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® Generating functions

Continued fractions
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- e Motto: “Formulas speak to me"




Role model: Alexel Stakhanov




A formula: “Kirillov-Reshetikhin conjecture”
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Counting weighted Bethe states of generalized Heisenberg spin chains:
“Fermionic character formulas”

Zualt)= > H[pz +mz} Epm)

m; >0 t
selection rules

Vi Va Vv

® Polynomial in ¢ for each highest weight A

® Grading=Power of ¢ ~ sum of Bethe integers

Problem: Prove a positivity condition for “selection rules” on {m;}
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Solution: Chebyshev polynomials! (SU(2))

Relax selection rules: Partition function ~~ generating function

Zualt Q@) = 32 Q@] [P R e
t

m; >0 g
with QoQ1 = t%QlQo. No section rules.

e Constant term in Q1 of Zy »(t;1,Q1) is the character formula.

® Can sum over mq,mo,.... result is factorized:

Zua(a) = ¢ Q1 Qp" (H QZk) ( lim QnQ,LH)M, ({n;} < H)
k

if Qy are solutions of the quantum Q-system

1
t2Qp1Qr—1 = Q7 — 1
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Up=1, U=y = Upy1 = [; is a polynomial in y

n—1

Relax initial data:
Up ==z, Uy =y = U,(z,y) Laurent polynomial in z,y.

Positivity: Renormalize R, 1 R,—1 = R% + 1:
= R,, Laurent in (Ro, R1) with positive integer coefficients.

Quantize: [quantum cluster algebra] RgR1 = qR1 R0 and
an+1Rn—l = R% + 1:
= R, Laurent positive.

Non-commutative R,,: [Kontsevich] R,,11CR,,_1 = R2 + 1 with
C=R, R,R, . R
= R, Laurent in Rg, Ry with coefficients in {0,1}



Path solution to Kontsevich recursion

1. R,+1CR, 1 = RZL + 1 is integrable discrete evolution n —n + 1,
2. Conserved quantities C' = R;}ranRnHR;l and
H=R,uR;'+R, L R;'+R, . R,
— Y——

——
a8 Y2 Y3



Path solution to Kontsevich recursion

1. R,+1CR, 1 = R?L + 1 is integrable discrete evolution n —n + 1,
2. Conserved quantities C' = R;}ranRnHRgl and

H=R,uR;'+R, L R;'+R, . R,
—_—— —/ — —\—
Y1 Y2 Y3

3. Linear recursion relations with constant coefficients = RRRO_1 =
partition function of weighted paths of length 2n on Graph:

Graph Path

3

weight=y3y1
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Higher rank Chebyshev
SU(N) renormalized Q-system

Ra,n-{-lRa,n—l = Rin + Ra+1,nRa—l,na 1<a< N

Claim: R, Laurent positive in any valid initial data.

® Integrable evolution n+—n+1, eg. Hy =) .y, (y; Laurent
monomials in initial data): Linear recursion relation.

. RLan—’(l) = partition function of paths @ to @ of length 2n on:

Y7

Ye
Ys

Ya
Y3

Y2
Y1

Graph for N = 4 Path with weight y3y4y211



Lindstrom-Gessel-Viennot

The Q-system Ry pni1Ran—1 = R2, + Ray1nRn_1n is a
Desnanot-Jacobi relation for Wronskian determinants
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The Q-system Ry pni1Ran—1 = R2, + Ray1nRn_1n is a
Desnanot-Jacobi relation for Wronskian determinants

Ra,n = Det(Rl,n7a+i+j72)i,j:l,...,na RO n = 1

s

Lindstrom-Gessel-Viennot: R, , = partition function of a
non-intersecting paths on the same graph.

Yr

Ys
Ys

Ya
Y3

Y2
Y1

= Rg,p positive polynomials in the weights {y;}, Laurent monomials in
initial data.
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encoded by exchange matrix/quiver at each node
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Cluster algebras

Introduced by Fomin-Zelevinsky [2000], quantization by
Berenstein-Zelevinsky, Gekhtman-Shapiro-Vainshtein,
Fock-Goncharov.

r Generators (cluster variables) at each node in a regular r-tree

O O
Relations among generators at connected nodes are mutations

encoded by exchange matrix/quiver at each node

Basic theorem: Laurent property [FZ]: Any cluster variable is a
Laurent polynomial in the cluster variables of any other fixed node.
Positivity (conjecture/theorem): The Laurent polynomial has
positive integer coefficients.
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Q systems and cluster algebras

® Q-system variables are cluster (A-) variables for a cluster algebra
with initial quiver/exchange matrix

Ry Ry_1p

Rya Rn-1:1
® Each Q-system relation is a mutation/exchange relation in the
cluster algebra
® Path solutions = (partial) positivity proof.

® Q-systems for each (affine) root system associated with quiver
coded by root system.



Toda Hamiltonians and Macdonald theory

Quantum Q-system for SU(N)
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® Integrable evolution in discrete time n, Conserved quantities H, =
quantum Toda Hamiltonians

® {Qu.k Ho}a generate t — oo limit of spherical double affine Hecke
algebra

® Functional representation of @), 1: g-difference operators, limit of
Macdonald operators and their time-translation.
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Quantum Q-system for SU(N)

ana,n+1Qa,n—l = i,n - Qa+1,nQa—1,n7 1<a<N
Quo@s1 = ¢""YQh1Qu0

® Integrable evolution in discrete time n, Conserved quantities H, =
quantum Toda Hamiltonians

® {Qu.k Ho}a generate t — oo limit of spherical double affine Hecke
algebra

® Functional representation of @), 1: g-difference operators, limit of
Macdonald operators and their time-translation.

c.f. Talk by Alexander Shapiro, Wednesday afternoon.
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Further generalization: T-systems

Q-systems with spectral parameter = T-systems = Octahedron recursion

Tojk+1Tajk—1 = Tojr1,6T0 -1, + Tag1,5,6Ta—1,45k

Ti g, k41

Ty jk—1

® Infinite rank cluster algebra/Discrete evolution in k
® Initial data surface Sy = {a, j, k(a, j)}a,;
® T; ., = dimer partition function in region in finite region in Sy



Large k asymptotics gives arctic curves
[work with: Soto Garrido, Trung Vu]

c.f. talks later this afternoon...




Happy 60th Philippe!

To a hundred and twenty!




