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• Several integrable dynamical systems on spaces of poly-
gons have been studied in the last decades.

• Another class of integrable systems associated with bi-
partite dimer models on the torus was introduced by
Goncharov and Kenyon in 2013.

• The setting of triple crossing diagram maps provides a
common framework for both the geometric integrable
systems and the dimer integrable system.



1 Integrable systems from bipartite
dimer models on the torus



A model from statistical mechanics
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• Setting: planar bipartite graphs (vertices can be colored
black and white such that each edge has two endpoints
of different colors) with edge weights.

• In probability, edge weights are positive real numbers.

• For integrable systems and geometry purposes (this
talk), edge weights are complex numbers.
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Dimer coverings:

Weights: cde bcg aef

• Dimer covering : subset of edges such that each vertex
is incident to exactly one edge.

• Boltzmann probability measure: draw a dimer covering
at random with probability proportional to its weight.



a b

c d e

f g

• Define face weights as alternating products of edge
weights around faces.

• Two collections of edge weights induce the same Boltz-
mann probability measure if and only if they have the
same face weights.

X1 = af
cd X2 = de

gb



Two moves preserving correlations
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1. Spider move:



Two moves preserving correlations

1. Spider move:

• The change in the face weights is a special instance of
mutation of coefficient variables in cluster algebras.
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Two moves preserving correlations

2. Contraction/expansion of degree-two vertex:

1 1

• Face weights don’t change.

• May be recombined into a resplit move:

1 1 1
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• We use these moves to define discrete-time dynamics
on face-weighted bipartite graphs on the torus.

• One step of the dynamics will bring us back to the same
combinatorial graph, but the face weights will poten-
tially have changed.

Discrete-time integrable dynamics



• An equivalent way of working with torus graphs is to
consider infinite planar graphs that are periodic in two
directions, with weights also periodic in two directions.
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• An equivalent way of working with torus graphs is to
consider infinite planar graphs that are periodic in two
directions, with weights also periodic in two directions.
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Square grid example



Square grid example



Square grid example



Square grid example



Square grid example



Square grid example



• All these discrete-time dynamics are integrable, in the
sense that they have “enough” conserved quantities.

• These conserved quantities have a particular struc-
ture with respect to a Poisson bracket. In the
right coordinates, the motion is translation on some
high-dimensional torus (Goncharov-Kenyon, Fock-
Marshakov, Vichitkunakorn, George-Inchiostro).

• The conserved quantities are partition functions for
dimer covers on the torus with prescribed homology.



Kasteleyn matrix determinant
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• The Kasteleyn matrix K(z, w) is the signed twisted ad-
jacency matrix of a bipartite graph on the torus.

• The Laurent polynomial detK(z, w) is the generating
function of the conserved quantities.



2 Triple crossing diagram maps

(following Affolter-Glick-Pylyavskyy-R. ’24 and
Affolter-George-R. ’21)



• A triple crossing diagram (TCD) is a bipartite graph
such that all the black vertices have degree 3.

• Let m ≥ 1 and Γ be a TCD with white vertex set W
and black vertex set B. A TCD map is a map from
W to CPm such that for any b ∈ B, the three vertices
around b are mapped to three collinear points.
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P1, P2, P3 ∈ CPm



Spider move for TCD maps
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• The points of the TCD maps do not change, this is a
reparametrization.



Resplit for TCD maps

• In CP 1, we use the multi-ratio formula to define P ′.

• If the points are in CPm with m ≥ 2, the new point
P ′ is determined by Menelaus theorem for complete
quadrilaterals:
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Twisted TCD maps

• It is a TCD map on an infinite cylinder such that the
graph is periodic and the points are quasi-periodic, with
some monodromy M ∈ PGLm+1(C).

· · · · · ·



Twisted TCD maps

• It is a TCD map on an infinite cylinder such that the
graph is periodic and the points are quasi-periodic, with
some monodromy M ∈ PGLm+1(C).
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Twisted TCD maps

• It is a TCD map on an infinite cylinder such that the
graph is periodic and the points are quasi-periodic, with
some monodromy M ∈ PGLm+1(C).

· · · · · ·

P M.P M2.PM−1.PM−2.P



• One can associate edge variables to a TCD map by
lifting the points Pi ∈ CPm to vectors vi ∈ Cm+1.
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P1, P2, P3 ∈ CPm

v1, v2, v3 ∈ Cm+1

collinear

coplanar

From TCD maps to dimers



• One can associate edge variables to a TCD map by
lifting the points Pi ∈ CPm to vectors vi ∈ Cm+1.

P1

P2 P3

P1, P2, P3 ∈ CPm

v1, v2, v3 ∈ Cm+1

collinear

coplanar

• There exist λ1, λ2, λ3 ∈ C such that

λ1v1 + λ2v2 + λ3v3 = 0.

λ1
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From TCD maps to dimers



• One defines face weights on the bipartite graph by tak-
ing the alternating products of such edge variables (up
to some technical sign).

• The evolution of these face weights under the two moves
defined for TCD maps is the same as the evolution of
the face weights under the counterpart moves for the
dimer model.

• Each face weight can be expressed as a multi-ratio of
points attached to white vertices.

• There is some ambiguity (gauge freedom) for the choice
of edge variables.



• Part 1: bipartite graphs with face weights, evolving
according to some moves.

• Part 2: bipartite graphs with a point in CPm attached
to each white vertex. These decorated graphs evolve
according to some moves.

• From the points in CPm, one can compute face weights,
which evolve like in part 1.

• Dimer integrable systems (part 1): bipartite graph on
the torus.

• Geometric integrable systems (part 2): bipartite graph
on an infinite cylinder, the graph is periodic, the points
are quasi-periodic.



3 Application: dynamics on polygons



Twisted polygons

• If M ∈ PGLm+1(C), a twisted n-gon with mon-
odromy M is defined as a bi-infinite sequence of points
(. . . , P−1, P0, P1, P2, . . .) in CPm such that for every
i ∈ Z, Pi+n = M.Pi.
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Twisted polygons

• Many integrable dynamics on polygons are defined on
spaces of twisted polygons.

• A generating function for the conserved quantities of
these integrable systems on twisted polygons is usually
given as a simple function of the monodromy M .

• These twisted polygons can be realized as twisted TCD
maps.



Results of Affolter-George-R. ’22

• For twisted TCD maps, we show that the monodromy
matrix M can be obtained from the Kasteleyn matrix
of a fundamental block of the infinite cylinder.

• This relates the generating function of conserved quan-
tities for dimer integrable systems to the generat-
ing function of conserved quantities for dynamics on
twisted polygons.



• We thus recover the Ovsienko-Schwartz-Tabachnikov
conserved quantities for the pentagram map and the
Arnold-Fuchs-Izmestiev-Tabachnikov conserved quan-
tities for cross-ratio dynamics as conserved quantities
for the dimer model.

Results of Affolter-George-R. ’22

• We define twisted TCD maps for the pentagram map
and cross-ratio dynamics.

• The iterations of both dynamics are realized as some
sequences of moves on the respective TCD maps.



n = 6

points at time 0

The pentagram map (Schwartz ’92)

• Discrete-time dynamics on twisted n-gons in CP 2 con-
sidered up to PGL3(C).
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TCD map for the pentagram map
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• Dimer integrable systems possess a unified theory, valid
for any bipartite graph on the torus.

• Taking TCD maps for different choices of graphs, we
recover a wealth of seemingly disparate examples, com-
ing from either geometric dynamics or from discrete
differential geometry.

• Provides a powerful machinery to prove integrability
and find a cluster algebra structure for even more geo-
metric systems.

Conclusion



Happy birthday Philippe!
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