Branes and Quivers

In honor of Philippe Di Francesco's @ 60

Amihay Hanany Jun 2024

Branes and Supersymmetric Gauge Theories

Outline

- Branes on Gorenstein singularities
- Brane Tilings
- Cluster Algebras
- Branes and tropical geometry
- Branes and symplectic singularities

Branes on Gorenstein Singularities 1998

Type IIB superstring (10)

D3 branes (4) on Gorenstein singularities (6)

- N D3 branes on Gorenstein singularities of cplx dim 3
- Fractional branes
- Open strings between the different branes
- Gauge fields, matter fields, interactions - Quiver Q with a superpotential W
- Problem - compute the Q \& W for a given singularity

Brane Boxes

1998
NS
a)

(b)

$$
W=\sum_{i, j}\left(H_{i, j} V_{i+1, j} D_{i+1, j+1}-V_{i, j} H_{i, j+1} D_{i+1, j+1}\right)
$$

Quiver \& Superpotential $\mathbb{C}^{3} /\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)$

Graph taken from the work of Philippe \& Jean-Bernard (1989)

Fig. 9. Graph of the $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ subgroup of $\operatorname{SU}(3)$; points with the same symbol $(\bullet, \otimes$, etc.) have to be identified.

Branes Tilings 2005

Brane Tilings

2005

Conifold tiling

2005

quiver
brane tiling

Seiberg Duality

Urban Renewal - quiver mutation

Cluster Algebras

Duality tree for $d P_{0}$, also known as $\mathbb{C}^{3} / \mathbb{Z}_{3}$ 2003

Markov Numbers

Quiver 3 block model

Duality Flower for $\mathbb{F}_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ 2003

Coulomb Branch 2013

Affine ADE quivers

Coulomb branch - closure of minimal nilpotent orbit
a)

d)

e)

Monopole formula - the ingredients per each node of label k

- $W=S_{k}$ - the Weyl group of $G L(k)$
- $\hat{\Lambda}$ - The (Langlands) dual lattice - lattice of coweights
- A set of integer numbers $\hat{\Lambda}=\mathbb{Z}^{k} \ni m=\left(m_{1}, \ldots, m_{k}\right)$ - magnetic charges (coweights)
- $\hat{\Lambda} / W$ - Principal Weyl chamber $m_{1} \leq \cdots \leq m_{k}$
- Boundaries of the Weyl chamber - when some m_{i} coincide
- H_{m} - stabilizer of m in $G L(k)$ - a Levi subgroup of GL(k)
- d_{i}^{m} - degrees of Casimir invariants of H_{m}

The conformal dimension $-\Delta(m)$
 \mathbb{C}^{*} grading on the Coulomb branch

- Given a quiver with a set of nodes, each with labels k_{a}
- $\Delta(m)$ is a sum of contributions from nodes and edges:
- For each node with magnetic charges $m_{i}^{a}, i=1 \ldots k_{a}$ there is a negative contribution
- $-\sum_{1 \leq i<j \leq k_{a}}\left|m_{i}^{a}-m_{j}^{a}\right|$ (associated with positive roots of $\left.G L\left(k_{a}\right)\right)$
- For each edge connecting nodes a, b with magnetic charges m_{i}^{a} and m_{j}^{b} a positive contribution
- $\frac{1}{2} \sum_{i=1}^{k_{a}} \sum_{j=1}^{k_{b}}\left|m_{i}^{a}-m_{j}^{b}\right|$ (associated with bifundamental representation)

The monopole formula

Hilbert series of the Coulomb branch

- Given a quiver with all the ingredients defined so far
- Introduce a variable t
- The Hilbert series is given by (flavor nodes have fixed m. Set to 0 .)
- $H(t)=\sum_{m \in \hat{\Lambda} / W} t^{2 \Delta(m)} P_{m}(t)$
$P_{m}(t)=\prod_{i} \frac{1}{1-t^{2 d_{i}^{m}}}$

Examples - from the world of nilpotent orbits

Simple quivers and their Hilbert Series

Nilpotent Orbit	Dim_{H}	Quiver	HS	HWG
[1, 1]	0	-	1	1
[2]	1	$2 \square$ 0 1	$\frac{\left(1-t^{4}\right)}{\left(1-t^{2}\right)^{3}}$	$\frac{1}{\left(1-\mu^{2} t^{2}\right)}$
[1, 1, 1]	0	-	1	1
[2, 1]	2	${ }^{1} \square_{1}^{\square} \quad \square_{1}^{1}$	$\frac{\left(1+4 t^{2}+t^{4}\right)}{\left(1-t^{2}\right)^{4}}$	$\frac{1}{\left(1-\mu_{1} \mu_{2} t^{2}\right)}$
[3]	3		$\frac{\left(1-t^{4}\right)\left(1-t^{6}\right)}{\left(1-t^{2}\right)^{8}}$	$\frac{\left(1-\mu_{1}^{3} \mu_{2}^{3} t^{12}\right)}{\left(1-\mu_{1} \mu_{2} t^{2}\right)\left(1-\mu_{1} \mu_{2} t^{4}\right)\left(1-\mu_{1}^{3} t^{6}\right)\left(1-\mu_{2}^{3} t^{6}\right)}$
[1, 1, 1, 1]	0	-	1	1
[2, 1, 1]	3		$\frac{\left(1+t^{2}\right)\left(1+8 t^{2}+t^{4}\right)}{\left(1-t^{2}\right)^{6}}$	$\frac{1}{\left(1-\mu_{1} \mu_{3} t^{2}\right)}$
[2, 2]	4		$\frac{\left(1+t^{2}\right)^{2}\left(1+5 t^{2}+t^{4}\right)}{\left(1-t^{2}\right)^{8}}$	$\frac{1}{\left(1-\mu_{1} \mu_{3} t^{2}\right)\left(1-\mu_{2}^{2} t^{4}\right)}$
[3, 1]	5		$\frac{\left(1+t^{2}\right)\left(1+4 t^{2}+104^{4}+4 t^{6}+t^{8}\right)}{\left(1-t^{2}\right)^{10}}$	$\frac{\left(1-\mu_{1}^{3} \mu_{2}^{3} \mu_{3}^{3} t^{12}\right)}{\left(1-\mu_{1} \mu_{3} t^{2}\right)\left(1-\mu_{2}^{2} t^{4}\right)\left(1-\mu_{1} \mu_{3} t^{4}\right)\left(1-\mu_{1}^{2} \mu_{2} t^{6}\right)\left(1-\mu_{2} \mu_{3}^{2} t^{6}\right)}$
[4]	6		$\frac{\left(1-t^{4}\right)\left(1-t^{6}\right)\left(1-t^{8}\right)}{\left(1-t^{2}\right)^{15}}$	messy

Quivers for hyper surface symplectic singularities

 Slices in Sp(n)
. $P E\left[\mu^{2} t^{2}+t^{4}+\mu\left(t^{2 n-1}+t^{2 n+1}\right)-\mu^{2} t^{4 n+2}\right]_{S U(2)}$

Quivers for hyper surface symplectic singularities

Slice in G2

- $H(t, x)=P E\left[[2] t^{2}+[3] t^{3}-t^{12}\right]$
- Not polynomial PE

Branes

Union of 3 cones

 new physics
$\xrightarrow{\frac{1}{g^{2}} \rightarrow 0}$

$\stackrel{1}{0} \xlongequal{3} \stackrel{1}{\circ}$

$$
\begin{array}{lll}
1 \\
\circ & 4 \\
0
\end{array}
$$

Non simply laced quivers

No known Lagrangian or path integral

- A small modification of the monopole formula
- A whole new set of moduli spaces
- A window to exotic moduli spaces
- like rank 1 4d theories

physical effects in 6d

Small instanton transition: 1T <-> 29 H

$\Leftrightarrow \quad$ electric quiver:

Hasse (phase) diagrams

Hasse diagrams

Quiver subtraction

- Recall the work of Kraft and Procesi who classified degenerations in closures of nilpotent orbits
- Minimal degenerations are of two types
- Klein singularity (ADE) - denoted by capital letters
- closure of a minimal nilpotent orbit of some algebra - denoted lower case
- This is reproduced and generalized with the Coulomb branch

Hasse diagrams for nilpotent orbits

 taken from KP$$
A_{1} A_{0}^{\mathfrak{s l}_{2}}{ }_{\bullet}^{\circ}
$$

6d - small instanton transition

SU(2) with 10 flavors

- The Classical Higgs branch - minimal nilpotent orbit of SO(20)
- The moduli space of $1 \mathrm{SO}(20)$ instanton on \mathbb{C}^{2}

E_{8} family $k=2$ - shows up in 5d, 6d

Structure of symplectic leaves - left: Coulomb branch; right: Higgs branch

small instanton transition

finite - infinite coupling

6d SCFT	$\operatorname{Sp}(k)$ with $N=4 k+16$ flavours	G_{2} with 7 flavours
Magnetic quiver		Not known
Hasse diagram		

6d - small instanton transition

a family of $\operatorname{Sp}(k-1)$ theories with $2 k+6$ flavors

- The Classical Higgs branch - a nilpotent orbit of $\mathrm{SO}(4 \mathrm{k}+12)$
- The Higgs branch at infinite coupling with magnetic quiver and Hasse diagram. The HWG is PE of the polynomial below

$$
\left(\sum_{i=1}^{k+2} \mu_{2 i} t^{2 i}\right)+t^{4}+\mu_{2 k+6}\left(t^{k+1}+t^{k+3}\right)
$$

Basic Hasse diagrams - affine ADE quivers

2 symplectic leaves, minimal slices
a)

b) 10

c)

e)

4d $\mathcal{N}=2$ SU(6) with fundamental matter

 union of 2 cones

Minimal transverse slices

Symplectic singularities

- A list of minimal transitions

Affine Grasmanian G_{2}

Orthogonal Symplectic

closures of minimal nilpotent orbits of type E_{n} for $n=8,7,6,5,4$

For a future of fruitful discussions!

