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At the crossroads of physics and mathematics:
the joy of integrable combinatorics – A conference in honour of

Philippe Di Francesco’s 60th birthday
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Result 1: Bijection FPLs / plane partitions

FPL active part of FPL dimers tiling

Theorem (PDF, PZJ, JBZ ’03)

The process above gives a bijection between FPLs with three sets
of a, b, c nested arches and lozenge tilings of a a× b × c hexagon
(a.k.a. boxed plane partitions).
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Result 2: Noncrossing loop model and ASMs

Decorate a semi-infinite cylinder

with randomly rotated :

Probability Pn that
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where ASM(n) is the set of Alternating Sign Matrices of size n.
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Result 3: Crossing loop model and geometry

Add to the loop model a crossing

with probability 1/9:
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where Cn = {(X ,Y ) n × n : XY = YX} is the commuting scheme.
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Result 4: qKZ and TSSCPPs

NILPTSSCPP

Theorem (PDF ’06; PDF, PZJ ’08)∑
π

Ψπ|homogeneous =
∑

TSSCPPs

τ# pink lozenges

Remark: #TSSCPPs = #ASMs. (but no known bijection!)



Result 5: DPPs and ASMs

←→

0 1 0 0

0 0 1 0

1 -1 0 1

0 1 0 0

Theorem (RB, PDF, PZJ ’12)

The weighted enumeration of ASMs and DPPs coincide, with two
bulk statistics and two boundary statistics.

Generalises a conjecture of [Mills, Robbins, Rumsey ’83].
On the ASM side, the statistics are: number of −1s, inversion
number, and locations of top/bottom 1s.
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∞∑
m=0

qm
m∏

n=1

1

1− qn

m+3∏
n=1

1

1− qn

= 1 + 2q + 5q2 + 10q3 + 19q4 + 34q5 + 60q6 + 100q7 + · · ·

Congratulations!
Wish you heaps and heaps of new adventures!


