Philippe and the joyful integrable combinatorics of 2D quantum gravity

Jérémie Bouttier

Philippe60, 24 June 2024

I met Philippe in 2001 while looking for a PhD position.

I met Philippe in 2001 while looking for a PhD position. He did not have a Porsche yet:

I met Philippe in 2001 while looking for a PhD position. He did not have a Porsche yet:

It quickly became clear to me that I wanted to do my PhD with him and Emmanuel. They agreed.

I remember our first discussion in Emmanuel's rez-de-jardin office. The board became quickly covered by more than a dozen possible problems to work on.

I remember our first discussion in Emmanuel's rez-de-jardin office. The board became quickly covered by more than a dozen possible problems to work on. The list included the Razumov-Stroganov conjecture, but this was considered too risky for a novice PhD student.

I remember our first discussion in Emmanuel's rez-de-jardin office. The board became quickly covered by more than a dozen possible problems to work on. The list included the Razumov-Stroganov conjecture, but this was considered too risky for a novice PhD student. Instead, we focused on questions intertwining 2D quantum gravity and combinatorics.

I remember our first discussion in Emmanuel's rez-de-jardin office. The board became quickly covered by more than a dozen possible problems to work on. The list included the Razumov-Stroganov conjecture, but this was considered too risky for a novice PhD student.

Instead, we focused on questions intertwining 2D quantum gravity and combinatorics.
Philippe had already contributed to this subject:
Ann. Inst. Henri Poincaré,

Vol. 59, n² 2, 1993, p. 117-139. Physique théorique

A generating function for fatgraphs

by
P. DI FRANCESCO and C. ITZYKSON

Service de Physique Théorique de Saclay,
Laboratoire de la Direction des Sciences et de la Matière
Commissariat à l'Énergie Atomique
91191 Gif-sur-Yvette Cedex, France

I remember our first discussion in Emmanuel's rez-de-jardin office. The board became quickly covered by more than a dozen possible problems to work on. The list included the Razumov-Stroganov conjecture, but this was considered too risky for a novice PhD student.

Instead, we focused on questions intertwining 2D quantum gravity and combinatorics.
Philippe had already contributed to this subject:

Ann. Inst. Henri Poincaré,

2D gravity and random matrices

P. DI FRANCESCO and C. ITZYKSON

P.Di Francesco ${ }^{a} \boxtimes$, P. Ginsparg. ${ }^{\text {b }} \mathbb{Q}$, J. Zinn-Justin ${ }^{a} \boxtimes$

Service de Physique Théorique de Saclay,
Laboratoire de la Direction des Sciences et de la Matière Commissariat à l'Énergie Atomique 91191 Gif-sur-Yvette Cedex, France

heaps

X. Viennot (1986)

Integrable 2D Lorentzian gravity and random walks

$$
\text { P. Di Francesco }{ }^{\text {a.1 }} \text {, E. Guitter }{ }^{\text {a }} \text {, C. Kristjansen }{ }^{\text {b,2 }}
$$

${ }^{2}$ CEA-Saclay, Service de Physique Théorique, F-9119I, Gif sur Yvette Cedex, France
${ }^{6}$ The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen D. Denmark
Received 14 July 1999; accepted 11 October 1999

Our first common paper

Philippe and Emmanuel had several drafts in store, which they gave me for a kick start.

Our first common paper

Philippe and Emmanuel had several drafts in store, which they gave me for a kick start.

Institute of Physics Puelishing	Journal of Physics A: Mathematical and General
J. Phys. A: Math. Gen. $35(2002) 3821-3854$	PII: S0305-4470(02)33016-6

Critical and tricritical hard objects on bicolourable random lattices: exact solutions

J Bouttier, P Di Francesco and E Guitter
CEA-Saclay, Service de Physique Théorique, F-91191 Gif sur Yvette Cedex, France
E-mail: bouttier@spht.saclay.cea.fr, philippe@spht.saclay.cea fr and guitter@spht.saclay.cea.fr
Received 23 January 2002
Published 19 April 2002
Online at stacks.iop.org/JPhysA/35/3821

Our first common paper

Philippe and Emmanuel had several drafts in store, which they gave me for a kick start.

Institute of Physics Puilishing	Journal of Physics A: Mathematical and General
J. Phys. A: Math. Gen. $35(2002) 3821-3854$	PII: S0305-4470(02)33016-6

Critical and tricritical hard objects on bicolourable random lattices: exact solutions

J Bouttier, P Di Francesco and E Guitter
CEA-Saclay, Service de Physique Théorique, F-91191 Gif sur Yvette Cedex, France
E-mail: bouttier@spht.saclay.cea.fr, philippe@spht.saclay.cea fr and guitter@spht.saclay.cea.fr
Received 23 January 2002
Published 19 April 2002
Online at stacks.iop.org/JPhysA/35/3821
We studied a random lattice analogue of the hard-square model, and a dilute version thereof.

Our first common paper

Philippe and Emmanuel had several drafts in store, which they gave me for a kick start.

Critical and tricritical hard objects on bicolourable random lattices: exact solutions

J Bouttier, P Di Francesco and E Guitter

CEA-Saclay, Service de Physique Théorique, F-91191 Gif sur Yvette Cedex, France
E-mail: bouttier@spht.saclay.cea.fr, philippe@spht.saclay.ceafr and guitter@spht.saclay.cea.fr
Received 23 January 2002

Published 19 April 2002
Online at stacks.iop.org/JPhysA/35/3821
We studied a random lattice analogue of the hard-square model, and a dilute version thereof. We computed exact generating functions via matrix integral techniques, identified the phase diagram, critical exponents, etc. I loved this mixture of combinatorics and physics.

The bijective revolution

The bijective revolution
コ IViV > math > arXiv:math/0205226
Mathematics > Combinatorics
[Submitted on 22 May 2002]

Random Planar Lattices and Integrated SuperBrownian Excursion

Philippe Chassaing, Gilles Schaeffer

The bijective revolution

Z I《iV > math > arXiv:math/0205226
Mathematics > Combinatorics
[Submitted on 22 May 2002]

Random Planar Lattices and Integrated SuperBrownian Excursion

Philippe Chassaing, Gilles Schaeffer
We discovered the bijective approach to the enumeration of planar maps, developed by Gilles in his own PhD thesis.

The bijective revolution

ar《iV > math > arXiv:math/0205226

Mathematics > Combinatorics

[Submitted on 22 May 2002]

Random Planar Lattices and Integrated SuperBrownian Excursion

Philippe Chassaing, Gilles Schaeffer
We discovered the bijective approach to the enumeration of planar maps, developed by Gilles in his own PhD thesis. Combined with the knowledge of matrix models, this inspired us:

- Counting Colored Random Triangulations [Submitted on 24 Jun 2002]

The bijective revolution

Z I《iV > math > arXiv:math/0205226

Mathematics > Combinatorics

[Submitted on 22 May 2002]

Random Planar Lattices and Integrated SuperBrownian Excursion

Philippe Chassaing, Gilles Schaeffer
We discovered the bijective approach to the enumeration of planar maps, developed by Gilles in his own PhD thesis. Combined with the knowledge of matrix models, this inspired us:

- Counting Colored Random Triangulations [Submitted on 24 Jun 2002]
- Census of Planar Maps: From the One-Matrix Model Solution... [Submitted on 29 Jul 2002]

The bijective revolution

コ I VV > math > arXiv:math/0205226

Mathematics > Combinatorics

[Submitted on 22 May 2002]

Random Planar Lattices and Integrated SuperBrownian Excursion

Philippe Chassaing, Gilles Schaeffer
We discovered the bijective approach to the enumeration of planar maps, developed by Gilles in his own PhD thesis. Combined with the knowledge of matrix models, this inspired us:

- Counting Colored Random Triangulations [Submitted on 24 Jun 2002]
- Census of Planar Maps: From the One-Matrix Model Solution... [Submitted on 29 Jul 2002]
- Combinatorics of Hard Particles on Planar Graphs [submitted on 8 Nov 2002]

The bijective revolution

コ IViV > math > arXiv:math/0205226

Mathematics > Combinatorics

[Submitted on 22 May 2002]

Random Planar Lattices and Integrated SuperBrownian Excursion

Philippe Chassaing, Gilles Schaeffer
We discovered the bijective approach to the enumeration of planar maps, developed by Gilles in his own PhD thesis. Combined with the knowledge of matrix models, this inspired us:

- Counting Colored Random Triangulations [Submitted on 24 Jun 2002]
- Census of Planar Maps: From the One-Matrix Model Solution... [Submitted on 29 Jul 2002]
- Combinatorics of Hard Particles on Planar Graphs [submitted on 8 Nov 2002]

Mireille and Gilles replied with:

- The degree distribution in bipartite planar maps: applications to the Ising model

Our most successful paper in this vein has been Planar maps as labeled mobiles (2004) where we introduce the BDG bijection, extending the Cori-Vauquelin-Schaeffer bijection between planar quadrangulations and well-labeled trees to maps with arbitrary (controlled) face degrees.

(a)

(b)

(c)

Integrability strikes back

One day, we noticed that the tree bijections led naturally to recurrence equations such as

$$
R_{n}=1+g R_{n}\left(R_{n-1}+R_{n}+R_{n+1}\right), \quad n \geq 1, \quad R_{0}=0 .
$$

Here, R_{n} is essentially the generating function of planar quadrangulations with two points at distance at most n, i.e. the discrete two-point function.

Integrability strikes back

One day, we noticed that the tree bijections led naturally to recurrence equations such as

$$
R_{n}=1+g R_{n}\left(R_{n-1}+R_{n}+R_{n+1}\right), \quad n \geq 1, \quad R_{0}=0 .
$$

Here, R_{n} is essentially the generating function of planar quadrangulations with two points at distance at most n, i.e. the discrete two-point function.

Shortly after, Philippe came up with the explicit solution:

$$
R_{n}=R \frac{\left(1-x^{n}\right)\left(1-x^{n+3}\right)}{\left(1-x^{n+1}\right)\left(1-x^{n+2}\right)}
$$

with $R=1+3 g R^{2}, x+x^{-1}=\frac{1-4 g R}{g R}$.

Integrability strikes back

One day, we noticed that the tree bijections led naturally to recurrence equations such as

$$
R_{n}=1+g R_{n}\left(R_{n-1}+R_{n}+R_{n+1}\right), \quad n \geq 1, \quad R_{0}=0 .
$$

Here, R_{n} is essentially the generating function of planar quadrangulations with two points at distance at most n, i.e. the discrete two-point function.

Shortly after, Philippe came up with the explicit solution:

$$
R_{n}=R \frac{\left(1-x^{n}\right)\left(1-x^{n+3}\right)}{\left(1-x^{n+1}\right)\left(1-x^{n+2}\right)}
$$

with $R=1+3 g R^{2}, x+x^{-1}=\frac{1-4 g R}{g R}$. By taking an appropriate scaling limit, we were able to prove the Ambjørn-Watabiki prediction for the (continuum) two-point function of pure 2D quantum gravity. See the paper Geodesic distances in planar graphs (2003).

Beyond quadrangulations: Philippe's "prediction"
Upon redefining them like in previous section as $\alpha_{i}=x_{i}\left(1-x_{i}\right)\left(1-x_{i}^{2}\right) \lambda_{i}$, and resumming the expression for R_{n}, we arrive at

$$
\begin{align*}
& R_{n}=R \frac{u_{n}^{(m)} u_{n+3}^{(m)}}{u_{n+1}^{(m)} u_{n+2}^{(m)}} \\
& u_{n}^{(m)}=\sum_{l=0}^{m}(-1)^{l} \sum_{1 \leqslant m_{1}<\cdots<m_{l} \leqslant m} \prod_{i=1}^{l} \lambda_{m_{i}} x_{m_{i}}^{n+m} \prod_{1 \leqslant i<j \leqslant l} c_{m_{i}, m_{j}}, \\
& c_{a, b} \equiv \frac{\left(x_{a}-x_{b}\right)^{2}}{\left(1-x_{a} x_{b}\right)^{2}} \tag{5.4}
\end{align*}
$$

Beyond quadrangulations: Philippe's "prediction"

Upon redefining them like in previous section as $\alpha_{i}=x_{i}\left(1-x_{i}\right)\left(1-x_{i}^{2}\right) \lambda_{i}$, and resumming the expression for R_{n}, we arrive at

$$
\begin{align*}
& R_{n}=R \frac{u_{n}^{(m)} u_{n+3}^{(m)}}{u_{n+1}^{(m)} u_{n+2}^{(m)}} \\
& u_{n}^{(m)}=\sum_{l=0}^{m}(-1)^{l} \sum_{1 \leqslant m_{1}<\cdots<m_{l} \leqslant m} \prod_{i=1}^{l} \lambda_{m_{i}} x_{m_{i}}^{n+m} \prod_{1 \leqslant i<j \leqslant l} c_{m_{i}, m_{j}}, \\
& c_{a, b} \equiv \frac{\left(x_{a}-x_{b}\right)^{2}}{\left(1-x_{a} x_{b}\right)^{2}} \tag{5.4}
\end{align*}
$$

Almost ten years later, after many detours, Emmanuel and I were able to prove this formula in the paper Planar maps and continued fractions (2012).

Integrability and distance statistics of random planar maps

Many other instances of this integrability phenomenon have been discovered since:

- in various models of maps and trees studied by Bousquet-Mélou, Kuba, Ambjørn-Budd, Fusy-Guitter...
- other distance-related observables, such as the three-point function, are determined by integrable recurrence equations (B.-Guitter 2008-2010).

Integrability and distance statistics of random planar maps

Many other instances of this integrability phenomenon have been discovered since:

- in various models of maps and trees studied by Bousquet-Mélou, Kuba, Ambjørn-Budd, Fusy-Guitter...
- other distance-related observables, such as the three-point function, are determined by integrable recurrence equations (B.-Guitter 2008-2010).

Meanwhile, Philippe had moved to other topics...

Integrability and distance statistics of random planar maps

Many other instances of this integrability phenomenon have been discovered since:

- in various models of maps and trees studied by Bousquet-Mélou, Kuba, Ambjørn-Budd, Fusy-Guitter...
- other distance-related observables, such as the three-point function, are determined by integrable recurrence equations (B.-Guitter 2008-2010).

Meanwhile, Philippe had moved to other topics... but in his paper Geodesic Distance in Planar Graphs: An Integrable Approach (2005) he had left another "prediction" about the case of constellations.

Integrability and distance statistics of random planar maps

Many other instances of this integrability phenomenon have been discovered since:

- in various models of maps and trees studied by Bousquet-Mélou, Kuba, Ambjørn-Budd, Fusy-Guitter...
- other distance-related observables, such as the three-point function, are determined by integrable recurrence equations (B.-Guitter 2008-2010).

Meanwhile, Philippe had moved to other topics... but in his paper Geodesic Distance in Planar Graphs: An Integrable Approach (2005) he had left another "prediction" about the case of constellations. It has only been recently proved by Bergère, Eynard, Guitter and Oukassi (2023).

Conclusion: what Philippe really taught me

Thank you!

