5	1	1	2	1	1	2	5	1	$dP_8 IV$
	2	2	1	2	2	2	1	1	2	4	$sh dP_5$
	2	1	4	2	1	2	2	2	1	2	$sh dP_7$

 Table 1: The complete list of the minimal models for 3-block chiral quivers.

Duality Flower for $\mathbb{F}_0 = \mathbb{P}^1 \times \mathbb{P}^1$ 2003

Coulomb Branch 2013

Affine ADE quivers

Monopole formula — the ingredients per each node of label k

- $W = S_k$ the Weyl group of GL(k)
- $\hat{\Lambda}$ The (Langlands) dual lattice lattice of coweights
- A set of integer numbers $\hat{\Lambda} = \mathbb{Z}^k \ni m = (m_1, \dots, m_k)$ magnetic charges (coweights)
- $\hat{\Lambda}/W$ Principal Weyl chamber $m_1 \leq \cdots \leq m_k$
- Boundaries of the Weyl chamber when some m_i coincide
- H_m stabilizer of *m* in GL(k) a Levi subgroup of GL(k)
- d_i^m degrees of Casimir invariants of H_m

The conformal dimension – $\Delta(m)$ \mathbb{C}^* grading on the Coulomb branch

- Given a quiver with a set of nodes, each with labels k_a
- $\Delta(m)$ is a sum of contributions from nodes and edges:
- For each node with magnetic charges m_i^a , $i = 1 \dots k_a$ there is a negative contribution

- $\sum_{i=1}^{n} |m_i^a - m_j^a|$ (associated with positive roots of $GL(k_a)$) $1 \leq i < j \leq k_a$

• For each edge connecting nodes a, b with magnetic charges m_i^a and m_j^b a positive contribution

•
$$\frac{1}{2} \sum_{i=1}^{k_a} \sum_{j=1}^{k_b} |m_i^a - m_j^b|$$
 (associated with bifund

damental representation)

The monopole formula Hilbert series of the Coulomb branch

- Given a quiver with all the ingredients defined so far
- Introduce a variable t
- The Hilbert series is given by (flavor nodes have fixed *m*. Set to 0.)

•
$$H(t) = \sum_{m \in \hat{\Lambda}/W} t^{2\Delta(m)} P_m(t)$$

•
$$P_m(t) = \prod_i \frac{1}{1 - t^{2d_i^m}}$$

Examples — from the world of nilpotent orbits Simple quivers and their Hilbert Series

Nilpotent Orbit	$\operatorname{Dim}_{\mathbb{H}}$	Quiver	HS	HWG		
[1, 1]	0	-	1	1		
[2]	1	$2 \square$ \bigcirc 1	$\frac{(1-t^4)}{(1-t^2)^3}$	$\frac{1}{(1-\mu^2 t^2)}$		
[1, 1, 1]	0	-	1	1		
[2, 1]	2		$\frac{(1+4t^2+t^4)}{(1-t^2)^4}$	$\frac{1}{(1-\mu_1\mu_2t^2)}$		
[3]	3	$\bigcirc \bigcirc \\ 1 \qquad 2 \qquad 3$	$\frac{(1-t^4)(1-t^6)}{(1-t^2)^8}$	$\left \begin{array}{c} (1-\mu_1^3\mu_2^3t^{12}) \\ \hline (1-\mu_1\mu_2t^2)(1-\mu_1\mu_2t^4)(1-\mu_1^3t^6)(1-\mu_2^3t^6) \end{array} \right $		
[1, 1, 1, 1]	0	-	1	1		
[2, 1, 1]	3		$\frac{(1+t^2)(1+8t^2+t^4)}{(1-t^2)^6}$	$\frac{1}{(1-\mu_1\mu_3t^2)}$		
[2,2]	4		$\frac{(1+t^2)^2(1+5t^2+t^4)}{(1-t^2)^8}$	$\frac{1}{(1-\mu_1\mu_3t^2)(1-\mu_2^2t^4)}$		
[3,1]	5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{(1+t^2)(1+4t^2+10t^4+4t^6+t^8)}{(1-t^2)^{10}}$	$\frac{(1-\mu_1^3\mu_2^3\mu_3^3t^{12})}{(1-\mu_1\mu_3t^2)(1-\mu_2^2t^4)(1-\mu_1\mu_3t^4)(1-\mu_1^2\mu_2t^6)(1-\mu_2\mu_3^2t^6)}$		
[4]	6	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ 1 & 2 & 3 \end{array} $	$\frac{(1-t^4)(1-t^6)(1-t^8)}{(1-t^2)^{15}}$	messy		

Quivers for hyper surface symplectic singularities Slices in Sp(n)

•
$$PE\left[\mu^2 t^2 + t^4 + \mu\left(t^{2n-1} + t^{2n+1}\right)\right]$$

$$-\mu^2 t^{4n+2}\Big]_{SU(2)}$$

Quivers for hyper surface symplectic singularities Slice in G2

$\dim_{\mathbb{H}} = 3$

 \hat{X}

- $H(t, x) = PE\left[[2]t^2 + [3]t^3 t^{12}\right]$
- Not polynomial PE

Branes

Union of 3 cones new physics

$$\mathcal{H}_{\infty}\begin{pmatrix} 6\\ \Box\\ SU(5)_{1} \\ \circ\\ SU(5)_{1} \end{pmatrix} = C_{1} \cup C_{2} \cup C_{3}$$

$$C_{1} = \mathcal{C}^{3d} \begin{pmatrix} \circ\\ \circ\\ 1 - \circ\\ 2 - \circ\\ 3 - \circ\\ 1 - \circ\\ 2 -$$

Non simply laced quivers No known Lagrangian or path integral

- A small modification of the monopole formula
- A whole new set of moduli spaces
- A window to exotic moduli spaces
- like rank 1 4d theories

physical effects in 6d Small instanton transition: 1T <-> 29 H

Hasse (phase) diagrams

Hasse diagrams Quiver subtraction

- Recall the work of Kraft and Procesi who classified degenerations in closures of nilpotent orbits
- Minimal degenerations are of two types
- Klein singularity (ADE) denoted by capital letters
- closure of a minimal nilpotent orbit of some algebra denoted lower case
- This is reproduced and generalized with the Coulomb branch

Hasse diagrams for nilpotent orbits taken from KP \mathfrak{sl}_{6}

6d — small instanton transition SU(2) with 10 flavors

- The Classical Higgs branch minimal nilpotent orbit of SO(20)
- The moduli space of 1 SO(20) instanton on \mathbb{C}^2

E_8 family k = 2 - shows up in 5d, 6dStructure of symplectic leaves — left: Coulomb branch; right: Higgs branch

$$t^{k+4} \bigg) \bigg]_{SO(4k+16)}$$

small instanton transition finite - infinite coupling

$6d \ \mathrm{SCFT}$	Sp(k) with N
Magnetic quiver	$\begin{array}{c} \circ - \circ - \cdots - \\ 1 & 2 \end{array}$
	e_8
	d_{10}
	d_{12}
Hasse diagram	d_{2k+8}

6d — small instanton transition a family of Sp(k-1) theories with 2k+6 flavors

- The Classical Higgs branch a nilpotent orbit of SO(4k+12)
- The Higgs branch at infinite coupling with magnetic quiver and Hasse diagram. The HWG is PE of the polynomial below

- e_8 d_{10} $\begin{pmatrix} k+2\\ \sum_{i=1}^{k+2} \mu_{2i}t^{2i} \end{pmatrix} + t^4 + \mu_{2k+6}(t^{k+1} + t^{k+3})$
 - d_{2k+6}

Basic Hasse diagrams - affine ADE quivers 2 symplectic leaves, minimal slices

$$x = \begin{cases} n & \text{for } a_n \\ 2n - 3 & \text{for } d_n \\ 11 & \text{for } e_6 \\ 17 & \text{for } e_7 \\ 29 & \text{for } e_8 \end{cases}$$

4d $\mathcal{N} = 2$ SU(6) with fundamental matter union of 2 cones

Minimal transverse slices Symplectic singularities Slice Framed quiver

Affine Grasmanian G_2

Orthogonal Symplectic

closures of minimal nilpotent orbits of type E_n for n = 8, 7, 6, 5, 4

For a future of fruitful discussions!