Philippe60: Paths to positivity

Rinat Kedem

Philippe60 IPhT Saclay 2024

A few favorite objects:

- Chebyshev polynomials

A few favorite objects:

- Chebyshev polynomials
- Partial fraction decomposition

A few favorite objects:

- Chebyshev polynomials
- Partial fraction decomposition
- Lindström Gessel-Viennot

A few favorite objects:

- Chebyshev polynomials
- Partial fraction decomposition
- Lindström Gessel-Viennot
- Heaps, dimers and hard particles

A few favorite objects:

- Chebyshev polynomials
- Partial fraction decomposition
- Lindström Gessel-Viennot
- Heaps, dimers and hard particles
- Generating functions
- Continued fractions

Essential facts

- Hobby: Calculating

Essential facts

- Hobby: Calculating
- Superpower: Calculating

Essential facts

- Hobby: Calculating
- Superpower: Calculating
- Motto: "Formulas speak to me"

Role model: Alexei Stakhanov

A formula: "Kirillov-Reshetikhin conjecture"

Counting weighted Bethe states of generalized Heisenberg spin chains: "Fermionic character formulas"

$$
Z_{\mathcal{H}, \lambda}(t)=\sum_{\substack{m_{i} \geq 0 \\
\text { selection rules }}} \prod_{i}\left[\begin{array}{c}
p_{i}(\mathbf{m})+m_{i} \\
m_{i}
\end{array}\right]_{t} t^{E(\mathbf{p}, \mathbf{m})}
$$

- Polynomial in t for each highest weight λ
- Grading=Power of $t \sim$ sum of Bethe integers

A formula: "Kirillov-Reshetikhin conjecture"

Counting weighted Bethe states of generalized Heisenberg spin chains: "Fermionic character formulas"

$$
Z_{\mathcal{H}, \lambda}(t)=\sum_{\substack{m_{i} \geq 0 \\
\text { selection rules }}} \prod_{i}\left[\begin{array}{c}
p_{i}(\mathbf{m})+m_{i} \\
m_{i}
\end{array}\right]_{t} t^{E(\mathbf{p}, \mathbf{m})}
$$

- Polynomial in t for each highest weight λ
- Grading=Power of $t \sim$ sum of Bethe integers

Problem: Prove a positivity condition for "selection rules" on $\left\{m_{i}\right\}$

Solution: Chebyshev polynomials! $(S U(2))$

Relax selection rules: Partition function \rightsquigarrow generating function

$$
Z_{\mathcal{H}, \lambda}\left(t ; Q_{0}, Q_{1}\right)=\sum_{m_{i} \geq 0} Q_{0}^{p_{1}-p} Q_{1}^{p} \prod_{i}\left[\begin{array}{c}
p_{i}-p+m_{i} \\
m_{i}
\end{array}\right]_{t} t^{\widetilde{E}(\mathbf{p}, \mathbf{m})}
$$

with $Q_{0} Q_{1}=t^{\frac{1}{2}} Q_{1} Q_{0}$. No section rules.

Solution: Chebyshev polynomials! $(S U(2))$

Relax selection rules: Partition function \rightsquigarrow generating function

$$
Z_{\mathcal{H}, \lambda}\left(t ; Q_{0}, Q_{1}\right)=\sum_{m_{i} \geq 0} Q_{0}^{p_{1}-p} Q_{1}^{p} \prod_{i}\left[\begin{array}{c}
p_{i}-p+m_{i} \\
m_{i}
\end{array}\right]_{t} t^{\widetilde{E}(\mathbf{p}, \mathbf{m})}
$$

with $Q_{0} Q_{1}=t^{\frac{1}{2}} Q_{1} Q_{0}$. No section rules.

- Constant term in Q_{1} of $Z_{\mathcal{H}, \lambda}\left(t ; 1, Q_{1}\right)$ is the character formula.

Solution: Chebyshev polynomials! $(S U(2))$

Relax selection rules: Partition function \rightsquigarrow generating function

$$
Z_{\mathcal{H}, \lambda}\left(t ; Q_{0}, Q_{1}\right)=\sum_{m_{i} \geq 0} Q_{0}^{p_{1}-p} Q_{1}^{p} \prod_{i}\left[\begin{array}{c}
p_{i}-p+m_{i} \\
m_{i}
\end{array}\right]_{t} t^{\widetilde{E}(\mathbf{p}, \mathbf{m})}
$$

with $Q_{0} Q_{1}=t^{\frac{1}{2}} Q_{1} Q_{0}$. No section rules.

- Constant term in Q_{1} of $Z_{\mathcal{H}, \lambda}\left(t ; 1, Q_{1}\right)$ is the character formula.
- Can sum over m_{1}, m_{2}, \ldots : result is factorized:

$$
Z_{\mathcal{H}, \lambda}(q)=q^{\sharp} Q_{1} Q_{0}^{-1}\left(\overrightarrow{\prod_{k}} Q_{k}^{n_{k}}\right)\left(\lim _{n \rightarrow \infty} Q_{n} Q_{n+1}^{-1}\right)^{\lambda+1}, \quad\left(\left\{n_{j}\right\} \leftrightarrow \mathcal{H}\right)
$$

if Q_{k} are solutions of the quantum Q -system

$$
t^{\frac{1}{2}} Q_{k+1} Q_{k-1}=Q_{k}^{2}-1
$$

Extra-Chebyshev

1. $U_{0}=1, U_{1}=y \Rightarrow U_{n+1}=\frac{U_{n}^{2}-1}{U_{n-1}}$ is a polynomial in y

Extra-Chebyshev

1. $U_{0}=1, U_{1}=y \Rightarrow U_{n+1}=\frac{U_{n}^{2}-1}{U_{n-1}}$ is a polynomial in y
2. Relax initial data:
$U_{0}=x, U_{1}=y \Rightarrow U_{n}(x, y)$ Laurent polynomial in x, y.

Extra-Chebyshev

1. $U_{0}=1, U_{1}=y \Rightarrow U_{n+1}=\frac{U_{n}^{2}-1}{U_{n-1}}$ is a polynomial in y
2. Relax initial data:
$U_{0}=x, U_{1}=y \Rightarrow U_{n}(x, y)$ Laurent polynomial in x, y.
3. Positivity: Renormalize $R_{n+1} R_{n-1}=R_{n}^{2}+1$:
$\Rightarrow R_{n}$ Laurent in (R_{0}, R_{1}) with positive integer coefficients.

Extra-Chebyshev

1. $U_{0}=1, U_{1}=y \Rightarrow U_{n+1}=\frac{U_{n}^{2}-1}{U_{n-1}}$ is a polynomial in y
2. Relax initial data:

$$
U_{0}=x, U_{1}=y \Rightarrow U_{n}(x, y) \text { Laurent polynomial in } x, y .
$$

3. Positivity: Renormalize $R_{n+1} R_{n-1}=R_{n}^{2}+1$:
$\Rightarrow R_{n}$ Laurent in (R_{0}, R_{1}) with positive integer coefficients.
4. Quantize: [quantum cluster algebra] $\mathcal{R}_{0} \mathcal{R}_{1}=q \mathcal{R}_{1} \mathcal{R}_{0}$ and $q \mathcal{R}_{n+1} \mathcal{R}_{n-1}=\mathcal{R}_{n}^{2}+1$:
$\Rightarrow \mathcal{R}_{n}$ Laurent positive.

Extra-Chebyshev

1. $U_{0}=1, U_{1}=y \Rightarrow U_{n+1}=\frac{U_{n}^{2}-1}{U_{n-1}}$ is a polynomial in y
2. Relax initial data:

$$
U_{0}=x, U_{1}=y \Rightarrow U_{n}(x, y) \text { Laurent polynomial in } x, y .
$$

3. Positivity: Renormalize $R_{n+1} R_{n-1}=R_{n}^{2}+1$:
$\Rightarrow R_{n}$ Laurent in (R_{0}, R_{1}) with positive integer coefficients.
4. Quantize: [quantum cluster algebra] $\mathcal{R}_{0} \mathcal{R}_{1}=q \mathcal{R}_{1} \mathcal{R}_{0}$ and $q \mathcal{R}_{n+1} \mathcal{R}_{n-1}=\mathcal{R}_{n}^{2}+1$:
$\Rightarrow \mathcal{R}_{n}$ Laurent positive.
5. Non-commutative \mathbf{R}_{n} : [Kontsevich] $\mathbf{R}_{n+1} C \mathbf{R}_{n-1}=\mathbf{R}_{n}^{2}+1$ with $C=\mathbf{R}_{n+1}^{-1} \mathbf{R}_{n} \mathbf{R}_{n+1} \mathbf{R}_{n}^{-1}$:
$\Rightarrow \mathbf{R}_{n}$ Laurent in $\mathbf{R}_{0}, \mathbf{R}_{1}$ with coefficients in $\{0,1\}$

Path solution to Kontsevich recursion

1. $\mathbf{R}_{n+1} C \mathbf{R}_{n-1}=\mathbf{R}_{n}^{2}+1$ is integrable discrete evolution $n \mapsto n+1$,
2. Conserved quantities $C=\mathbf{R}_{n+1}^{-1} \mathbf{R}_{n} \mathbf{R}_{n+1} \mathbf{R}_{n}^{-1}$ and

$$
H=\underbrace{\mathbf{R}_{n+1} \mathbf{R}_{n}^{-1}}_{y_{1}}+\underbrace{\mathbf{R}_{n+1}^{-1} \mathbf{R}_{n}^{-1}}_{y_{2}}+\underbrace{\mathbf{R}_{n+1}^{-1} \mathbf{R}_{n}}_{y_{3}}
$$

Path solution to Kontsevich recursion

1. $\mathbf{R}_{n+1} C \mathbf{R}_{n-1}=\mathbf{R}_{n}^{2}+1$ is integrable discrete evolution $n \mapsto n+1$,
2. Conserved quantities $C=\mathbf{R}_{n+1}^{-1} \mathbf{R}_{n} \mathbf{R}_{n+1} \mathbf{R}_{n}^{-1}$ and

$$
H=\underbrace{\mathbf{R}_{n+1} \mathbf{R}_{n}^{-1}}_{y_{1}}+\underbrace{\mathbf{R}_{n+1}^{-1} \mathbf{R}_{n}^{-1}}_{y_{2}}+\underbrace{\mathbf{R}_{n+1}^{-1} \mathbf{R}_{n}}_{y_{3}}
$$

3. Linear recursion relations with constant coefficients $\Rightarrow R_{n} R_{0}^{-1}=$ partition function of weighted paths of length $2 n$ on Graph:

Graph

Path

weight $=y_{2}^{2} y_{1}$

Higher rank Chebyshev

$S U(N)$ renormalized Q-system

$$
R_{a, n+1} R_{a, n-1}=R_{a, n}^{2}+R_{a+1, n} R_{a-1, n}, 1 \leq a<N
$$

Higher rank Chebyshev

$S U(N)$ renormalized Q-system

$$
R_{a, n+1} R_{a, n-1}=R_{a, n}^{2}+R_{a+1, n} R_{a-1, n}, 1 \leq a<N
$$

Claim: $R_{a, k}$ Laurent positive in any valid initial data.

Higher rank Chebyshev

$S U(N)$ renormalized Q-system

$$
R_{a, n+1} R_{a, n-1}=R_{a, n}^{2}+R_{a+1, n} R_{a-1, n}, 1 \leq a<N
$$

Claim: $R_{a, k}$ Laurent positive in any valid initial data.

- Integrable evolution $n \mapsto n+1$, e.g. $H_{1}=\sum_{i} y_{i}$, (y_{i} Laurent monomials in initial data): Linear recursion relation.

Higher rank Chebyshev

$S U(N)$ renormalized Q-system

$$
R_{a, n+1} R_{a, n-1}=R_{a, n}^{2}+R_{a+1, n} R_{a-1, n}, 1 \leq a<N
$$

Claim: $R_{a, k}$ Laurent positive in any valid initial data.

- Integrable evolution $n \mapsto n+1$, e.g. $H_{1}=\sum_{i} y_{i}$, (y_{i} Laurent monomials in initial data): Linear recursion relation.
- $R_{1, n} R_{1,0}^{-1}=$ partition function of paths \bigcirc to \bigcirc length $2 n$ on: y_{7}

Lindström-Gessel-Viennot

The Q-system $R_{a, n+1} R_{a, n-1}=R_{a, n}^{2}+R_{a+1, n} R_{n-1, n}$ is a Desnanot-Jacobi relation for Wronskian determinants

$$
R_{a, n}=\operatorname{Det}\left(R_{1, n-a+i+j-2}\right)_{i, j=1, \ldots, n}, \quad R_{0, n}=1
$$

Lindström-Gessel-Viennot

The Q-system $R_{a, n+1} R_{a, n-1}=R_{a, n}^{2}+R_{a+1, n} R_{n-1, n}$ is a Desnanot-Jacobi relation for Wronskian determinants

$$
R_{a, n}=\operatorname{Det}\left(R_{1, n-a+i+j-2}\right)_{i, j=1, \ldots, n}, \quad R_{0, n}=1
$$

Lindström-Gessel-Viennot: $R_{a, n}=$ partition function of a non-intersecting paths on the same graph.

$\Rightarrow R_{a, n}$ positive polynomials in the weights $\left\{y_{k}\right\}$, Laurent monomials in initial data.

"Formulas speak to me"

Cluster algebras

- Introduced by Fomin-Zelevinsky [2000], quantization by Berenstein-Zelevinsky, Gekhtman-Shapiro-Vainshtein, Fock-Goncharov.
- r Generators (cluster variables) at each node in a regular r-tree

- Relations among generators at connected nodes are mutations encoded by exchange matrix/quiver at each node

Cluster algebras

- Introduced by Fomin-Zelevinsky [2000], quantization by Berenstein-Zelevinsky, Gekhtman-Shapiro-Vainshtein, Fock-Goncharov.
- r Generators (cluster variables) at each node in a regular r-tree

- Relations among generators at connected nodes are mutations encoded by exchange matrix/quiver at each node
- Basic theorem: Laurent property [FZ]: Any cluster variable is a Laurent polynomial in the cluster variables of any other fixed node.

Cluster algebras

- Introduced by Fomin-Zelevinsky [2000], quantization by Berenstein-Zelevinsky, Gekhtman-Shapiro-Vainshtein, Fock-Goncharov.
- r Generators (cluster variables) at each node in a regular r-tree

- Relations among generators at connected nodes are mutations encoded by exchange matrix/quiver at each node
- Basic theorem: Laurent property [FZ]: Any cluster variable is a Laurent polynomial in the cluster variables of any other fixed node.
- Positivity (conjecture/theorem): The Laurent polynomial has positive integer coefficients.

Q systems and cluster algebras

- Q -system variables are cluster $(\mathcal{A}-)$ variables for a cluster algebra with initial quiver/exchange matrix

Q systems and cluster algebras

- Q -system variables are cluster $(\mathcal{A}-)$ variables for a cluster algebra with initial quiver/exchange matrix

- Each Q-system relation is a mutation/exchange relation in the cluster algebra

Q systems and cluster algebras

- Q -system variables are cluster $(\mathcal{A}-)$ variables for a cluster algebra with initial quiver/exchange matrix

- Each Q-system relation is a mutation/exchange relation in the cluster algebra
- Path solutions \Rightarrow (partial) positivity proof.

Q systems and cluster algebras

- Q -system variables are cluster $(\mathcal{A}-)$ variables for a cluster algebra with initial quiver/exchange matrix

- Each Q-system relation is a mutation/exchange relation in the cluster algebra
- Path solutions \Rightarrow (partial) positivity proof.
- Q-systems for each (affine) root system associated with quiver coded by root system.

Toda Hamiltonians and Macdonald theory

Quantum Q-system for $S U(N)$

$$
\begin{aligned}
q^{a} Q_{a, n+1} Q_{a, n-1} & =Q_{a, n}^{2}-Q_{a+1, n} Q_{a-1, n}, 1 \leq a \leq N \\
Q_{a, 0} Q_{b, 1} & =q^{\min (a, b)} Q_{b, 1} Q_{a, 0}
\end{aligned}
$$

- Integrable evolution in discrete time n, Conserved quantities $H_{a}=$ quantum Toda Hamiltonians
- $\left\{Q_{a, k}, H_{a}\right\}_{a}$ generate $t \rightarrow \infty$ limit of spherical double affine Hecke algebra
- Functional representation of $Q_{a, k}: q$-difference operators, limit of Macdonald operators and their time-translation.

Toda Hamiltonians and Macdonald theory

Quantum Q-system for $S U(N)$

$$
\begin{aligned}
q^{a} Q_{a, n+1} Q_{a, n-1} & =Q_{a, n}^{2}-Q_{a+1, n} Q_{a-1, n}, 1 \leq a \leq N \\
Q_{a, 0} Q_{b, 1} & =q^{\min (a, b)} Q_{b, 1} Q_{a, 0}
\end{aligned}
$$

- Integrable evolution in discrete time n, Conserved quantities $H_{a}=$ quantum Toda Hamiltonians
- $\left\{Q_{a, k}, H_{a}\right\}_{a}$ generate $t \rightarrow \infty$ limit of spherical double affine Hecke algebra
- Functional representation of $Q_{a, k}: q$-difference operators, limit of Macdonald operators and their time-translation.
c.f. Talk by Alexander Shapiro, Wednesday afternoon.

Further generalization: T-systems

Q-systems with spectral parameter $=$ T-systems $=$ Octahedron recursion

$$
T_{a, j, k+1} T_{a, j, k-1}=T_{a, j+1, k} T_{a, j-1, k}+T_{a+1, j, k} T_{a-1, j, k}
$$

Further generalization: T-systems

Q-systems with spectral parameter $=\mathrm{T}$-systems $=$ Octahedron recursion

$$
T_{a, j, k+1} T_{a, j, k-1}=T_{a, j+1, k} T_{a, j-1, k}+T_{a+1, j, k} T_{a-1, j, k}
$$

- Infinite rank cluster algebra/Discrete evolution in k
- Initial data surface $\mathcal{S}_{0}=\{a, j, k(a, j)\}_{a, j}$
- $T_{i, j, k}=$ dimer partition function in region in finite region in \mathcal{S}_{0}

Large k asymptotics gives arctic curves [work with: Soto Garrido, Trung Vu]
c.f. talks later this afternoon...

Happy 60th Philippe!

To a hundred and twenty!

