PDF, ASM, DPP and TSSCPP

June 23, 2024

At the crossroads of physics and mathematics: the joy of integrable combinatorics - A conference in honour of Philippe Di Francesco's 60th birthday

Some pictures... ESI '12

Some pictures. . ESI '12

Some pictures. . ESI '12

Some pictures... Giens (Stroganov memorial) '14

Some pictures. . Giens (Stroganov memorial) '14 cont'd

Some pictures. . Giens (Stroganov memorial) '14 cont'd

Papers

- PDF, PZJ, JBZ, A bijection between classes of Fully Packed Loops and Plane Partitions.
- PDF, JBZ, On FPL configurations with four sets of nested arches.
- PDF, A refined Razumov-Stroganov conjecture.
- PDF, A refined Razumov-Stroganov conjecture II.
- PDF, PZJ, JBZ, Determinant Formulae for some Tiling Problems and Application to Fully Packed Loops.
- PDF, PZJ, Around the Razumov-Stroganov conjecture: proof of a multi-parameter sum rule.
- PDF, PZJ, Inhomogenous model of crossing loops and multidegrees of some algebraic varieties.
- PDF, Inhomogeneous loop models with open boundaries.
- PDF, PZJ, Quantum Knizhnik-Zamolodchikov equation, generalized Razumov-Stroganov sum rules and extended Joseph polynomials.
- PDF, Boundary qKZ equation and generalized Razumov-Stroganov sum rules for open IRF models.
- PDF, PZJ, From Orbital Varieties to Alternating Sign Matrices.
- PDF, PZJ, JBZ, Sum rules for the ground states of the $O(1)$ loop model on a cylinder and the XXZ spin chain.
- PDF, Totally Symmetric Self-Complementary Plane Partitions and Quantum Knizhnik-Zamolodchikov equation: a conjecture.
- PDF, Open boundary Quantum Knizhnik-Zamolodchikov equation and the weighted enumeration of Plane Partitions with symmetries.
- PDF, PZJ, Quantum Knizhnik-Zamolodchikov Equation, Totally Symmetric Self-Complementary Plane Partitions and Alternating Sign Matrices.
- PDF, PZJ, Quantum Knizhnik-Zamolodchikov equation: reflecting boundary conditions and combinatorics.
- RB, PDF, PZJ, On the weighted enumeration of alternating sign matrices and descending plane partitions.
- RB, PDF, PZJ, A doubly-refined enumeration of alternating sign matrices and descending plane partitions.

Result 1: Bijection FPLs / plane partitions

FPL

active part of FPL

dimers

tiling
\square
The process above gives a bijection between FPLs with three sets of a, b, c nested arches and lozenge tilings of $a \times b \times c$ hexagon (a.k.a. boxed plane partitions).

Result 1: Bijection FPLs / plane partitions

FPL

active part of FPL

dimers

tiling

Theorem (PDF, PZJ, JBZ '03)

The process above gives a bijection between FPLs with three sets of a, b, c nested arches and lozenge tilings of $a \times b \times c$ hexagon (a.k.a. boxed plane partitions).

Result 2: Noncrossing loop model and ASMs

Decorate a semi-infinite cylinder with randomly rotated

$$
P_{n}=\frac{1}{\# \operatorname{ASM}(n)}=\prod_{i=0}^{n-1} \frac{(n+i)!}{(3 i+1)!}=1, \frac{1}{2}, \frac{1}{7}, \frac{1}{42}
$$

Result 2: Noncrossing loop model and ASMs

Decorate a semi-infinite cylinder with randomly rotated

$$
P_{n}=\frac{1}{\# \operatorname{ASM}(n)}=\prod_{i=0}^{n-1} \frac{(n+i)!}{(3 i+1)!}=1, \frac{1}{2}, \frac{1}{7}, \frac{1}{42}
$$

Result 2: Noncrossing loop model and ASMs

Decorate a semi-infinite cylinder with randomly rotated

Probability P_{n} that $k \leftrightarrow 2 n+1-k$ for all k, i.e.,

Result 2: Noncrossing loop model and ASMs

Decorate a semi-infinite cylinder with randomly rotated

Probability P_{n} that $k \leftrightarrow 2 n+1-k$ for all k, i.e.,

Result 2: Noncrossing loop model and ASMs

Decorate a semi-infinite cylinder with randomly rotated

Probability P_{n} that $k \leftrightarrow 2 n+1-k$ for all k, i.e.,

Theorem (PDF, PZJ '05)

$$
P_{n}=\frac{1}{\# \operatorname{ASM}(n)}=\prod_{i=0}^{n-1} \frac{(n+i)!}{(3 i+1)!}=1, \frac{1}{2}, \frac{1}{7}, \frac{1}{42} \ldots
$$

where $\operatorname{ASM}(n)$ is the set of Alternating Sign Matrices of size n.

Result 3: Crossing loop model and geometry

Add to the loop model a crossing
\square with probability $1 / 9$:

Probability P_{n}^{\prime} that

Result 3: Crossing loop model and geometry

Add to the loop model a crossing
\square with probability $1 / 9$:

Result 3: Crossing loop model and geometry

Add to the loop model a crossing
\square with probability $1 / 9$:

Probability P_{n}^{\prime} that $k \leftrightarrow 2 n+1-k$ for all k, i.e.,

Result 3: Crossing loop model and geometry

Add to the loop model a crossing
\square with probability $1 / 9$:

Probability P_{n}^{\prime} that $k \leftrightarrow 2 n+1-k$ for all k, i.e.,

Result 3: Crossing loop model and geometry

Add to the loop model a crossing with probability $1 / 9$:

Probability P_{n}^{\prime} that $k \leftrightarrow 2 n+1-k$ for all k, i.e.,

Theorem (PDF, PZJ '06)

$$
P_{n}^{\prime}=\frac{\operatorname{deg} C_{n}}{\operatorname{det}}\binom{2 i+2 j+1}{2 i} \quad=1, \frac{3}{7}, \frac{31}{307, n, n}, \frac{1145}{82977} \ldots
$$

where $C_{n}=\{(X, Y) n \times n: X Y=Y X\}$ is the commuting scheme.

Result 4: qKZ and TSSCPPs

TSSCPP

NILP

Theorem (PDF '06; PDF, PZJ '08)

$$
\left.\sum_{\pi} \Psi_{\pi}\right|_{\text {homogeneous }}=\sum_{\mathrm{TSSCPPs}} \tau^{\# \text { pink lozenges }}
$$

Remark: \#TSSCPPs = \#ASMs. (but no known bijection!)

Result 5: DPPs and ASMs

> Theorem (RB, PDF, PZJ '12)
> The weighted enumeration of ASMs and DPPs coincide, with two bulk statistics and two boundary statistics.

Generalises a conjecture of [Mills, Robbins, Rumsey '83]
On the ASM side, the statistics are: number of -1 s , inversion number, and locations of top/bottom 1 s .

Result 5: DPPs and ASMs

0	1	0	0
0	0	1	0
1	-1	0	1
0	1	0	0

Theorem (RB, PDF, PZJ '12)

The weighted enumeration of ASMs and DPPs coincide, with two bulk statistics and two boundary statistics.

Generalises a conjecture of [Mills, Robbins, Rumsey '83]. On the ASM side, the statistics are: number of -1 s , inversion number, and locations of top/bottom 1 s .

$$
\begin{aligned}
& \sum_{m=0}^{\infty} q^{m} \prod_{n=1}^{m} \frac{1}{1-q^{n}} \prod_{n=1}^{m+3} \frac{1}{1-q^{n}} \\
& =1+2 q+5 q^{2}+10 q^{3}+19 q^{4}+34 q^{5}+60 q^{6}+100 q^{7}+\cdots
\end{aligned}
$$

Gongratulations!
Wish you heaps and heaps of new adventures!

