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Symmetric functions

The Schur functions

sλ(x) =
det
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x
λj+n−j
i

)n

i,j=1

det
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xn−j
i

)n

i,j=1

where λ = (λ1 ⩾ . . . ⩾ λn ⩾ 0) and x = {x1, . . . , xn} are symmetric
polynomials satisfying the Cauchy summation identity

∑
λ

sλ(a1, . . . , an)sλ(b1, . . . , bm) =
n∏

i=1

m∏
j=1

1

1− aibj
=: Π(a; b).

Schur functions satisfy a branching rule that allows to expand them in
monomials

sλ(x) =
∑

∅≺λ1≺···≺λn=λ

n∏
i=1

x
|λi |−|λi−1|
i

where ∅ ≺ λ1 ≺ · · · ≺ λn = λ is a sequence of interlaced partitions. We
write µ ≺ λ for λ1 ⩾ µ1 ⩾ λ2 ⩾ µ2 ⩾ . . .



RSK correspondence
Expanding in monomials each side of the Cauchy identity∑

λ

sλ(a1, . . . , an)sλ(b1, . . . , bm) =
n∏

i=1

m∏
j=1

1

1− aibj
,

the two sides acan be matched using Robinson-Schensted-Knuth
correspondence, a bijection{

∅ ≺ λ1 ≺ · · · ≺ λn = λ
∅ ≺ µ1 ≺ · · · ≺ µm = λ

}
←→ W = (wi,j) ∈ Nn×m

Greene’s theorem implies that λ1 = G (n,m) where

(1, 1)

(n,m)

i

j wi,j

G (n,m) = max
paths (1,1)→(n,m)

 ∑
(i,j)∈ path

wi,j

 .



Schur measure

Assume that when wi,j ∼ Geom(aibj) are independent (we say that
w ∼ Geom(q) if P(w = k) = (1− q)qk). Then,

P (G (n,m) ⩽ r) =
1

Π(a; b)

∑
λ:λ1⩽r

sλ(a)sλ(b)

In other terms, G (n,m) has the same law as λ1 when λ is a random
partition sampled according to the Schur measure

P(λ) =
1

Π(a; b)
sλ(a)sλ(b).

Asymptotics

[Johansson, 2001] proved that after appropriate rescaling, G (n,m)
fluctuates according to the Tracy-Widom GUE distribution (governing
fluctuations of the largest eigenvalue of Hermitian random matrices of
large size).



A variant
Assume that the weight matrix is
symmetric:

wi,j = wj,i

wi,j ∼ Geom(aiaj) for i > j

wi,i ∼ Geom(cai )

G (n,m) = max
paths (1,1)→(n,m)

∑
(i,j)∈ path

wi,j .

[Baik-Rains 2003] proved that

P
(
G (n, n) ⩽ r

)
=

1

Π(a, c)Φ(a)

∑
λ:λ1⩽r

cλ1−λ2+λ3−λ4+...sλ(a)

where

Φ(x) =
∏
i<j

1

1− xixj
=

∑
λ′ even

sλ(x).

Asymptotics

As n→∞, G (n, n) fluctuates according to the Tracy-Widom GSE or
GOE distributions (depending if c = 1 or c < 1).



Other variants
[Baik-Rains 2003] also computed P (G•(n, n) ⩽ r) in terms of Schur
functions for other symmetry types • :

The problem is however open for symmetries such as

Last passage percolation with walls

Imposing two symmetry axis in the diagonal direction is equivalent to
assuming that paths are constrained to remain between two walls.



Last passage percolation in a strip
Let a1, . . . , aN ∈ (0, 1), c1, c2 > 0.

(0, 0) (N, 0)(i , 0)

(n,m)

c1

c2

wi,j ∼ Geom(aiaj) for j < i < j + N

(indices modulo N)

wi,i ∼ Geom(c1ai )

wj+N,j ∼ Geom(c2aj)

We fix an initial condition G (i , 0) = G0(i) for some function G0.

G (n,m) = max
paths (i,0)→(n,m)

G0(i) +
∑

(i,j)∈ path

wi,j


Open Problem

Find the asymptotic distribution of G (n,m) as n,m→∞, depending on
the width N and the boundary parameters c1, c2.



Conjectural phase diagram

The richest behaviour is when N = Ln2/3. For a1 = · · · = aN = a, it is
expected that

1/c2

1/c1

(1,1)

(a,a)

G (n, n) ≈
vn + σn1/3χ

G (n, n) ≈
vn + σ′n1/2N

G (n, n) ≈
vn + σ′n1/2N

where

▶ v = v(c1, c2, L),

▶ N ∼ Gaussian

▶ χ ∼ unknown distribution
depending on c1, c2, L.
This is an open problem
for any model in the
same universality class.



Stationary measure (=non-equilibrium
steady-state)

However, we can find the asymptotic distribution of

Gt(i) = G (t + i , t)− G (t, t)

as t goes to infinity. Gt is a Markov process on ZN .

Problem

Find the law of the initial condition (G0(i))1⩽i⩽N such that for all t,

(Gt(i))1⩽i⩽N

(d)
= (G0(i))1⩽i⩽N

▶ For models such as Asymmetric Simple Exclusion Process (ASEP),
the standard method is the matrix product ansatz
[Derrida-Evans-Hakim-Pasquier 1993].

▶ We will illustrate another approach based on symmetric functions,
taking the example of Last Passage Percolation and Schur functions.

▶ The method works as well for other models: Log-gamma polymer
and KPZ equation (Whittaker functions), stochastic six vertex
model (Hall-Littlewood polynomials), other examples.



Stationary measure
Assume for simplicity that a1 = · · · = aN = a.

For R = (R(j))1⩽j⩽N , let

PRW
q (R) =

N∏
j=1

(1− q)qR(j)−R(j−1)

be the probability that R is a random walk with Geom(q) increments.

Define a Pitman-type operation

R1 ⋆ R2(k) = min
1⩽j⩽k

{R1(j − 1) + R2(k)− R2(j)} .

Consider the probability measure

Pa,c1,c2(R1,R2) =
1

Z
(c1c2)

−R1⋆R2(N) × PRW
ac1 (R1)× PRW

ac2 (R2).

Theorem ([B.-Corwin-Yang 2023])

For any parameters a, c1, c2, the marginal law of R1 under Pa,c1,c2 is the
unique stationary measure of the Markov process Gt .



A variant of the Schur process
The random walks R1,R2 are related to a sequence of partitions
signatures:

R1(j) = λ
(j)
1 − λ

(0)
1 , R2(j) = λ

(j)
2 − λ

(0)
2

where λ = λ(0) ≺ λ(1) ≺ · · · ≺ λ(N) is a sequence of interlaced signatures

λ(j) = (λ
(j)
1 ⩾ λ

(j)
2 ) ∈ Z2 distributed as

P(λ) =
1

Za,c1,c2(N)
c
λ
(0)
1 −λ

(0)
2

1 c
λ
(N)
1 −λ

(N)
2

2

N∏
j=1

sλ(j)/λ(j−1)(ai )

and sλ/µ denote skew Schur functions

sλ/µ(x) = 1λ1⩾µ1⩾λ2⩾µ2x
λ1+λ2−µ1−µ2 .

The construction is similar to the free boundary Schur process
[Betea-Bouttier-Nejjar-Vuletic 2017] except that the λ(j) are no longer
integer partitions:

▶ parts can be negative,

▶ all signatures have length 2.

▶ the measure P is infinite (but becomes a probability measure if we

fix λ
(0)
2 = 0).



Properties of Schur functions yield explicit formulas:

E
[
t2R1(N)

]
=

1

Za,c1,c2(N)

∮
dz

2iπz

∣∣∣∣ 1− z2

(1− taz)N(1− zc1/t)(1− zc2t)

∣∣∣∣2 .
More generally, for 0 = x0 < · · · < xk = N, there is a simple formula for

E

[
k∏

i=1

t
2(R1(xi )−R1(xi−1))
i

]
.

In particular, one can deduce that starting from the stationary initial

data, i.e. G0
(d)
= R1, we have

E[G (n, n)] = n × v(c1, c2,N)

where

v(c1, c2,N) =
(1− a2)Za,c1,c2(N + 1)− Za,c1,c2(N)

Za,c1,c2(N)

with

Za,c1,c2(N) =

∮
dz

2iπz

∣∣∣∣ 1− z2

(1− az)N(1− zc1)(1− zc2)

∣∣∣∣2 .



More general two-layer Schur process

λ =
(
λ(0), λ(1), . . . , λ(N)

)

λ(0)

λ(1)

λ(2)

λ(3)

λ(N)

Vertices on the path are decorated by signatures λ = (λ1 ⩾ λ2) ∈ Z2.
We define a probability measure on λ by taking the product of
Boltzmann weights

wt


µ

λ
a

 = wt


µ

λ
a

 = sλ/µ(a)

P (λ) =
1

Za,c1,c2(N)
c
λ
(0)
1 −λ

(0)
2

1 c
λ
(N)
1 −λ
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2

2

∏
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wt (e)

When c1c2 < 1, this is a well-defined probability measure.



Dynamics on the two-layer Schur process

λ =
(
λ(0), λ(1), . . . , λ(N)

)

λ(0)

λ(1)

λ(2)

λ(3)

λ(N)

We construct dynamics on λ, inspired by [Borodin-Ferrari 2008], such
that when the path evolves by the elementary moves

7−→ 7−→ 7−→

1 The two-layer Schur process is mapped to a two layer Schur process;

2 the λ1 marginal of the dynamics corresponds to the recurrence of
geometric LPP.

After averaging over λ
(0)
1 , λ

(0)
2 , the law of R1(j) = λ

(j)
1 − λ

(0)
1 simplifies

and can be analytically continued to all c1, c2.



Connection to the Matrix Product Ansatz
The law of the stationary measure R1 can be written, in terms of
increments ∆(j) = R1(j)− R1(j − 1) ∈ N as

P

 N⋂
j=1

{∆(j) = xj}

 =
1

Z (N)
wt

 N∏
j=1

M(xj ; ·, ·)

 v

where

M(x ; n, n′) = sλ′/λ(a) where

n = λ1 − λ2,

n′ = λ′
1 − λ′

2,

x = λ′
1 − λ′

1,

with wt = (1, c1, c
2
1 , . . . ) and vt = (1, c2, c

2
2 , . . . ).

In other terms, the stationary measure is the Matrix Product State

M
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M
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M

x3

M

x4

M

x5

M

x6

w v

Hence, another way to interpret the talk is that skew Schur functions
provide a representation of the MPA relations for Last Passage

Percolation.



Conclusion

Summary

The two-layer Schur processes allows to describe the stationary measure
of LPP in a strip in terms of reweighted random walks.

The stationary measure is not a priori a Gibbs measure, but becomes so
on some enlarged state space.

The method becomes more interesting when applied to more complicated
models (log-gamma polymer, KPZ equation) related to Whittaker
functions.

Outlook

▶ The method applies to other families of symmetric functions
[B.-Corwin, in progress]

▶ Go beyond the stationary measure.

Thank you for your attention!


