PDF, ASM, DPP and TSSCPP

June 23, 2024

At the crossroads of physics and mathematics: the joy of integrable combinatorics – A conference in honour of Philippe Di Francesco's 60th birthday

Some pictures... ESI '12

Some pictures... ESI '12

Some pictures... ESI '12

Some pictures... Giens (Stroganov memorial) '14

Some pictures... Giens (Stroganov memorial) '14 cont'd

Some pictures... Giens (Stroganov memorial) '14 cont'd

Papers

2003

- PDF, PZJ, JBZ, A bijection between classes of Fully Packed Loops and Plane Partitions.
- PDF, JBZ, On FPL configurations with four sets of nested arches.
- PDF, A refined Razumov–Stroganov conjecture.
- PDF, A refined Razumov–Stroganov conjecture II.
- PDF, PZJ, JBZ, Determinant Formulae for some Tiling Problems and Application to Fully Packed Loops.
- PDF, PZJ, Around the Razumov-Stroganov conjecture: proof of a multi-parameter sum rule.
- PDF, PZJ, Inhomogenous model of crossing loops and multidegrees of some algebraic varieties.
- PDF, Inhomogeneous loop models with open boundaries.
- PDF, PZJ, Quantum Knizhnik–Zamolodchikov equation, generalized Razumov–Stroganov sum rules and extended Joseph polynomials.
- PDF, Boundary qKZ equation and generalized Razumov-Stroganov sum rules for open IRF models.
- PDF, PZJ, From Orbital Varieties to Alternating Sign Matrices.
- PDF, PZJ, JBZ, Sum rules for the ground states of the O(1) loop model on a cylinder and the XXZ spin chain.
- PDF, Totally Symmetric Self-Complementary Plane Partitions and Quantum Knizhnik–Zamolodchikov equation: a conjecture.
- PDF, Open boundary Quantum Knizhnik–Zamolodchikov equation and the weighted enumeration of Plane Partitions with symmetries.
- PDF, PZJ, Quantum Knizhnik–Zamolodchikov Equation, Totally Symmetric Self-Complementary Plane Partitions and Alternating Sign Matrices.
- PDF, PZJ, Quantum Knizhnik–Zamolodchikov equation: reflecting boundary conditions and combinatorics.
- RB, PDF, PZJ, On the weighted enumeration of alternating sign matrices and descending plane partitions.
- RB, PDF, PZJ, A doubly-refined enumeration of alternating sign matrices and descending plane partitions.

2007

Result 1: Bijection FPLs / plane partitions

Theorem (PDF, PZJ, JBZ '03)

The process above gives a bijection between FPLs with three sets of a, b, c nested arches and lozenge tilings of a $a \times b \times c$ hexagon (a.k.a. boxed plane partitions).

Result 1: Bijection FPLs / plane partitions

Theorem (PDF, PZJ, JBZ '03)

The process above gives a bijection between FPLs with three sets of a, b, c nested arches and lozenge tilings of a $a \times b \times c$ hexagon (a.k.a. boxed plane partitions).

Result 2: Noncrossing loop model and ASMs Decorate a semi-infinite cylinder with randomly rotated 6 2n = 127 8 11 10 a

Theorem (PDF, PZJ '05) $P_n = \frac{1}{\# \text{ASM}(n)} = \prod_{i=0}^{n-1} \frac{(n+i)!}{(3i+1)!} = 1, \frac{1}{2}, \frac{1}{7}, \frac{1}{42} \dots$

where $\operatorname{ASM}(n)$ is the set of Alternating Sign Matrices of size n

Result 2: Noncrossing loop model and ASMs Decorate a semi-infinite cylinder with randomly rotated \square : Probability P_p that

$$k \leftrightarrow 2n + 1 - k$$
 for all k , i.e.,

prem (PDF, PZJ '05) $P_n = \frac{1}{\# \text{ASM}(n)} = \prod_{i=0}^{n-1} \frac{(n+i)!}{(3i+1)!} = 1, \frac{1}{2}, \frac{1}{7}, \frac{1}{42} \dots$

where $\operatorname{ASM}(n)$ is the set of Alternating Sign Matrices of size n

Result 2: Noncrossing loop model and ASMs

Decorate a semi-infinite cylinder with randomly rotated ::

Probability P_n that $k \leftrightarrow 2n + 1 - k$ for all k, i.e., ?

Theorem (PDF, PZJ '05) $P_n = \frac{1}{\#ASM(n)} = \prod_{i=0}^{n-1} \frac{(n+i)!}{(3i+1)!} = 1, \frac{1}{2}, \frac{1}{7}, \frac{1}{42} \dots$

where $\mathrm{ASM}(n)$ is the set of Alternating Sign Matrices of size n

Result 2: Noncrossing loop model and ASMs

Decorate a semi-infinite cylinder with randomly rotated ::

Probability P_n that $k \leftrightarrow 2n + 1 - k$ for all k, i.e., ?

Theorem (PDF, PZJ '05) $P_n = \frac{1}{\#ASM(n)} = \prod_{i=0}^{n-1} \frac{(n+i)!}{(3i+1)!} = 1, \frac{1}{2}, \frac{1}{7}, \frac{1}{42} \dots$

Result 2: Noncrossing loop model and ASMs

Decorate a semi-infinite cylinder with randomly rotated ::

Probability
$$P_n$$
 that
 $k \leftrightarrow 2n + 1 - k$ for all k , i.e.,
?

Theorem (PDF, PZJ '05)

$$P_n = \frac{1}{\#ASM(n)} = \prod_{i=0}^{n-1} \frac{(n+i)!}{(3i+1)!} = 1, \frac{1}{2}, \frac{1}{7}, \frac{1}{42} \dots$$

where ASM(n) is the set of Alternating Sign Matrices of size n.

Add to the loop model a crossing with probability 1/9:

Theorem (PDF, PZJ '06

$$P'_n = \frac{\deg C_n}{\det_{i,j=0,\dots,n-1} \binom{2i+2j+1}{2i}} = 1, \frac{3}{7}, \frac{31}{307}, \frac{1145}{82977} \dots$$

where $C_n = \{(X, Y) \mid n \times n : XY = YX\}$ is the commuting scheme.

Add to the loop model a crossing with probability 1/9:

Theorem (PDF, PZJ '06)

 $P'_{n} = \frac{\deg C_{n}}{\det_{i,j=0,\dots,n-1} \binom{2i+2j+1}{2i}} = 1, \frac{3}{7}, \frac{31}{307}, \frac{1145}{82977} \dots$

where $C_n = \{(X, Y) \mid n \times n : XY = YX\}$ is the commuting scheme.

Add to the loop model a crossing with probability 1/9:

Theorem (PDF, PZJ '06)

$$P' = deg C_n = 1$$

 $r_{n} - \frac{\det}{\lim_{i,j=0,...,n-1} \binom{2i+2j+1}{2i}} - 1, \frac{1}{7}, \frac{1}{307}, \frac{1}{82977} \cdots$ here $C_{n} = \{(X, Y) \ n \times n : XY = YX\}$ is the commuting scheme.

Add to the loop model a crossing with probability 1/9:

Theorem (PDF, PZJ '06)

$$P'_{n} = \frac{\deg C_{n}}{\det_{i,j=0,\dots,n-1} \binom{2i+2j+1}{2i}} = 1, \frac{3}{7}, \frac{31}{307}, \frac{1145}{82977} \dots$$

where $C_n = \{(X, Y) \mid n \times n : XY = YX\}$ is the commuting scheme.

Add to the loop model a crossing with probability 1/9:

Probability P'_n that $k \leftrightarrow 2n + 1 - k$ for all k, i.e., ?

Theorem (PDF, PZJ '06)

$$P'_{n} = \frac{\deg C_{n}}{\det_{i,j=0,...,n-1} \binom{2i+2j+1}{2i}} = 1, \frac{3}{7}, \frac{31}{307}, \frac{1145}{82977} \dots$$
where $C_{n} = \{(X, Y) \ n \times n : XY = YX\}$ is the commuting scheme.

Result 4: qKZ and TSSCPPs

Remark: #TSSCPPs = #ASMs. (but no known bijection!)

900

Result 5: DPPs and ASMs

Theorem (RB, PDF, PZJ '12)

The weighted enumeration of ASMs and DPPs coincide, with two bulk statistics and two boundary statistics.

Generalises a conjecture of [Mills, Robbins, Rumsey '83]. On the ASM side, the statistics are: number of -1s, inversion number, and locations of top/bottom 1s.

Result 5: DPPs and ASMs

Theorem (RB, PDF, PZJ '12)

The weighted enumeration of ASMs and DPPs coincide, with two bulk statistics and two boundary statistics.

Generalises a conjecture of [Mills, Robbins, Rumsey '83]. On the ASM side, the statistics are: number of -1s, inversion number, and locations of top/bottom 1s.

$$\sum_{m=0}^{\infty} q^m \prod_{n=1}^m \frac{1}{1-q^n} \prod_{n=1}^{m+3} \frac{1}{1-q^n}$$

= 1 + 2q + 5q² + 10q³ + 19q⁴ + 34q⁵ + 60q⁶ + 100q⁷ + ...

Congratulations!

Wish you heaps and heaps of new adventures!