The Philippe60 integer sequence

 (My collaboration with Philippe)

The OEIS is supported by the many generous donors to the OEIS Foundation.
${ }^{013627}$ THE ON-LINE ENCYCLOPEDIA ${ }_{23} \mathrm{OE}^{20}$ OF INTEGER SEQUENCES ${ }^{\circledR 1}$

founded in 1964 by N. J. A. Sloane

12361120 Search Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:1,2,3,6,11,20
Displaying 1-10 of 34 results found.
page $1 \underline{2} \underline{2} 4$
Sort: relevance \mid references \mid number \mid modified \mid created Format: long \mid short \mid data
A058214 Philippe Di Francesco's 60th birthday sequence $\quad{ }_{4}^{+40}$
1, 2, 3, 6, 11, 20, 29, 37, 60, 96, 145, 214, 415 (list; graph; refs; listen; history; text; internal format)

The OEIS is supported by the many generous donors to the OEIS Foundation.
013627 THE ON-LINE ENCYCLOPEDIA
${ }_{23} \mathrm{OS}_{12}^{120}$ OF INTEGER SEQUENCES ${ }^{\circledR}$

founded in 1964 by N. J. A. Sloane

12361120 Search Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:1,2,3,6,11,20
Displaying 1-10 of 34 results found.
page $1 \underline{2} \underline{2} 4$
Sort: relevance \mid references \mid number \mid modified \mid created Format: long \mid short \mid data
A058214 Philippe Di Francesco's 60th birthday sequence $\quad{ }_{4}^{+40}$
1, 2, 3, 6, 11, 20, 29, 37, 60, 96, 145, 214, 415 (list; graph; refs; listen; history; text; internal format)
$\begin{array}{lllllllllllll}1 & 2 & 3 & 6 & 11 & 20 & 29 & 37 & 60 & 96 & 145 & 214 & 415\end{array}$

$$
\begin{array}{lllllllllllll}
1 & 2 & 3 & 6 & 11 & 20 & 29 & 37 & 60 & 96 & 145 & 214 & 415
\end{array}
$$

60 publications of Philippe with other members of IPhT

$\begin{array}{lllllllllllll}1 & 2 & 3 & 6 & 11 & 20 & 29 & 37 & 60 & 96 & 145 & 214 & 415\end{array}$
Joined the IPhT 37 years ago

```
1
```

Joined the IPhT 37 years ago, and have since written 37 papers together


```
1
```


(x3)

11 vertex model
Entropy ? N triangles: \# foldings $\sim q^{N}$

$$
q \sim 1.21 \quad \text { Kantor Jarić (1990) }
$$

complete fold $\left(180^{\circ}\right)$
acute fold ($109^{\circ} 8^{\prime}$)

Obtuse fold ($70^{\circ} 32^{\prime}$)

Folding on FCC lattice

$\begin{array}{lllllllllllll}1 & 2 & 3 & 6 & 11 & 20 & 29 & 37 & 60 & 96 & 145 & 214 & 415\end{array}$

$$
\begin{array}{llllllllllll}
1 & 2 & 3 & 6 & 11 & 20 & 29 & 37 & 60 & 96 & 145 & 214
\end{array} 415
$$

$\begin{array}{llllllllllllllll}1 & 2 & 3 & 6 & 11 & 20 & 29 & 37 & 60 & 96 & 145 & 214 & 415\end{array}$

$$
\begin{array}{llllllllllll}
1 & 2 & 3 & 6 & 11 & 20 & 29 & 37 & 60 & 96 & 145 & 214
\end{array} 415
$$

Meander: closed (racing) circuit crossing a river via $2 n$ bridges

The $M_{3}=8$ configurations of meanders for $2 n=6$ bridges.

Meanders*

S. K. Lando and A. K. Zvonkin

Theorem. There exists a number A_{M} such that, for any $0<A<A_{M}$, $A^{n}<M_{n}<\left(A_{M}\right)^{n}$ for every large enough n, and $A_{M}<(\pi /(4-\pi))^{2}$.

$$
M_{n} \sim \text { cost } \cdot\left(A_{M}\right)^{n} \cdot n^{-7 / 2} \text { where } A_{M}=12.26 \cdots
$$

> Weight q per connected component:

$$
\rightarrow M_{n}(q) \sim \operatorname{const} .\left(A_{M}(q)\right)^{n} n^{-\alpha(q)}
$$

$\begin{array}{llllllllllllll}1 & 2 & 3 & 6 & 11 & 20 & 29 & 37 & 60 & 96 & 145 & 214 & 415\end{array}$

$>\sqrt{A_{M}(q)}=2 \sqrt{q}\left(1+\frac{1}{q}+\frac{3}{2 q^{2}}-\frac{3}{2 q^{3}}-\frac{29}{8 q^{4}}-\frac{81}{8 q^{5}}-\frac{89}{16 q^{6}}+O\left(\frac{1}{q^{7}}\right)\right)$
> «meander determinant»

$$
\begin{aligned}
\operatorname{det} & =\prod_{1 \leq \ell \leq i \leq n}\left(q-2 \cos \left(\pi \frac{\ell}{i+1}\right)\right)^{a_{n, i}} \\
a_{n, i} & =\binom{2 n}{n-i}-2\binom{2 n}{n-i-1}+\binom{2 n}{n-i-2}
\end{aligned}
$$

NB: $\quad \operatorname{tr}(\cdot)^{2}=M_{n}\left(q^{2}\right)$
ก $\cap \cap \cap$ ค $\cap \cap$ ค่

> Semi-meanders

> Numerics (based on exact enumerations)

O. Golinelli (1999) I. Jensen (1999)

$$
\begin{gathered}
M_{n} \sim \text { const. }\left(A_{M}\right)^{n} n^{-\alpha} \\
\alpha=3.4208(6)
\end{gathered}
$$

```
    PARAMETER (nmax = 14)
    INTEGER A (-nmax+1:nmax)
    INTEGER Sm(nmax)
    INTEGER n
    INTEGER j
    DATA n, Sm/O, nmax*0/
    A(0) = 1
    A(1) = 0
2n=n + 1
    Sm(n) = Sm(n) + 1
    j = -n + 1
l IF((n.EQ.nmax).OR.(j.EQ.n+1)) GOTO 3
    A(A(j)) = n+1
    A(n+1) = A(j)
    A(j) = -n
    A(-n)= j
    GOTO 2
3A(A(-n+1))=A(n)
    A(A(n)) = A(-n+1)
    j = A(n)+1
n = n - 1
    IF (n .GT. 1) GOTO 1
    PRINT '(i3, i15)', (n, Sm(n), n = 1, nmax)
    END
```

$\begin{array}{lllllllllllllll}1 & 2 & 3 & 6 & 11 & 20 & 29 & 37 & 60 & 96 & 145 & 214 & 415\end{array}$

Conjecture (2000)

$$
\alpha=\frac{29+\sqrt{145}}{12}=3.42013 \cdots
$$

from KPZ for the coupling to gravity of a $c=-4 \quad$ CFT

$$
\alpha=\frac{29+\sqrt{145}}{12}=3.42013 \cdots
$$

from KPZ for the coupling to gravity of a $c=-4 \quad$ CFT

I follow here the paper [7]. The problem of meanders "may be interpreted" as a model of "a pair of two fully packed loops". Now, a model of one fully packed loop has a "central charge" $c=-2$. "Therefore", the central charge for the model of two fully packed loops and, hence, for the model of meanders, is $c=-4$. There are reasons to believe that the model satisfies the "conformal invariance" property. If this is the case then, using the Knizhnik-Polyakov-Zamolodchikov equation [14], one may express the "string susceptibility" $\gamma_{\text {str }}$ through the central charge:

$$
\gamma_{\mathrm{str}}=\frac{c-1-\sqrt{(25-c)(1-c)}}{12}
$$

Finally, the critical exponent α is expressed in terms of the string susceptibility as follows:

$$
\alpha=2-\gamma_{\mathrm{str}} .
$$

For $c=-4$ all this gives

$$
\alpha=\frac{29+\sqrt{145}}{12}=3.420132882 \ldots
$$

Meanders: A personal perspective to the memory of Pierre Rosenstiehl
Alexander K. Zvonkin

As one of our colleagues used to say, «cela ne s'invente pas».

foldings, colorings, meanders are different facets of a same problem, that of fully packed loops on regular or random lattices

Coloring random triangulations

P. Di Francesco ${ }^{\text {a,1 }}$,
B. Eynard ${ }^{\mathrm{b}, 2}$,
E. Guitter ${ }^{\mathrm{c}, 3}$

${ }^{a}$ Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA
${ }^{b}$ Department of Mathematical Sciences, University of Durham, Science Labs, South Road, Durham DHI 3HP. UK
c Service de Physique Théorique, C.E.A. Saclay, F-91191 Gif sur Yvette Cedex, France
Received 12 November 1997; accepted 30 December 1997

Counting planar Eulerian triangulations, i.e. triangulations which are vertex-colorable by 3 colors

$$
U_{1}=\frac{t_{1}}{1-U_{2}-U_{3}}, \quad U_{2}=\frac{t_{2}}{1-U_{3}-U_{1}} \quad U_{3}=\frac{t_{3}}{1-U_{1}-U_{2}}
$$

$=$ tricolored tree generating functions
Where are the trees?
discovered the work by
hired Jérémie

+ M. Bousquet-Mélou, G. Schaeffer on random maps
via blossoming trees

$\begin{array}{llllllllllll}1 & 2 & 3 & 6 & 11 & 20 & 29 & 37 & 60 & 96 & 145 & 214\end{array} 415$

Distance profile $=2$-point function

$\begin{array}{llllllllllll}1 & 2 & 3 & 6 & 11 & 20 & 29 & 37 & 60 & 96 & 145 & 214\end{array} 415$

Distance profile $=2$-point function

$\begin{array}{llllllllllll}1 & 2 & 3 & 6 & 11 & 20 & 29 & 37 & 60 & 96 & 145 & 214\end{array} 415$

Distance profile $=2$-point function
$\begin{array}{llllllllllll}1 & 2 & 3 & 6 & 11 & 20 & 29 & 37 & 60 & 96 & 145 & 214\end{array} 415$

Distance profile $=2$-point function

$\begin{array}{llllllllllll}1 & 2 & 3 & 6 & 11 & 20 & 29 & 37 & 60 & 96 & 145 & 214\end{array} 415$

Distance profile $=2$-point function

1
(2) 3 $\begin{array}{lllllllllll}6 & 11 & 20 & 29 & 37 & 60 & 96 & 145 & 214 & 415\end{array}$
Distance profile $=2$-point function

$$
\begin{array}{lllllllllllll}
1 & 2 & 3 & 6 & 11 & 20 & 29 & 37 & 60 & 96 & 145 & 214 & 415
\end{array}
$$

 arctic curve
period

20 - vertex model = ice model on triangular lattice
with DWBC

= osculating lattice paths
$Z^{20 V}(n)=1,3,23,433,19705,2151843,561696335,349667866305 \ldots$

$\begin{array}{lllllllllll}1 & 2 & 3 & 6 & 11 & 20 & 37 & 60 & 96 & 145 & 214\end{array} 415$

6- vertex model
= ice model on square lattice
again with DWBC

$$
(a, b, c)=(1, \sqrt{2}, 1)
$$

> also true for the 1-point function

$$
Z^{20 V}(n ; \tau)=Z_{[1, \sqrt{2}, 1]}^{6 V}\left(n ; \frac{1+\tau}{2}\right) \xrightarrow[\text { tangent method }]{ } \text { arctic curve }
$$

F. Colomo, A. Sportiello (2016)
F. Colomo, A.G. Pronko (2010)

> we also have

$$
Z^{20 V}(n)=
$$

Quater Turn symmetric Holey Aztec Domino Tiling

| 1 | 2 | 3 | 6 | 11 | 20 | 29 | 37 | 60 | 96 | 145 | 214 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 415

