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• Chebyshev polynomials

• Partial fraction decomposition

• Lindström Gessel-Viennot

• Heaps, dimers and hard particles

• Generating functions

• Continued fractions
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• Hobby: Calculating

• Superpower: Calculating

• Motto: “Formulas speak to me”
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Role model: Alexei Stakhanov



A formula: “Kirillov-Reshetikhin conjecture”

Counting weighted Bethe states of generalized Heisenberg spin chains:
“Fermionic character formulas”

ZH,λ(t) =
∑
mi≥0

selection rules

∏
i

[
pi(m) +mi

mi

]
t

tE(p,m)

V1
V2 VN

H = V1 ⊗ · · · ⊗ VN

• Polynomial in t for each highest weight λ

• Grading=Power of t ∼ sum of Bethe integers

Problem: Prove a positivity condition for “selection rules” on {mi}
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Solution: Chebyshev polynomials! (SU(2))

Relax selection rules: Partition function ⇝ generating function

ZH,λ(t;Q0, Q1) =
∑
mi≥0

Qp1−p
0 Qp

1

∏
i

[
pi − p+mi

mi

]
t

tẼ(p,m)

with Q0Q1 = t
1
2Q1Q0. No section rules.

• Constant term in Q1 of ZH,λ(t; 1, Q1) is the character formula.

• Can sum over m1,m2, ...: result is factorized:

ZH,λ(q) = q♯ Q1Q
−1
0
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k
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k
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lim

n→∞
QnQ

−1
n+1

)λ+1

, ({nj} ↔ H)

if Qk are solutions of the quantum Q-system

t
1
2Qk+1Qk−1 = Q2

k − 1
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Extra-Chebyshev

1. U0 = 1, U1 = y ⇒ Un+1 =
U2
n − 1

Un−1
is a polynomial in y

2. Relax initial data:
U0 = x, U1 = y ⇒ Un(x, y) Laurent polynomial in x, y.

3. Positivity: Renormalize Rn+1Rn−1 = R2
n + 1:

⇒ Rn Laurent in (R0, R1) with positive integer coefficients.

4. Quantize: [quantum cluster algebra] R0R1 = qR1R0 and
qRn+1Rn−1 = R2

n + 1:
⇒ Rn Laurent positive.

5. Non-commutative Rn: [Kontsevich] Rn+1CRn−1 = R2
n + 1 with

C = R−1
n+1RnRn+1R

−1
n :

⇒ Rn Laurent in R0,R1 with coefficients in {0,1}
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Path solution to Kontsevich recursion

1. Rn+1CRn−1 = R2
n + 1 is integrable discrete evolution n 7→ n+ 1,

2. Conserved quantities C = R−1
n+1RnRn+1R

−1
n and

H = Rn+1R
−1
n︸ ︷︷ ︸

y1

+R−1
n+1R

−1
n︸ ︷︷ ︸

y2

+R−1
n+1Rn︸ ︷︷ ︸
y3

3. Linear recursion relations with constant coefficients ⇒ RnR
−1
0 =

partition function of weighted paths of length 2n on Graph:

1

y3

y2

y1

1

1

weight=y22y1

Graph Path
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Higher rank Chebyshev

SU(N) renormalized Q-system

Ra,n+1Ra,n−1 = R2
a,n +Ra+1,nRa−1,n, 1 ≤ a < N

Claim: Ra,k Laurent positive in any valid initial data.

• Integrable evolution n 7→ n+ 1, e.g. H1 =
∑

i yi, (yi Laurent
monomials in initial data): Linear recursion relation.

• R1,nR
−1
1,0 = partition function of paths to of length 2n on:

y1
y2

y3
y4

y5
y6

y7

Graph for N = 4 Path with weight y3y4y2y1
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Lindström-Gessel-Viennot

The Q-system Ra,n+1Ra,n−1 = R2
a,n +Ra+1,nRn−1,n is a

Desnanot-Jacobi relation for Wronskian determinants

Ra,n = Det(R1,n−a+i+j−2)i,j=1,...,n, R0,n = 1

Lindström-Gessel-Viennot: Ra,n = partition function of a
non-intersecting paths on the same graph.

y1
y2

y3
y4

y5
y6

y7

⇒ Ra,n positive polynomials in the weights {yk}, Laurent monomials in
initial data.



Lindström-Gessel-Viennot

The Q-system Ra,n+1Ra,n−1 = R2
a,n +Ra+1,nRn−1,n is a

Desnanot-Jacobi relation for Wronskian determinants

Ra,n = Det(R1,n−a+i+j−2)i,j=1,...,n, R0,n = 1

Lindström-Gessel-Viennot: Ra,n = partition function of a
non-intersecting paths on the same graph.

y1
y2

y3
y4

y5
y6

y7

⇒ Ra,n positive polynomials in the weights {yk}, Laurent monomials in
initial data.



“Formulas speak to me”



Cluster algebras

• Introduced by Fomin-Zelevinsky [2000], quantization by
Berenstein-Zelevinsky, Gekhtman-Shapiro-Vainshtein,
Fock-Goncharov.

• r Generators (cluster variables) at each node in a regular r-tree

• Relations among generators at connected nodes are mutations
encoded by exchange matrix/quiver at each node

• Basic theorem: Laurent property [FZ]: Any cluster variable is a
Laurent polynomial in the cluster variables of any other fixed node.

• Positivity (conjecture/theorem): The Laurent polynomial has
positive integer coefficients.
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Q systems and cluster algebras

• Q-system variables are cluster (A-) variables for a cluster algebra
with initial quiver/exchange matrix

RN−1,0

RN−1,1

R1,0

R1,1

...

• Each Q-system relation is a mutation/exchange relation in the
cluster algebra

• Path solutions ⇒ (partial) positivity proof.

• Q-systems for each (affine) root system associated with quiver
coded by root system.
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Toda Hamiltonians and Macdonald theory

Quantum Q-system for SU(N)

qaQa,n+1Qa,n−1 = Q2
a,n −Qa+1,nQa−1,n, 1 ≤ a ≤ N

Qa,0Qb,1 = qmin(a,b)Qb,1Qa,0

• Integrable evolution in discrete time n, Conserved quantities Ha =
quantum Toda Hamiltonians

• {Qa,k, Ha}a generate t → ∞ limit of spherical double affine Hecke
algebra

• Functional representation of Qa,k: q-difference operators, limit of
Macdonald operators and their time-translation.

c.f. Talk by Alexander Shapiro, Wednesday afternoon.
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Further generalization: T-systems

Q-systems with spectral parameter = T-systems = Octahedron recursion

Ta,j,k+1Ta,j,k−1 = Ta,j+1,kTa,j−1,k + Ta+1,j,kTa−1,j,k

Ti,j,k−1

Ti,j,k+1

Ti+1,j,i

Ti−1,j,k

Ti,j+1,k

Ti,j−1,k

• Infinite rank cluster algebra/Discrete evolution in k

• Initial data surface S0 = {a, j, k(a, j)}a,j
• Ti,j,k = dimer partition function in region in finite region in S0
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Large k asymptotics gives arctic curves
[work with: Soto Garrido, Trung Vu]

c.f. talks later this afternoon...



Happy 60th Philippe!

To a hundred and twenty!


