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• Our old work: torus partition function

g =
x+ 1

x
, e0 =

1

x

ended with a not very explicit result:

^ ⌘ gcd

Why should we care?

So the first technical challenge is to perform a Poisson resummation in order to write

the partition function as a sum over powers of q, q̄

This was done in

loops

(spaghettis for Philippe)
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Why should we care?

So the first technical challenge is to perform a Poisson resummation in order to write
the partition function as a sum over powers of q, q̄

This was done in

loops

(NOT spaghettis - sorry Philippe)

• Note: while the formula for Z was derived in the context of CFT and for n 2 [�2, 2],

it is in fact true for all n (integer or not), in finite size, and not necessarily at criticality

Therefore the question of interpreting the multiplicities in the language of O(n)
representation theory makes perfect sense

(for n /2 N it still makes sense in a (Deligne) categorical sense see below)

So the degeneracies correspond to groupings of O(n) irreducible representations into blocks

Conformal loop ensembles or loop soups

The problem was solved in

. . .

( The exact decomposition for the ⇤(r,s) is known explicitely)

What explains these (very large) degeneracies?

• The idea of an extended symmetry (Hopf algebra) doesn’t seem to work., The set of ⇤(r,s) is not stable under
the O(n) tensor product. Periodic boundary conditions seem to play a crucial role (degeneracies would be
di↵erent for open b.c.).

• On the other hand, with p.b.c. it is di�cult indeed to give a meaning to tensor products of the ⇤(r,s) (cut
and ew?)

• It is useful to start to understand why there are such degeneracies
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Figure 1.2: Illustration of loops (red) formed from bonds on the honeycomb lattice (left)

and on the square lattice (right).

Next, we compute the the spin configuration sum over each term, and we find

X

{✏}

(✏i1✏i2)(✏i3✏i4) . . . (✏i2m�1✏i2m) =

8
>><

>>:

2N2
if {⇥} consists of only loops

0 otherwise

(1.11)

for the following reason. If the bonds in {⇥} do not form only loops, then the sum

will have the same number of +1 terms as �1 terms as a result of the ± symmetry, so

it equals zero. However, if the bonds in {⇥} form a loop (figure 1.2), then the indices

of the spins may be arranged so that ✏i2 = ✏i3 , ✏i4 = ✏i5 , etc., and ✏i2m = ✏i1 . With

this rearrangement, we see that each term in the sum is one, so with |{✏}| = 2N2

terms, we arrive with (1.11). Similar reasoning leads to the same result when the

collection of bonds {⇥} consists of several non-crossing loops. Therefore we can write

the partition function as

ZO(1)(K) = 2N2
cosh2N2

(K/2)
X

{⇤}

x�, x := tanh(K/2), (1.12)

where {⇤} is the collection of non-crossing loops, � is the total number of bonds that

comprise the loops of {⇤}, and the sum is taken over all collections of non-crossing

loops. This is the high-temperature expansion of the Ising model, so called because it

is a power series in x centered at zero, or equivalently, in the temperature centered

at infinity.

We momentarily digress to exploit the self-duality of the square lattice in order
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Loop soups

(ensembles of self-avoiding mutually avoiding loops

with fugacities per loop and bond)

• Are standard to many problems of statistical physics (O(n) model, Q-state

Potts model, disordered free electrons models (plateau transitions)...)

• Are a big thing in probability theory (W. Werner, S. Smirnov, H. Dominil

Copin)

While many properties (like critical exponents) have been known for decades,

first “phenomenologically” (Coulomb gas constructions, Bethe-ansatz) then rig-

orously (SLE)

1

Irreducible modules W (L)
(r,s) with 2r 2 N and

#

Schur-Weyl

For � = [L] this amounts to decomposing Specht modules of the permutation group S|�| into
representations of a cyclic subgroup (Stembridge)

We also have a combinatorial formula for these
(Jacobsen Ribault Saleur)

The problem was solved earlier in the case or ordinary Temperley-Lieb

(Benkart Moon)
All non-contractible loops have weight n. Through lines winding fully around do not acquire any weight

Translation of through lines (pseudo-translation) t

On one side of the problem things are conceptually simple: the relevant algebra
becomes the unoriented Jones-Temperley-Lieb algebra

The first question we are interested in is, what happens to Schur-Weyl when we forbid crossings?

The case K > Kc is also critical, and referred to as the dense phase.
In this phase, crossings are relevant

O(n)/O(n� 1) (Jacobsen Read Saleur)

also called the dilute (critical) point

[1]⌦L

Strictly speaking, Brauer is relevant only for the case where every edge is occupied by a “monomer”, which
corresponds to the limit K ! 1 and the low-temperature (dense) phase. Algebraically however, the following
makes sense for the dilute versions of the problem: ([]� [1])⌦L and “dilute” Brauer. I will often not specify this.

Note that n can be extended to (most of) C. n = 0 describes SAW.
Of course, the meaning of “O(n)” for n 62 N⇤ has to be discussed.

Technically, the four-leg operator is irrelevant
at the dilute fixed point

n-component vectors ~Si with O(n) symmetric
~Si.

~Sj couplings
Conformal loop ensembles or loop soups

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are “generically” critical

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

5

CFT

Specifically I want to illustrate an “out of context” use of generalized symmet This is one of the few examples
where categorical symmetry plays an explicit role in an

interacting system (not in the realm of topological phases)

There is probably a use for this in the context of quantum loop models

The question of realizing topological defect lines in lattice models is interesting and still rather open
(Krammers Wannier, Aasen Fendley Mong, Belletête Gainutdinov Jacobsen Saleur Tavares. . . )

Of course there are nice fusion relations and higher topological lines

“categorical symmetry”

(there’s a tiny subtlety for r = 0)

(Martin Saleur . . . Graham Lehrer. . . )

(there are 3 diagrams/operators
because [1]⌦2 = []� [1]� [2])

D and its generalizations satisfy a fusion algebra

The formula:

where �
2 ⌘ �⌦ � in O(n). . .

This makes perfect sense for n 2 Z>0 (arbitrarily large if necessary)

But an e↵ort will be required if we want to connect with CFT for n 2 [�2, 2] or n 2 C:
Deligne category theory (Binder Rychkov).

This problem is well defined even if n 2 C

In the microscopic models, degrees of freedom are acted on by g when the defect line
is crossed (e.g. G = Z2 and spin flips)

The phase diagram
This requires giving a satisfactory meaning to n /2 Z>0: we’ll get back to this.

reduces to the Uqsl(2) Casimir

Pr the Jones-Wenzl projector on 2r non-contractible lines

With open boundary conditions, the equivalent construction

Note: the solution of YB in [1]⌦2

so the only object that can be moved around is a loop crossing every line, which can be
eliminated (up to a factor n) by the Brauer rules

A generic O(n) lattice model (hence, Schur-Weyl dual to Brauer) does not have any (lattice)
topological symmetry

The transition from the dense phase to the O(n)/O(n� 1) spontaneously broken symmetry phase
is obtained by explicit breaking of the topological symmetry

1
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it is in fact true for all n (integer or not), in finite size, and not necessarily at criticality

Therefore the question of interpreting the multiplicities in the language of O(n)
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The degeneracies correspond to groupings of O(n) irreducible representations into blocks

Conformal loop ensembles or loop soups

1

Z =
X

dilute loop gas

K
B
c n

L

Z =
X

clusters

(eKc � 1)BQC

=
X

dense loop gas

p
Q

L

(1)

O(n) vectors ~Si with ~Si.
~Sj coupling

Discrete spins � = 1, . . . , Q with ��i�j coupling

1



n 2 [�2, 2]; n = 2 cos
⇡

x
, x 2 [1,1]

c = 1�
6

x(x+ 1)

Crossings don’t matter
(they are irrelevant and don’t
a↵ect the continuum limit)
For n 2 C can be defined (see below) via analytic continuation, and is relevant
to several crucial modern questions in QFT. We’ll restrict to n 2 R.
Physically we can think of it along two lines:

T � T̄

(T, T̄ )

X

DX : H 7! H

[Ln,DX ] =
⇥
L̄n,DX

⇤
= 0, n 2 N

• Choose a contour � on the dual lattice

• Flip the couplings from K to �K along �

• The resulting modified partition function is

independent of deformations of �

• It depends only on its topology

and the location of the punctures

• The figure represents the two-point function of the

disorder operators

• The defect is conformal (scale invariant) if T � T̄ is continuous across the defect line

(K ! K 0 in Ising)

• The defect is topological if T and T̄ are separately continuous

This latter condition expresses mathematically the fact that the line is tensionless
and can be arbitrarily deformed (away from punctures)
Imaginary
time
The defect can be viewed as an operator
acting on the bulk Hilbert space

The defect can also be viewed as giving rise
to a defect Hamiltonian

Note: defects can be topological on the lattice or only in the continuum limit

Since the defect is topological the Hilbert space
still decomposes as

H =
M

N
hh̄
Vh ⌦ V

h̄

In particular, there is still a conserved “momentum”

1

LG universality class is discrete SQ symmetry

Second order phase transition for Q  4

Lattice discretization:
Q = 1: percolation
Dense loop gas
Related with the XXZ spin chain
(And also CP

m�1, m =
p
Q, ✓ = ⇡)

By duality it is (almost) the same as a dense loop gas
(�.� = 1)
Properties like central charge and (some) critical exponents
have been known for a long time

8

• There no currents (SQ is discrete)

• Now it is �h21iD that is exactly degenerate

D

now have cluster expansions

Four point-functions can similarly be

• Non-unitarity precludes these models to be WZW theories. There are “currents” but they are not purely
chiral (e.g. the OPE Ja(z)Jb(0) might contain some z̄ dependency)

• In fact the currents do not seem to play much a role, and there is no qualitative di↵erence between O(n) and
SQ

• The symmetry is larger than O(n) or SQ.

• The spectrum is very rich, with a dense set of values of one Kac label. The theories are neither rational nor
quais-rational

• One type of field (depending on O(n) or SQ) �D
hr,1i or �

D
h1,ri is truly degenerate but not both.

• There are many fields with integer Kac labels which are degenerate and involved in rank two Jordan blocks

• When x is a root of unity, Jordan blocks of higher rank (in fact, arbitrarily high) appear

• Four-point functions can be accurately determined using the bootstrap. They are regular as a function of x.

• There are indications (e.g. exact amplitude ratios) that these theories are analytically solvable

9

(Dotsenko Fateev 1984)

(Den Nijs, Nienhuis, 
Duplantier Saleur, late 80’s)

A big obstacle for the longest time

The spectrum and amplitudes can be determined by
calculating Pabab (for instance) and tackling the inverse problem

Algebraic considerations (a�ne Temperley-Lieb algebra and the like) are crucial

Action of Virasoro can be studied using discretizations of the Ln’s

�hr,si = q
hrs� c

24
1� q

rs

P (q)
⇥ h.c.

�
N

(r,s) =
q
hrs� c

24

P (q)
⇥ h.c.

The theory is not WZW

(O(n) �4 LG universality class )

(CP
m�1 (m ⌘

p
Q) at ✓ = ⇡)

2 [�2, 1]

Z = Tr qL0�c/24
q̄
L̄0�c/24

encodes the operator content

• The �N

(0,s) are the 2s cluster boundaries (hull) operators

Note the absence of �N

(0,1)

In particular all the �N

(0,s) for s even (and even only)

Pinched clusters

Should be similar in the O(n) model

or ⇤0
(0,3) = + for Q = 8

Note: the natural relationship between loops and O(n) is of Schur-Weyl duality
between O(n) acting on the tensor product of fundamental (vector) representations
and the Brauer algebra.

This corresponds to a model where loops can cross at vertices (but not overlap on edges).
Such a lattice model would only have O(n) symmetry in finite size,
but its symmetry would be extended (to the one of the non-intersecting
model) in the continuum limit.

Note: this is for the dilute loop model Di↵erent things happen in the dense case.

 = 4x
x+1 ,  = 4(x+1)

x

5

• Our old work: torus partition function
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Relations between the Coulomb Gas Picture 
and Conformal Invariance of Two-Dimensional 
Critical Models 

P. di Francesco,  ~ H. Saleur, ~ and J. B. Zuber 1 

Received March 27, 1987 

Partition functions of critical 2D models on a torus can be derived from their 
microscopic formulation and their free field representation in the cont inuum 
limit. This is worked out  explicitly for the O(n) and Q-state Potts model. For n 
or Q integer we recover results obtained from conformal invariance, but  our 
procedure also extends to nonintegral values. In the latter case the expansion on 
characters of the Virasoro algebra involves real coefficients of either sign. The 
operator content of both models is discussed in detail. 

KEY WORDS: Coulomb gas; conformal invariance; partition functions. 

1. I N T R O D U C T I O N  

Two-dimensional critical models have been studied recently using two dif- 
ferent approaches. On one hand, conformal invariance has proved to be a 
very strong constraint. (~,2) On the other hand, it is well known (3~ that most 
two-dimensional models renormalize at criticality onto a Gaussian free- 
field theory (Coulomb gas). This property has been mainly used so far to 
compute exact critical exponents (see Ref. 4 for a review), but it is probably 
deeply related to the conformal invariance approach. Indeed, Dotsenko 
and Fateev (5) have shown that the existence of a nonzero four-point 
correlation function in a free field theory supplemented by a charge at 
infinity leads naturally to dimensions given by the Kac formula, and that 
the introduction of the so-called screening operators allows explicit com- 
putations. Also, Nienhuis and Knops (6) have discussed the physical inter- 

1 Service de Physique Th60rique, CEN-Saclay, 91191 Gif-sur-Yvette, France. 
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n-component vectors ~Si with O(n) symmetric
~Si.

~Sj couplings
Conformal loop ensembles or loop soups

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

• This suggests there might also be an interesting low temperature phase

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT, symmetry properties and phase diagrams remains challenging

Note that n can be extended to C

(A✏eck, Nienhuis, Schwimmer...)

(Knizhnik Zamolodchikov, A✏eck...)

The mild non-locality can be traded for genuine locality at the price of
introducing complex Boltzmann weights

(Some) Casimirs and dimensions become negative when n /2 N⇤

Why is unitarity lost?

• Only properties like the central charge and (some) critical exponents have

been known for a long time. E.g. (Dotsenko Fateev):

n 2 [�2, 2];n = 2 cos
⇡

x
, x 2 [1,1)

c = 1� 6

x(x+ 1)
2 [�2, 1]

In the SLE language

For r, s 2 N⇤ we have non-vanishing
zero norm square states

• As for the degeneracies

• The O(n) symmetry is global, not LR factorized so this is not a WZW model

• The symmetry is however enhanced (to a non-invertible topological symmetry)

1

The culprit is the non-crossing constraint

which is better understood using a bit of algebra...

Well the algebra becomes smaller - technically it is now the unoriented
Jones-Temperley-Lieb algebra

We have a combinatorial formula for these

And from these branching rules the ⇤(r,s) follow

So what’s the “symmetry”?

• Apart from the generators of O(n) there are other operators commuting

with the Hamiltonian.

• They are in fact topological defect lines (TDLs) operators, and commute with

the full left and right Virasoro algebras

• This happens because they commute with the full lattice algebra

Here the defect is TDL is not invertible
(technically it is a Verlinde line associated with operator (h21, 0))

⇣
Z = Tr qL0�c/24

q̄
L̄0�c/24

⌘

• The ⇤(r,s) are eigenspaces of the TDL operator

What is it good for?

• There’s in fact the dilute and the dense critical points

• The dilute universality class is very robust: crossings don’t matter

• But things are di↵erent for the dense (critical) phase

(K > Kc)

Z = Tr (transfer matrix)power =
X

degeneracies⇥ eigenvaluespower

• Any amount of coupling to the 4-leg operator drives the system away from the

dense fixed point (operator is dangerously irrelevant)

and such coupling is not prevented by O(n) symmetry...

• But it is prevented by topological symmetry (all terms/counter-terms generated by

the RG are in the topological sector of the identity, not of the 4-leg operator)

is in a very di↵erent universality
(Goldstone) class

• and arise in the study of O(n) lattice spin models
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For a given configuration in (3.2), the frustrations then read 

0 ~ 1  = 7~/'/1 E g i '  a~02 = 7rn2 ~', ei (3.7) 

In this expression, the sum is taken over all polygons nonhomotopic to a 
point. Because of (ii), these are homotopic and thus define the same 
frustrations n tn  and n27r, up to a sign depending on their orientation, 
%= _1. By convention, %=1 corresponds, say, to n l > 0 ,  or n 2 > 0  if 
n I =0.  Since In1] and [n2l are coprimes, one has 

[&p,I 1~r 
E <  = • ~ - -  7~ 7~ 

the sign depending on the topology of the basic polygon. In any case 

( %1) 
COSTre O E ~ i = C O S  ~ e  0 7r 

One can then get ~e n by multiplying the SOS weight by the term (3.8). 
Since 

c o s T r e o K % = I ]  ~ ei~e~ n ~6 
{el= + l }  i ~i = • 

we find the desired weight for each polygon nonhomotopic to a point. 
Because of the modular transformations of the frustrations, this procedure 
does not depend on the choice of o l ,  (o2. We thus find that the continuum 
limit of Y', at criticality is 

Y'n --* Z ig ,  e0] = ~ ZM,M(g/4) cos(TceoM' /x M) (3.9) 
M ' , M  ~ 7~ 

which is clearly modular-invariant. 
3. We now check (3.9) using some known results. For n = 2, eo = 0, 

and (3.9) is correct by construction. For  n = 1, e0 = 1/3. The sum in (3.9) 
can be decomposed on the different congruence classes of M' /x  M rood 6, 

2 g, = E + -  E E 
M ' A  M = O m o d 6  2 M ' A  M = l , 5 m o d 6  M' A M = 2 , 4 m o d  6 

(3.1o) 

Coulomb Gas 61 

variation of angle equal to 272m (2~m') along (_o 1 ( ( 0 2 )  , the corresponding 
continuum limit is m) 

Zm,,m(g)=fa [D~o] e - d  (2.13) 
1 (P = 2rrm 

c52 r = 2 ~ m '  

In this limit, the vorticity of S is transformed into a discontinuity of the 
field q), referred to as "frustration" in the following. Relation (2.13) is 
readily evaluated (u) using the classical solution (such that Aq)= 0) 

Zm, m(g)= Zl (g  ) exp [-Tzg m'2 + m2(z~ +z~)-z, 2"cRrnm'] (2.14) 

Relation (2.14) is not modular-invariant. One can verify that it transforms 
in the same way as the frustrations 

(az + b'] Z Zm',,,,\C~]= am'+b ..... '+am(Z) (2.15) 

A simple modular-invariant object is then obtained by summing over m, 
m', giving what we have called (u) a Coulombic partition function 

Zc[-g, 1] = ~ Zm',m(g) (2.16) 
m',m ~ 27 

After a Poisson transformation one finds 

1 Zo[g, 1]=~_ Y', q(e/"fg+m'fg)2/4q(e/xfg-mx/g)2/4 
~]~] e,m E Z 

1 qZle,,,~a~m (2.17) =7 2 
where the conformal weights u) (in the c = 1 theory) are given by 
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For the XY model, the value of the renormalized coupling constant g is 
known (4) at the Kosterlitz-Thouless (KT) point Tc only, where it takes the 
value 4. We thus proposed in Ref. 11 that Z c [4, 1 ] is the corresponding 
partition function on a torus. This agrees with the recent work of Yang (12) 
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For a free field on a torus 51-, with the action as in (2.1) integrated over 
~-, a properly renormalized expression for the partition function 

Zl(g)  = fr periodic [Dtp] e -~ '  (2.7) 

~/~(q) ~(~) 

is (s) 

Z ~ ( g )  -= 

q is the Dedekind function 

(2.8) 

tl(q)=q 1/24 ]] (1--qN), q=exp(2izz) (2.9) 
N = I  

The dependence on the coupling constant g comes from the existence of a 
zero mode, the subtraction of which forbids the rescaling of ~0. 

Z 1 enjoys the important property of modular invariance, i.e., 
invariance under the modular group 

az+b 
z - - - , - -  a ,b , c ,d~Z ,  a d - b c = l  (2.10) c~+d'  

The behavior at small q (cylinder limit) (13'14) 

Z,,~(qs ) , /24,  q ~ 0  (2.11) 

is in agreement with the value c = 1 for the central charge of the Gaussian 
free field. 

However, most models have a partition function more complicated 
than (2.8). This is due in part to special boundary conditions in (2.7) which 
are generated by the mapping onto (2.1). Consider, for instance, the X Y  
model, (15) defined by the action 

l 
~ r  Z Sj.S~ (2.12) 

( j k  ) 

where S is a two-component unit vector, and the sum is taken over nearest 
neighbor pairs of a regular lattice. It is known that in the whole low-tem- 
perature critical phase T~< T C, vortices remain bound and (2.12) maps onto 
(2.1), which corresponds to a spin-wave approximation with a renor- 
malized temperature. (16) On a torus, however, vortex lines that are wrap- 
ped along noncontractible loops remain in the continuum limit. For a 
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Why should we care?

So the first technical challenge is to perform a Poisson resummation in order to write
the partition function as a sum over powers of q, q̄

This was done in

loops

(NOT spaghettis - sorry Philippe)

• Note: while the formula for Z was derived in the context of CFT and for n 2 [�2, 2],

it is in fact true for all n (integer or not), in finite size, and not necessarily at criticality

Therefore the question of interpreting the multiplicities in the language of O(n)
representation theory makes perfect sense

(for n /2 N it still makes sense in a (Deligne) categorical sense see below)

So the degeneracies correspond to groupings of O(n) irreducible representations into blocks

Conformal loop ensembles or loop soups

The problem was solved in

. . .

( The exact decomposition for the ⇤(r,s) is known explicitely)

What explains these (very large) degeneracies?

• The idea of an extended symmetry (Hopf algebra) doesn’t seem to work., The set of ⇤(r,s) is not stable under
the O(n) tensor product. Periodic boundary conditions seem to play a crucial role (degeneracies would be
di↵erent for open b.c.).

• On the other hand, with p.b.c. it is di�cult indeed to give a meaning to tensor products of the ⇤(r,s) (cut
and ew?)

• It is useful to start to understand why there are such degeneracies
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⇢P = |0ih0| or ⇢P = |1ih1|

⇢m = |0ih0|+ |1ih1|

O↵set fully determined
by the zero modes

• Beware of finite size e↵ects in the presence of zero modes

• Not clear what happens for other models, e.g. the RSOS models (anyonic chains) or the three state-Potts
model:

Lattice realizations of the defects are known for the defects. Some are exact on the lattice, others only in the
continuum

Are there zero modes? How do they contribute?

• Is there a pattern to the interface entanglement?

SA = SB

From the point of view of B, entanglement will have a contribution due to the presence
of the delocalized zero mode on a finite fraction L�r

L of the total system

Hence the entanglement reveals a (Majorana) zero mode localized on the defect

(pure and mixed
give the same result)

In the mixed case the localized zero mode contributes 1
2 ln 2

Each delocalized zero mode contributes 1
2�S

�
r
L

�

The pure case is a little more mysterious

Recall that: Z = Tr qL0�c/24
q̄
L̄0�c/24 encodes the operator content

Z can be calculated using Coulomb gas techniques:
particular care has to be taken of non-contractible loops
(all loops have weight n irrespective of their topology)

The result should have the form

Z =
X

h,h̄

degeneracy ⇥ q
h�c/24

q̄
h̄�c/24

4

The culprit is the non-crossing constraint

which is better understood using a bit of algebra...

Well the algebra becomes smaller - technically it is now the unoriented
Jones-Temperley-Lieb algebra

We have a combinatorial formula for these

And from these branching rules the ⇤(r,s) follow

So what’s the “symmetry”?

Apart from the generators of O(n) there are other operators commuting with the Hamiltonian

⇣
Z = Tr qL0�c/24

q̄
L̄0�c/24

⌘
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• Conformal invariance of local massless field theories in 2D leads to the Hilbert space

being a representation of Vir⌦Vir

[Ln, Lm] = (n�m)Ln+m +
c

12
(n3

� n)�n+m

Critical exponents (hV (z, z̄)V (0, 0)i = z�2hz̄�2h̄) are eigenvalues of L0, L̄0

• Unitarity leads in particular to a full classification and solution of theories

with central charge c < 1

• Extra symmetries (e.g. SUSY, ZN ) can easily be added to the picture

q = e2i⇡⌧ , ⌧ the torus modular parameter
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The culprit is the non-crossing constraint

which is better understood using a bit of algebra...

Well the algebra becomes smaller - technically it is now the unoriented
Jones-Temperley-Lieb algebra

We have a combinatorial formula for these

And from these branching rules the ⇤(r,s) follow

So what’s the “symmetry”?

• Apart from the generators of O(n) there are other operators commuting

with the Hamiltonian.

• They are in fact topological defect lines (TDLs) operators, and commute with

the full left and right Virasoro algebras

• This happens because they commute with the full lattice algebra

Here the defect is TDL is not invertible
(technically it is a Verlinde line associated with operator (h21, 0))

⇣
Z = Tr qL0�c/24

q̄
L̄0�c/24

⌘

• The ⇤(r,s) are eigenspaces of the TDL operator

What is it good for?

• There’s in fact the dilute and the dense critical points

• The dilute universality class is very robust: crossings don’t matter

• But things are di↵erent for the dense (critical) phase

(K > Kc)

Z = Tr (transfer matrix)power =
X

degeneracies⇥ eigenvaluespower

• Any amount of coupling to the 4-leg operator drives the system away from the

dense fixed point (operator is dangerously irrelevant)

and such coupling is not prevented by O(n) symmetry...

• But it is prevented by topological symmetry (all terms/counter-terms generated by

the RG are in the topological sector of the identity, not of the 4-leg operator)

2

A good way to think of this is to observe that
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~Sj coupling
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Potts and dense loops per se are a bit di↵erent as CFTs
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• It can be reinterpreted in terms of diagrams
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Expand the four point function onto conformal blocks
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It turns out there is much more structure

n = q+ q�1

xd(n) = qd + q�d

The degeneracies are given by the mysterious formula

They correspond to glueings of O(n) irreps into blocks

�N
(r,s) =
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24

P (q)
⇥

q̄hr,�s� c
24

P (q̄)
(1)
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A big obstacle for the longest time

The spectrum and amplitudes can be determined by
calculating Pabab (for instance) and tackling the inverse problem

Algebraic considerations (a�ne Temperley-Lieb algebra and the like) are crucial

Action of Virasoro can be studied using discretizations of the Ln’s
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hrs� c

24
1� q

rs
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• It can be reinterpreted in terms of diagrams

with

• We’ll use the bootstrap approach

Expand the four point function onto conformal blocks

D

6

• Now it is �h21iD that is exactly degenerate

D

now have cluster expansions

Four point-functions can similarly be

• Non-unitarity precludes these models to be WZW theories. There are “currents” but they are not purely
chiral (e.g. the OPE Ja(z)Jb(0) might contain some z̄ dependency)

• In fact the currents do not seem to play much a role, and there is no qualitative di↵erence between O(n) and
SQ

• The symmetry is larger than O(n) or SQ.

• The spectrum is very rich, with a dense set of values of one Kac label. The theories are neither rational nor
quais-rational

• One type of field (depending on O(n) or SQ) �D
hr,1i or �

D
h1,ri is truly degenerate but not both.

• There are many fields with integer Kac labels which are degenerate and involved in rank two Jordan blocks

• When x is a root of unity, Jordan blocks of higher rank (in fact, arbitrarily high) appear

• Four-point functions can be accurately determined using the bootstrap. They are regular as a function of x.
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• Is there a pattern to the interface entanglement?

SA = SB

From the point of view of B, entanglement will have a contribution due to the presence
of the delocalized zero mode on a finite fraction L�r

L of the total system

Hence the entanglement reveals a (Majorana) zero mode localized on the defect
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In the mixed case the localized zero mode contributes 1
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The pure case is a little more mysterious

Recall that: Z = Tr qL0�c/24
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L̄0�c/24 encodes the operator content
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⇡
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is in a very di↵erent universality
(Goldstone) class

• and arise in the study of O(n) lattice spin models

Z /
Z Y

d~Si
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<ij>

(1 +K ~Si.
~Sj)

n = 2 cos
⇡

x

3



• Our old work: torus partition function

g =
x+ 1

x
, e0 =

1

x

ended with a not very explicit result:

^ ⌘ gcd

Why should we care?

So the first technical challenge is to perform a Poisson resummation in order to write

the partition function as a sum over powers of q, q̄

This was done in

loops

(spaghettis for Philippe)

• Note: while the formula for Z was derived in the context of CFT and for n 2 [�2, 2],

it is in fact true for all n (integer or not), in finite size, and not necessarily at criticality
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62 CHAPTER 5. SOLVING THE POTTS AND O(N) CFTS

positive integer coefficients. To write down the multiplicities �(r,s) and ⇠(r,s), we first define
the modified Chebyshev polynomials pd(x) by the recursion:

xpd(x) = pd�1(x) + pd+1(x) with p1(x) = x and p0(x) = 2 . (5.1.4)

For instance, we have

p1(x) = x , (5.1.5a)
p2(x) = x

2 � 2 , (5.1.5b)
p3(x) = x(x2 � 3) , (5.1.5c)
p4(x) = x

4 � 4x2 + 2 . (5.1.5d)

The multiplicities of non-diagonal characters in (5.1.2) then read

⇠(r,s)(n) = �r,1�s22Z+1 +
1

2r

2r�1X

r0=0

e
⇡ir

0
s
p(2r)^r0(n) , (5.1.6)

where r^ r
0 denotes the greatest common divisor of r and r

0. For the Potts CFT, we have

�(r,s)(Q) = (Q� 1)(�1)r�
s2Z+ r+1

2
+

1

r

r�1X

r0=0

e
2⇡ir0s

pr^r0(Q� 2) for r > 0 (5.1.7)

⇠(r,s) and �(r,s) are symmetric under s ! �s and invariant under the shifts:

⇠(r,s) = ⇠(r,s+2Z) and �(r,s) = �(r,s+Z) (5.1.8)

It is therefore sufficient to write down ⇠(r,s) for 0  s < 2, while we need to compute �(r,s)

for 0  s < 1. For example,

(r, s) ⇠(r,s) �(r,s)

(12 , 0) n �
(1, 0) 1

2(n+ 2)(n� 1) �
(1, 1) 1

2n(n� 1) �
(32 , 0)

1
3n(n

2 � 1) �
(32 ,

2
3)

1
3n(n

2 � 4) �
(2, 0) 1

4n (n3 � 3n+ 2) Q

2 (Q� 3)

(2, 12)
1
4 (n

4 � 5n2 + 4) 1
2(Q� 1)(Q� 2)

(2, 1) 1
4(n� 2)n(n+ 1)2 Q

2 (Q� 3)

(2, 32)
1
4 (n

4 � 5n2 + 4) 1
2(Q� 1)(Q� 2)

(3, 0) 1
6 (n

6 � 6n4 + n
3 + 11n2 � n� 6) 1

3(Q� 1)(Q2 � 5Q+ 3)

(5.1.9)

Observe that examples in (5.1.9) are always polynomials in Q and n with rational coef-
ficients for �(r,s)(Q) and ⇠(r,s)(n). This is not apparent due to the phase factors in the
formulae (5.1.6) and (5.1.7). It was however recently shown in [30] that both �(r,s)(Q)
and ⇠(r,s)(n) are always polynomials with rational coefficients.
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However the numerical solution is accurate enough to establish fascinating
relations with Liouville, e.g. for the four-point function of the order operator

A(r+1,s)N

A(r,s)N

We don’t know for the moment where these rational functions of n come from

Using the interchiral blocks define

S[] = {(r, s)N ; r 2 N,s 2 (2Z)/r \ [�1, 1)} [ {h1, 1iD}

S[2] = {(r, s)N ; r 2 N,s 2 (2Z)/r \ [�1, 1)}

S[11] = {(r, s)N ; r 2 N,s 2 (2Z+ 1)/r \ [�1, 1)} (4)

We have the OPE
V [1]
(1/2,0)N ⇥ V [1]

(1/2,0)N =
X

k2S[]

V []
k +

X

k2S[11]

V [11]
k +

X

k2S[2]

V [2]
k

Generalized energy operators

Watermelon operators with even number of legs and
winding phases compatible with the symmetry

Er,s
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• Our old work: torus partition function

g =
x+ 1

x
, e0 =

1

x

ended with a not very explicit result:

^ ⌘ gcd

Why should we care?

So the first technical challenge is to perform a Poisson resummation in order to write

the partition function as a sum over powers of q, q̄

This was done in

loops

(spaghettis for Philippe)

• Note: while the formula for Z was derived in the context of CFT and for n 2 [�2, 2],

it is in fact true for all n (integer or not), in finite size, and not necessarily at criticality

Therefore the question of interpreting the multiplicities in the language of O(n)

representation theory makes perfect sense

(for n /2 N it still makes sense in a (Deligne) categorical sense see below)

1

(Binder, Rychkov 2019)

multiplicity spaces



(Jacobsen, Ribault, Saleur 2022)
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• Our old work: torus partition function

g =
x+ 1

x
, e0 =

1

x

ended with a not very explicit result:

^ ⌘ gcd

Why should we care?

So the first technical challenge is to perform a Poisson resummation in order to write

the partition function as a sum over powers of q, q̄

This was done in

loops

(spaghettis for Philippe)

• Note: while the formula for Z was derived in the context of CFT and for n 2 [�2, 2],

it is in fact true for all n (integer or not), in finite size, and not necessarily at criticality

Therefore the question of interpreting the multiplicities in the language of O(n)

representation theory makes perfect sense

(for n /2 N it still makes sense in a (Deligne) categorical sense see below)

So the degeneracies correspond to groupings of O(n) irreducible representations into blocks

Conformal loop ensembles or loop soups

The problem was solved in

. . .

( The exact decomposition for the ⇤(r,s) is known explicitely)
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Further constraints come from the existence of a degenerate field V⟨1,3⟩ that transforms in the
degenerate representation R⟨1,3⟩ of the conformal algebra. The fusion of such a field with a non-
diagonal primary field V N

(r,s) ∈ W(r,s) yields [22]

V⟨1,3⟩ × V N
(r,s) ≃ V N

(r,s−2) + V N
(r,s) + V N

(r,s+2) . (2.16)

In the O(n) CFT, V⟨1,3⟩ is an O(n) singlet. This implies that V N
(r,s±2) transform in the same way

as V N
(r,s) under O(n), therefore

Λ(r,s) = Λ(r,s+2) . (2.17)

This suggests that we combine the representations of the conformal algebra into the larger repre-
sentations

R̃⟨1,1⟩ =
⊕

s∈2N+1

R⟨1,s⟩ , W̃(r,s) =
⊕

s′∈2Z+s

W(r,s) . (2.18)

These can be interpreted as indecomposable representations of the interchiral algebra C̃β2 , which
is obtained from the conformal algebra by adding the degenerate field V⟨1,3⟩ [10]. The space of
states can then be rewritten as

SO(n) =
C̃β2×O(n)

R̃⟨1,1⟩ ⊗ []⊕
⊕

r∈ 1
2N

∗

⊕

s∈ 1
r
Z

−1<s≤1

W̃(r,s) ⊗ Λ(r,s) . (2.19)

Action of the orthogonal group

The action of the orthogonal group on the space of states is encoded in the family of representations
Λ(r,s). In order to write these representations, we need to introduce the Chebyshev polynomials
Ud such that

Ud(q + q−1) = qd + q−d , (d ∈ N) . (2.20)

(To be precise, the polynomial 1
2Ud(2z) is called a d-th order Chebyshev polynomial of the first

kind.) These polynomials can be characterized by the recurrence relation

U0(z) = 2 , U1(z) = z , zUd(z) = Ud−1(z) + Ud+1(z) , (2.21)

and they obey

U2d(z) = Ud(z
2 − 2) , Ud(0) = 2 cos

(
π
2d

)
. (2.22)

The conjectured form of Λ(r,s) is [5]

Λ(r,s) = δr,1δs∈2Z+1[] +
1

2r

2r−1∑

r′=0

eπir
′sUgcd(2r,r′)

(
λ 2r

gcd(2r,r′)

)
,

{
r ∈ 1

2N
∗ ,

s ∈ 1
r
Z ,

(2.23)

where the arguments of the Chebyshev polynomials are alternating hook representations λr (2.8).
According to Eq. (2.10), the character of this representation is

χO(n)
Λ(r,s)

(g) = δr,1δs∈2Z+1 +
1

2r

2r−1∑

r′=0

eπir
′sUgcd(2r,r′)

(
Tr[1] g

2r
gcd(2r,r′)

)
. (2.24)
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This well-known relation may be viewed as a special case of the Murnaghan–Nakayama rule,
see [17](Section 8) or [18](Theorem 21.4). This relation has integer coefficients that do not depend
on the rank n of the linear group. Actually, we may view Schur polynomials and other symmetric
polynomials as abstract, n-independent symmetric functions that may be evaluated on arbitrary
numbers of variables.

Characters of the orthogonal group, and alternating hook representations

GL(n) representations can be decomposed into O(n) representations. For generic values of n, the
resulting branching rule is [19]

νGL(n) =
O(n)

∑

λ,µ

cνλ,2µλ
O(n) , (2.5)

where 2µ = [2µ1, 2µ2, . . . , 2µk] is an even integer partition, and cνλ,µ ∈ N is a Littlewood–Richardson

coefficient, i.e. λGL(n)⊗µGL(n) =
∑

ν c
ν
λ,µν

GL(n). Writing the branching rule in terms of characters,
and inserting it in Eq. (2.4), we obtain a decomposition of the power sum polynomial pr into
characters of O(n),

pr =
∑

λ,µ

r−1∑

k=0

(−1)kc[r−k,1k]
λ,2µ χO(n)

λ . (2.6)

Now it turns out that
∑r−1

k=0(−1)kc[r−k,1k]
λ,µ ̸= 0 =⇒ |λ||µ| = 0. This is easily seen if µ = [ℓ], in

which case the Littlewood–Richardson coefficients are given by Pieri’s rule, and c[r−k,1k]
λ,[ℓ] can be

nonzero only if λ is a hook partition. Then this generalizes to arbitrary µ by associativity of tensor
products of GL(n) representations. As a result, the decomposition (2.6) simplifies,

pr = δr∈2Nχ
O(n)
[] +

r−1∑

k=0

(−1)kχO(n)
[r−k,1k]

, (2.7)

where the first term results from |λ| = 0 in Eq. (2.6), while the sum results from |µ| = 0. This
motivates us to introduce the alternating hook representations of O(n),

λr = δr∈2N[] +
r−1∑

k=0

(−1)k[r − k, 1k] . (2.8)

This is a formal combination of irreducible representations, with integer coefficients that can how-
ever be negative. For example,

λ4 = [] + [4]− [31] + [212]− [14] . (2.9)

The defining feature of λr is that its character is the power sum polynomial, χO(n)
λr

= pr. For n ∈ N,
this means

Trλr(g) = Tr[1](g
r) . (2.10)

In particular, the dimension of an alternating hook representation is

dimO(n)(λr) = Trλr(id) = n . (2.11)
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�1 = [1]

�2 = [2]� [11] + []

�3 = [3]� [21] + [111]

�4 = [4]� [31] + [211]� [1111] + []

So the four-leg operator cannot appear in the RG under perturbation K 6= Kc

The flow is topologically protected

with Dh1,1i

This sector is stable under OPE

The four leg operator couples to

((r, s) = (2, 0))

with D(2,0)

Hence the lattice energy operator K 6= Kc (coupling to
) cannot couple to the four-leg operator. Moreover the sector

L
Rh1,si

The lattice energy operator couples to

is stable under OPE. Hence neither corrections to scaling

come within O(n) singlets (are not distinguished by O(n) symmetry)

But they come within di↵erent representations of the non-invertible symmetry D

For instance at the critical point we have

Dh1,1i = q + q
�1

D(r,s) = e
i⇡s(�q)r + e

�i⇡s(�q)�r

Its eigenvalues on the W
(L)
(r,s) (or the dilute equivalent) are easy to calculate

and for q generic determine the module uniquely

with modules of uJTL or a dilute version of it respectively

The defect is topological whether or not the theory is critical (K 6= Kc)

(Belletête, Gainutdinov, Jacobsen, Saleur, Tavares)

There’s a theorem:

For all q 2 C⇤ not a root of unity, the center of aATLL(n) is generated by the operators D, D̄.

Note: technically it is a “Verlinde line” associated with the (logarithmic) primaries �12 (or �21).

In theories with a global symmetry group G there exists invertible topological defects associated
with an element g. They act as Dg|�i = g|�i, if |�i is a state in the Hilbert space,
and of course DgDg�1 = 1.

Our defect D is not invertible
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The formula:

where �
2 ⌘ �⌦ � in O(n)

This makes perfect sense for n 2 Z>0 (arbitrarily large if necessary)

But an e↵ort will be required if we want to connect with CFT for n 2 [�2, 2] or n 2 C:
Deligne category theory (Binder Rychkov).

This problem is well defined even if n 2 C

Of course there are nice fusion relations and higher topological lines

In the microscopic models, degrees of freedom are acted on by g when the defect line
is crossed (e.g. G = Z2 and spin flips)

The phase diagram
This requires giving a satisfactory meaning to n /2 Z>0: we’ll get back to this.

reduces to the Uqsl(2) Casimir

Pr the Jones-Wenzl projector on 2r non-contractible lines

With open boundary conditions, the equivalent construction

Note: the solution of YB in [1]⌦2

so the only object that can be moved around is a loop crossing every line, which can be
eliminated (up to a factor n) by the Brauer rules

A generic O(n) lattice model (hence, Schur-Weyl dual to Brauer) does not have any (lattice)
topological symmetry

The transition from the dense phase to the O(n)/O(n� 1) spontaneously broken symmetry phase
is obtained by explicit breaking of the topological symmetry

Note that at the critical point, since crossings are irrelevant, a model with crossing would only
have emergent topological symmetry

: crossings break the topological symmetry

Another way to say this is that
[D, /\] 6= 0

(Trebst, Ardonne, Feiguin, Huse, Ludwig, Troyer)

When q is a root of unity, D is the same as the operator Y in anyonic chains

Dh1,1i = h0|D|0i = n

D(1/2,0) = h(1/2, 0)|D|(1/2, 0)i = (�q)1/2 + (�q)�1/2

The correlation functions are unchanged if we move of deform the topological line (loop) provided
we don’t cross potential operator insertions

We have a combinatorial formula for these (Jacobsen Ribault Saleur)
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• Our old work: torus partition function

g =
x+ 1

x
, e0 =

1

x

ended with a not very explicit result:

^ ⌘ gcd

Why should we care?

So the first technical challenge is to perform a Poisson resummation in order to write

the partition function as a sum over powers of q, q̄

This was done in

loops

(spaghettis for Philippe)

• Note: while the formula for Z was derived in the context of CFT and for n 2 [�2, 2],

it is in fact true for all n (integer or not), in finite size, and not necessarily at criticality

Therefore the question of interpreting the multiplicities in the language of O(n)

representation theory makes perfect sense

(for n /2 N it still makes sense in a (Deligne) categorical sense see below)

So the degeneracies correspond to groupings of O(n) irreducible representations into blocks

Conformal loop ensembles or loop soups

The problem was solved in

. . .

( The exact decomposition for the ⇤(r,s) is known explicitely)

What explains these (very large) degeneracies?
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representation theory makes perfect sense
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So the degeneracies correspond to groupings of O(n) irreducible representations into blocks

Conformal loop ensembles or loop soups

The problem was solved in

. . .

( The exact decomposition for the ⇤(r,s) is known explicitely)

What explains these (very large) degeneracies?

• The idea of an extended symmetry (Hopf algebra) doesn’t seem to work., The set of ⇤(r,s) is not stable under
the O(n) tensor product. Periodic boundary conditions seem to play a crucial role (degeneracies would be
di↵erent for open b.c.).

• On the other hand, with p.b.c. it is di�cult indeed to give a meaning to tensor products of the ⇤(r,s) (cut
and ew?)

• It is useful to start to understand why there are such degeneracies

1

• Our old work: torus partition function

g =
x+ 1

x
, e0 =

1

x

ended with a not very explicit result:

^ ⌘ gcd

Why should we care?

So the first technical challenge is to perform a Poisson resummation in order to write
the partition function as a sum over powers of q, q̄

This was done in

loops

(spaghettis for Philippe)

• Note: while the formula for Z was derived in the context of CFT and for n 2 [�2, 2],

it is in fact true for all n (integer or not), in finite size, and not necessarily at criticality

Therefore the question of interpreting the multiplicities in the language of O(n)
representation theory makes perfect sense

(for n /2 N it still makes sense in a (Deligne) categorical sense see below)

So the degeneracies correspond to groupings of O(n) irreducible representations into blocks

Conformal loop ensembles or loop soups

The problem was solved in

. . .

( The exact decomposition for the ⇤(r,s) is known explicitely)

What explains these (very large) degeneracies?

• The idea of an extended symmetry (Hopf algebra) doesn’t seem to work., The set of ⇤(r,s) is not stable under
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The culprit is the non-crossing constraint

1
which is better understood using  

a bit of algebra



• There no currents (SQ is discrete)

• Now it is �h21iD that is exactly degenerate

D

now have cluster expansions

Four point-functions can similarly be

• Non-unitarity precludes these models to be WZW theories. There are “currents” but they are not purely
chiral (e.g. the OPE Ja(z)Jb(0) might contain some z̄ dependency)

• In fact the currents do not seem to play much a role, and there is no qualitative di↵erence between O(n) and
SQ

• The symmetry is larger than O(n) or SQ.

• The spectrum is very rich, with a dense set of values of one Kac label. The theories are neither rational nor
quais-rational

• One type of field (depending on O(n) or SQ) �D
hr,1i or �

D
h1,ri is truly degenerate but not both.

• There are many fields with integer Kac labels which are degenerate and involved in rank two Jordan blocks

• When x is a root of unity, Jordan blocks of higher rank (in fact, arbitrarily high) appear

• Four-point functions can be accurately determined using the bootstrap. They are regular as a function of x.

• There are indications (e.g. exact amplitude ratios) that these theories are analytically solvable
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The case K > Kc is also critical, and referred to as the dense phase.
In this phase, crossings are relevant

O(n)/O(n� 1) (Jacobsen Read Saleur)

also called the dilute (critical) point

[1]⌦L

Strictly speaking, Brauer is relevant only for the case where every edge is occupied by a “monomer”, which
corresponds to the limit K ! 1 and the low-temperature (dense) phase. Algebraically however, the following
makes sense for the dilute versions of the problem: ([]� [1])⌦L and “dilute” Brauer

Note that n can be extended to (most of) C. n = 0 describes SAW.
Of course, the meaning of “O(n)” for n 62 N⇤ has to be discussed.

Technically, the four-leg operator is irrelevant
at the dilute fixed point

n-component vectors ~Si with O(n) symmetric
~Si.

~Sj couplings
Conformal loop ensembles or loop soups

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

• This suggests there might also be an interesting low temperature phase

• The universality class is very robust: crossings do not matter at the critical point

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT, symmetry properties and phase diagrams remains challenging

Note that n can be extended to C

(A✏eck, Nienhuis, Schwimmer...)

(Knizhnik Zamolodchikov, A✏eck...)

The mild non-locality can be traded for genuine locality at the price of
introducing complex Boltzmann weights

(Some) Casimirs and dimensions become negative when n /2 N⇤

Why is unitarity lost?

1

In order to study subalgebras of PL(Q), it is convenient to define ei = si+ 1
2
sisi+1si+ 1

2
, li = pisi,

and ri = sipi, so that diagrammatically

ei =
· · ·

· · ·

· · ·

· · ·

i i+1

, li =
· · ·

· · ·

· · ·

· · ·

i i+1

, ri =
· · ·

· · ·

· · ·

· · ·

i i+1

1 ≤ i ≤ L− 1 1 ≤ i ≤ L− 1 1 ≤ i ≤ L− 1

. (A.4)

In particular, the eis satisfy the Temperley–Lieb relations

e2i = Qei , (A.5a)

eiei±1ei = ei , (A.5b)

[ei, ej ] = 0 , for |i− j| ≥ 2 . (A.5c)

Irreducible modules of the partition algebra

Irreducible modules P (L)
λ of PL(Q) are labelled by integer partitions λ with |λ| ≤ L. The partition

λ corresponds to a representation of the symmetric group S|λ|. A basis of P (L)
λ can be built by

considering diagrams with L lower sites, |λ| upper sites, and |λ| propagating blocks. In other
words, each upper site belongs to a subset that includes at least one lower site, and no other upper
site. For example, in the case L = 12 and |λ| = 5, here is one possible diagram:

(A.6)

In the representation P (L)
λ , the partition algebra acts on such diagrams from below, while the

symmetric group S|λ| acts from above according to the representation λ. In other words, if {bi} is

the set of such diagrams, we have P (L)
λ = C{bi} ⊗S|λ|

λ. The action of the partition algebra can
lead to diagrams with fewer than |λ| propagating blocks, which are then modded out.

The dimension of P (L)
λ is the number of diagrams, times fλ = dimλ. To count the diagrams,

remember that the number of partitions of L elements into i non-empty subsets is given by the
Stirling number of the second kind

{
L
i

}
. To build a diagram, we start with one such partition with

|λ| ≤ i ≤ L, and choose |λ| subsets that we connect to the upper sites. Since the number of such
choices is

(
i
|λ|

)
= i!

|λ|!(i−|λ|)! , we obtain

dimP (L)
λ = fλ ×

L∑

i=|λ|

(
i

|λ|

){
L

i

}
. (A.7)

An alternate derivation proceeds by noticing that a set partition with |λ| marked blocks consists
of unmarked blocks, which are a set of non-empty sets, hence with exponential generating function
exp(ex − 1), and marked blocks, which are |λ| indistinguishable non-empty sets, hence with ex-

ponential generating function 1
|λ|!(e

x − 1)|λ|. Therefore 1
fλ

dimP (L)
λ has the exponential generating

function exp(ex − 1)× 1
|λ|!(e

x − 1)|λ|.

The Brauer subalgebra and its representations

The Brauer subalgebra BL(n ≡ Q) ⊂ PL(Q) is generated by pairwise partitions. This means
that all blocks must have size two, and in particular there are no isolated sites. This algebra is
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We will first review non-periodic algebras, whose frame is the rectangle. We will then deal with
periodic algebras, whose frame is the annulus. Periodic algebras are more complicated and less
well-known.

A.1 Non-periodic algebras

The partition algebra

The largest algebra that we will consider is the partition algebra PL(Q) [35]. In this case, the
diagrams represent set partitions of the 2L sites. Subsets of the partition correspond to connected
components of the diagrams, called blocks, which are made of points connected by edges. (Two
edges that cross are not considered as connected.) These edges can be drawn in different ways,
so that a partition is associated with an equivalence class of diagrams. An equivalent option,
coming from the theory of hypergraphs, is to consider that a block of size k is represented by a
k-hyperedge—a generalized edge that connects k distinct sites. We shall however only use ordinary
edges in our figures. Here is an example with L = 8:
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space (A.1)

Labelling the points at the bottom and top of the diagrams as 1, . . . , 8 and 1′, . . . , 8′, the corre-
sponding set partition is (12′)(23)(41′3′)(57)(64′7′8′)(86′)(5′).

Multiplication is defined by concatenation—placing two rectangles on top of each other and
identifying the top points of one with the bottom points of the other. Connected components
(clusters) that are disconnected from the top and bottom of the combined diagram are eliminated,
but each of them contributes a numerical factor Q to the product. For example:

= Q2 (A.2)

A propagating block is a block that contains vertices both from the top and from the bottom rows.
Concatenation never increases the number of propagating blocks.

It is convenient to introduce the elements pi, si, si+ 1
2
∈ PL(Q), which generate the partition

algebra:

pi =
· · ·

· · ·

· · ·

· · ·

i i+1

, si =
· · ·

· · ·

· · ·

· · ·

i

, si+ 1
2
=

· · ·

· · ·

· · ·

· · ·

i i+1

1 ≤ i ≤ L− 1 1 ≤ i ≤ L 1 ≤ i ≤ L− 1

(A.3)
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lengths, in our example Ω(6)
4 = (6, 3). Using Eq. (4.18), we may write the number of diagrams as

∑

ω∈Ω(L)
ℓ

ω =
|λ|=ℓ

1

fλ

∑

s∈ 2
L
Z

−1<s≤1

cλ
(L2 ,s)

= cℓL
2
− δL≥3c

ℓ
L
2 −1

, (4.25)

where the coefficients cℓr are explicitly given in Eq. (4.9). Our diagrammatic subproblem consists

in determining Ω(L)
ℓ .

Let us focus on one orbit of length ω: then uω induces a cyclic permutation µ of the |λ| upper
sites, such that µ

L
ω = 1. This implies ω|λ| ∈ LN. Our combinatorial subproblem is to find the

eigenvalues of µ in the Specht module λ of the permutation group S|λ|. Strictly speaking, this is
an algebraic problem, which amounts to decomposing λ into representations of a cyclic subgroup
of S|λ|. However, this problem has a known combinatorial solution [33]:

λ =
Zm

⊕

T∈Tλ

Z(m)
2
m

ind(T )
, (4.26)

where Z(m)
s is the (one-dimensional) irreducible representation of Zm where the generator of Zm

has the eigenvalue eπis, Tλ is the set of standard Young tableaux of shape λ (so that |Tλ| = fλ),
and the major index ind(T ) ∈ Z|λ| of a tableau is the sum of the descents, i.e. the sum of the
numbers k in T such that k + 1 appears in a row strictly below k.

Branching rules

According to Eq. (4.17), the subrepresentations W (L)

(L2 ,s)
of B(L)

λ are characterized by the eigenvalues

of u. We claim that these eigenvalues are the ω-th roots of the eigenvalues of the permutations
that are induced by elements of the type uω. (See [34](Appendix A.4) for an explanation of this
point in the language of transfer matrices.) The resulting branching coefficients are

cλ(r,s) =
∑

T∈Tλ

∑

ω∈Ω(2r)
|λ|

δ
e
πiω(s− ind(T )

r )
,1

, (4.27)

and therefore the branching rules

B(L)
λ =

uJTLL(n)

L
2⊕

r= |λ|
2

⊕

ω∈Ω(2r)
|λ|

⊕

k∈Zω

⊕

T∈Tλ

W (L)

(r, 2k
ω
+ ind(T )

r
)
. (4.28)

Let us examine a few special cases. First we focus on maximal representations, i.e. representations
B(L)

λ with |λ| = L. In this case, there is only one relevant diagram, which is trivial:

(4.29)

This implies Ω(L)
L = (1), so the sum over k becomes trivial, and we end up with the purely

combinatorial formula

B(L)
λ

|λ|=L
=

uJTLL(n)

⊕

T∈Tλ

W (L)

(L2 ,
2
L
ind(T ))

. (4.30)
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On one side of the problem things are conceptually simple: the relevant algebra
becomes the unoriented Jones-Temperley-Lieb algebra

The first question we are interested in is, what happens to Schur-Weyl when we forbid crossings?

The case K > Kc is also critical, and referred to as the dense phase.
In this phase, crossings are relevant

O(n)/O(n� 1) (Jacobsen Read Saleur)

also called the dilute (critical) point

[1]⌦L

Strictly speaking, Brauer is relevant only for the case where every edge is occupied by a “monomer”, which
corresponds to the limit K ! 1 and the low-temperature (dense) phase. Algebraically however, the following
makes sense for the dilute versions of the problem: ([]� [1])⌦L and “dilute” Brauer. I will often not specify this.

Note that n can be extended to (most of) C. n = 0 describes SAW.
Of course, the meaning of “O(n)” for n 62 N⇤ has to be discussed.

Technically, the four-leg operator is irrelevant
at the dilute fixed point

n-component vectors ~Si with O(n) symmetric
~Si.

~Sj couplings
Conformal loop ensembles or loop soups

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

• This suggests there might also be an interesting low temperature phase

• The universality class is very robust: crossings do not matter at the critical point

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT, symmetry properties and phase diagrams remains challenging

Note that n can be extended to C

(A✏eck, Nienhuis, Schwimmer...)

(Knizhnik Zamolodchikov, A✏eck...)

The mild non-locality can be traded for genuine locality at the price of

3

(there are 3 diagrams/operators
because [1]⌦2 = []� [1]� [2])

D and its generalizations satisfy a fusion algebra

The formula:

where �
2 ⌘ �⌦ � in O(n). . .

This makes perfect sense for n 2 Z>0 (arbitrarily large if necessary)

But an e↵ort will be required if we want to connect with CFT for n 2 [�2, 2] or n 2 C:
Deligne category theory (Binder Rychkov).

This problem is well defined even if n 2 C

Of course there are nice fusion relations and higher topological lines

In the microscopic models, degrees of freedom are acted on by g when the defect line
is crossed (e.g. G = Z2 and spin flips)

The phase diagram
This requires giving a satisfactory meaning to n /2 Z>0: we’ll get back to this.

reduces to the Uqsl(2) Casimir

Pr the Jones-Wenzl projector on 2r non-contractible lines

With open boundary conditions, the equivalent construction

Note: the solution of YB in [1]⌦2

so the only object that can be moved around is a loop crossing every line, which can be
eliminated (up to a factor n) by the Brauer rules

A generic O(n) lattice model (hence, Schur-Weyl dual to Brauer) does not have any (lattice)
topological symmetry

The transition from the dense phase to the O(n)/O(n� 1) spontaneously broken symmetry phase
is obtained by explicit breaking of the topological symmetry

Note that at the critical point, since crossings are irrelevant, a model with crossing would only
have emergent topological symmetry

: crossings break the topological symmetry

Another way to say this is that
[D, /\] 6= 0

(Trebst, Ardonne, Feiguin, Huse, Ludwig, Troyer)

When q is a root of unity, D is the same as the operator Y in anyonic chains

Dh1,1i = h0|D|0i = n

D(1/2,0) = h(1/2, 0)|D|(1/2, 0)i = (�q)1/2 + (�q)�1/2

1

• There no currents (SQ is discrete)

• Now it is �h21iD that is exactly degenerate

D

now have cluster expansions

Four point-functions can similarly be

• Non-unitarity precludes these models to be WZW theories. There are “currents” but they are not purely
chiral (e.g. the OPE Ja(z)Jb(0) might contain some z̄ dependency)

• In fact the currents do not seem to play much a role, and there is no qualitative di↵erence between O(n) and
SQ

• The symmetry is larger than O(n) or SQ.

• The spectrum is very rich, with a dense set of values of one Kac label. The theories are neither rational nor
quais-rational

• One type of field (depending on O(n) or SQ) �D
hr,1i or �

D
h1,ri is truly degenerate but not both.

• There are many fields with integer Kac labels which are degenerate and involved in rank two Jordan blocks

• When x is a root of unity, Jordan blocks of higher rank (in fact, arbitrarily high) appear

• Four-point functions can be accurately determined using the bootstrap. They are regular as a function of x.

• There are indications (e.g. exact amplitude ratios) that these theories are analytically solvable
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The diagrammatic representations of the algebras TLL(n) and uJTLL(n) directly correspond
to the representation of the O(n) model as a loop model in the transfer matrix approach: the
absence of the permutation generators means that loops do not cross, and the relations e2i = nei
means that loops have weight n. However, in contrast to our construction of loops in Figure (3.27),
the representation [1] now lives on the loops themselves, rather than on sites between the loops.
This difference does not affect the critical limit.

Therefore, we expect that the algebras TLL(n) and uJTLL(n) describe symmetries of the
O(n) model. In particular, in the critical limit, we expect

lim
critical

uJTLL(n) = C̃β2 , (4.4)

where the parameter β2 of the interchiral algebra is related to n by Eq. (1.4).

Representations of the Brauer algebra

By Schur–Weyl duality, the space of states (4.1) decomposes into irreducible representations of
BL(n)× O(n) as [30]

S
O(n)
L =

BL(n)×O(n)

⊕

|λ|≤L
|λ|≡L mod 2

B(L)
λ ⊗ λ , (4.5)

where the sum is over partitions λ, which we identify with irreducible representations of O(n)

with generic n ∈ C. The irreducible finite-dimensional representations B(L)
λ of the Brauer algebra

are also labelled by partitions: we will say more on their structure when it comes to computing
branching rules in Section 4.2. For the moment, let us point out that their dimensions appear as
coefficients in the decomposition of SO(n)

L = [1]⊗L into irreducible representations of O(n),

[1]⊗L =
O(n)

⊕

|λ|≤L
|λ|≡L mod 2

(
dimB(L)

λ

)
λ . (4.6)

For example, [1]⊗3 = [3] + 2[21] + [111] + 3[1] tells us that dimB(3)
[21] = 2.

Representations of the Temperley–Lieb algebra

We now want to decompose the representations of the Brauer algebra into irreducible representa-
tions of the smaller TLL(n) and uJTLL(n) algebras. In the case of the Temperley–Lieb algebra
TLL(n), the branching rules are explicitly known [31]. The irreducible representations of TLL(n)
are called standard modules, and parametrized by positive integers in L− 2N: for ease of compar-
ison with the CFT, we will use half-integers r ∈ L

2 − N instead, and write W (L)
r for the standard

module of dimension (A.10). The decomposition takes the form

B(L)
λ =

TLL(n)
fλ

L
2⊕

r= |λ|
2

c|λ|r W (L)
r , (4.7)
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This is ordinary Temperley-Lieb plus an element contracting around (we want periodic boundary conditions
to understand the bulk critical theory) and a translation

If 2r is the number of such lines

sum over partitions

All non-contractible loops have weight n. Through lines winding fully around do not acquire any weight

Translation of through lines (pseudo-translation) t

On one side of the problem things are conceptually simple: the relevant algebra
becomes the unoriented Jones-Temperley-Lieb algebra

The first question we are interested in is, what happens to Schur-Weyl when we forbid crossings?

The case K > Kc is also critical, and referred to as the dense phase.
In this phase, crossings are relevant

O(n)/O(n� 1) (Jacobsen Read Saleur)

also called the dilute (critical) point

[1]⌦L

Strictly speaking, Brauer is relevant only for the case where every edge is occupied by a “monomer”, which
corresponds to the limit K ! 1 and the low-temperature (dense) phase. Algebraically however, the following
makes sense for the dilute versions of the problem: ([]� [1])⌦L and “dilute” Brauer

Note that n can be extended to (most of) C. n = 0 describes SAW.
Of course, the meaning of “O(n)” for n 62 N⇤ has to be discussed.

Technically, the four-leg operator is irrelevant
at the dilute fixed point

n-component vectors ~Si with O(n) symmetric
~Si.

~Sj couplings
Conformal loop ensembles or loop soups

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

• This suggests there might also be an interesting low temperature phase

• The universality class is very robust: crossings do not matter at the critical point
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Therefore, we expect that the algebras TLL(n) and uJTLL(n) describe symmetries of the
O(n) model. In particular, in the critical limit, we expect

lim
critical

uJTLL(n) = C̃β2 , (4.4)

where the parameter β2 of the interchiral algebra is related to n by Eq. (1.4).

Representations of the Brauer algebra

By Schur–Weyl duality, the space of states (4.1) decomposes into irreducible representations of
BL(n)× O(n) as [30]

S
O(n)
L =

BL(n)×O(n)

⊕

|λ|≤L
|λ|≡L mod 2

B(L)
λ ⊗ λ , (4.5)

where the sum is over partitions λ, which we identify with irreducible representations of O(n)

with generic n ∈ C. The irreducible finite-dimensional representations B(L)
λ of the Brauer algebra

are also labelled by partitions: we will say more on their structure when it comes to computing
branching rules in Section 4.2. For the moment, let us point out that their dimensions appear as
coefficients in the decomposition of SO(n)

L = [1]⊗L into irreducible representations of O(n),

[1]⊗L =
O(n)

⊕

|λ|≤L
|λ|≡L mod 2

(
dimB(L)

λ

)
λ . (4.6)

For example, [1]⊗3 = [3] + 2[21] + [111] + 3[1] tells us that dimB(3)
[21] = 2.

Representations of the Temperley–Lieb algebra

We now want to decompose the representations of the Brauer algebra into irreducible representa-
tions of the smaller TLL(n) and uJTLL(n) algebras. In the case of the Temperley–Lieb algebra
TLL(n), the branching rules are explicitly known [31]. The irreducible representations of TLL(n)
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Schur-Weyl for a general O(n) interaction would lead to

CFT

Specifically I want to illustrate an “out of context” use of generalized symmet This is one of the few examples
where categorical symmetry plays an explicit role in an

interacting system (not in the realm of topological phases)

There is probably a use for this in the context of quantum loop models

The question of realizing topological defect lines in lattice models is interesting and still rather open
(Krammers Wannier, Aasen Fendley Mong, Belletête Gainutdinov Jacobsen Saleur Tavares. . . )

Of course there are nice fusion relations and higher topological lines

“categorical symmetry”

(there’s a tiny subtlety for r = 0)

(Martin Saleur . . . Graham Lehrer. . . )

(there are 3 diagrams/operators
because [1]⌦2 = []� [1]� [2])

D and its generalizations satisfy a fusion algebra

The formula:

where �
2 ⌘ �⌦ � in O(n). . .

This makes perfect sense for n 2 Z>0 (arbitrarily large if necessary)

But an e↵ort will be required if we want to connect with CFT for n 2 [�2, 2] or n 2 C:
Deligne category theory (Binder Rychkov).

This problem is well defined even if n 2 C

In the microscopic models, degrees of freedom are acted on by g when the defect line
is crossed (e.g. G = Z2 and spin flips)

The phase diagram
This requires giving a satisfactory meaning to n /2 Z>0: we’ll get back to this.

reduces to the Uqsl(2) Casimir

Pr the Jones-Wenzl projector on 2r non-contractible lines

With open boundary conditions, the equivalent construction

Note: the solution of YB in [1]⌦2

so the only object that can be moved around is a loop crossing every line, which can be
eliminated (up to a factor n) by the Brauer rules

A generic O(n) lattice model (hence, Schur-Weyl dual to Brauer) does not have any (lattice)
topological symmetry

1

Brauer modules

V. Jones annular algebra

dense with crossings

It is in fact crucial, as the passage from lattice to continuum is not as harmless as it may seem

The question of realizing topological defect lines in lattice models is interesting and still rather open
(Krammers Wannier, Fröhlich Runkel Schweigert, Aasen Fendley Mong, Belletête Gainutdinov
Jacobsen Saleur Tavares. . . )

The eigenvalues of D on the W
(L)
(r,s) (or the dilute equivalent) are easy to calculate

and for q generic determine the module uniquely
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because [1]⌦2 = []� [1]� [2])

D and its generalizations satisfy a fusion algebra

The formula:

where �
2 ⌘ �⌦ � in O(n). . .

This makes perfect sense for n 2 Z>0 (arbitrarily large if necessary)

But an e↵ort will be required if we want to connect with CFT for n 2 [�2, 2] or n 2 C:
Deligne category theory (Binder Rychkov).

This problem is well defined even if n 2 C

In the microscopic models, degrees of freedom are acted on by g when the defect line
is crossed (e.g. G = Z2 and spin flips)

The phase diagram
This requires giving a satisfactory meaning to n /2 Z>0: we’ll get back to this.

1

n 2 [�2, 2]; n = 2 cos
⇡

x
, x 2 [1,1]

c = 1�
6

x(x+ 1)

Considerable progress has been accomplished recently using (in particular)
representation theory and the bootstrap technique

The natural relationship between loops and O(n) is of Schur-Weyl duality
between O(n) acting on the tensor product of fundamental (vector) representations
and the Brauer algebra.

Crossings don’t matter
(they are irrelevant and don’t
a↵ect the continuum limit)
For n 2 C can be defined (see below) via analytic continuation, and is relevant
to several crucial modern questions in QFT. We’ll restrict to n 2 R.
Physically we can think of it along two lines:

T � T̄

(T, T̄ )

X

DX : H 7! H

[Ln,DX ] =
⇥
L̄n,DX

⇤
= 0, n 2 N

• Choose a contour � on the dual lattice

• Flip the couplings from K to �K along �

• The resulting modified partition function is

independent of deformations of �

• It depends only on its topology

and the location of the punctures

• The figure represents the two-point function of the

disorder operators

• The defect is conformal (scale invariant) if T � T̄ is continuous across the defect line

(K ! K 0 in Ising)

• The defect is topological if T and T̄ are separately continuous

This latter condition expresses mathematically the fact that the line is tensionless
and can be arbitrarily deformed (away from punctures)
Imaginary
time
The defect can be viewed as an operator
acting on the bulk Hilbert space

The defect can also be viewed as giving rise
to a defect Hamiltonian

1



So what happens to Schur-Weyl  
when we forbid crossings?  

Representations of the unoriented Jones–Temperley–Lieb algebra

The irreducible representations W (L)
(r,s) of uJTLL(n) are parametrized by positive half-integers

r ∈ L
2 − N, and by a rational number s called the pseudo-momentum. The possible values of the

pseudo-momentum depends on r: we have s ∈ 1
r
Z ∩ (−1, 1] if r ̸= 0, and by convention we set

s = 0 if r = 0. The decomposition of an irreducible representation of the Brauer algebra reads

B(L)
λ =

uJTLL(n)

L
2⊕

r= |λ|
2

⊕

s∈ 1
r
Z

−1<s≤1

cλ(r,s)W
(L)
(r,s) . (4.14)

The coefficients cλ(r,s) are positive integer numbers, which do not depend on n. We moreover expect

that they do not depend on L, as was the case in the decomposition of B(L)
λ into representations

of the Temperley–Lieb algebra. We will give two methods for computing these coefficients: via a
closed combinatorial formula in Section 4.2, and via transfer matrix techniques in Appendix B.1.
For the moment, let us proceed with decomposing the space of states, assuming cλ(r,s) to be given.
Inserting the decomposition of Brauer representations into Eq. (4.5), we obtain

S
O(n)
L =

uJTLL(n)×O(n)

L
2⊕

r={L
2 }

⊕

s∈ 1
r
Z

−1<s≤1

W (L)
(r,s) ⊗ Λ(r,s) with Λ(r,s) =

⊕

|λ|≤2r
|λ|≡2r mod 2

cλ(r,s)λ .

(4.15)

The representations Λ(r,s) of O(n) that we just defined should coincide with the representations
Λ(r,s) (2.23) that appeared in the spectrum (2.14) of the O(n) CFT. Moreover, the large L limit

of the representation W (L)
(r,s) should coincide with a representation of the interchiral algebra,

lim
critical

W (L)
(r,s) = W̃(r,s) . (4.16)

One may doubt the plausibility of this relation, on the grounds that W (L)
(r,s) is always irreducible,

while W̃(r,s) is logarithmic and therefore reducible for (r, s) ∈ N∗. However, logarithmic features
can emerge at L = ∞ while being absent for any finite L. A necessary requirement for this is that
two eigenvalues of the Hamiltonian differ for finite L, while having the same limit [12].

We can obtain some nontrivial information on Λ(r,s) by comparing our decomposition (4.15)
of the space of states with the decomposition (4.10) into representations of the Temperley–Lieb

algebra. As reviewed in Eq. (A.28), the representation W (L)
(r,s) of uJTLL(n) is constructed by gluing

the representations W (L)
r ,W (L)

r+1, . . . ,W
(L)
L
2

of TLL(n). The pseudo-momentum s labels different

ways of gluing these representations. (For the special case of WL
(0,0), see Eq. (A.29).) We will

review the general definition of the pseudo-momentum in Appendix A. Here we only need to know
that in the case r = L

2 , the pseudo-momentum corresponds to an eigenvalue of the translation
generator u (A.16) of uJTLL(n),

(
u− eπis

)
W (L)

(L
2
,s)

= 0 . (4.17)
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• There no currents (SQ is discrete)

• Now it is �h21iD that is exactly degenerate

D

now have cluster expansions

Four point-functions can similarly be

• Non-unitarity precludes these models to be WZW theories. There are “currents” but they are not purely
chiral (e.g. the OPE Ja(z)Jb(0) might contain some z̄ dependency)

• In fact the currents do not seem to play much a role, and there is no qualitative di↵erence between O(n) and
SQ

• The symmetry is larger than O(n) or SQ.

• The spectrum is very rich, with a dense set of values of one Kac label. The theories are neither rational nor
quais-rational

• One type of field (depending on O(n) or SQ) �D
hr,1i or �

D
h1,ri is truly degenerate but not both.

• There are many fields with integer Kac labels which are degenerate and involved in rank two Jordan blocks

• When x is a root of unity, Jordan blocks of higher rank (in fact, arbitrarily high) appear

• Four-point functions can be accurately determined using the bootstrap. They are regular as a function of x.

• There are indications (e.g. exact amplitude ratios) that these theories are analytically solvable

9

• Our old work: torus partition function

g =
x+ 1

x
, e0 =

1

x

ended with a not very explicit result:

^ ⌘ gcd

Why should we care?

So the first technical challenge is to perform a Poisson resummation in order to write
the partition function as a sum over powers of q, q̄

This was done in

loops

(spaghettis for Philippe)

• Note: while the formula for Z was derived in the context of CFT and for n 2 [�2, 2],

it is in fact true for all n (integer or not), in finite size, and not necessarily at criticality

Therefore the question of interpreting the multiplicities in the language of O(n)
representation theory makes perfect sense

(for n /2 N it still makes sense in a (Deligne) categorical sense see below)

So the degeneracies correspond to groupings of O(n) irreducible representations into blocks

Conformal loop ensembles or loop soups

The problem was solved in

. . .

( The exact decomposition for the ⇤(r,s) is known explicitely)

What explains these (very large) degeneracies?

• The idea of an extended symmetry (Hopf algebra) doesn’t seem to work., The set of ⇤(r,s) is not stable under
the O(n) tensor product. Periodic boundary conditions seem to play a crucial role (degeneracies would be
di↵erent for open b.c.).

• On the other hand, with p.b.c. it is di�cult indeed to give a meaning to tensor products of the ⇤(r,s) (cut
and ew?)

• It is useful to start to understand why there are such degeneracies

The culprit is the non-crossing constraint

which is better understood using a bit of algebra...

Well the algebra becomes smaller - technically it is now the unoriented
Jones-Temperley-Lieb algebra

1
This is ordinary Temperley-Lieb plus an element contracting around (we want periodic boundary conditions
to understand the bulk critical theory) and a translation

On one side of the problem things are conceptually simple: the relevant algebra
becomes the unoriented Jones-Temperley-Lieb algebra

The first question we are interested in is, what happens to Schur-Weyl when we forbid crossings?

The case K > Kc is also critical, and referred to as the dense phase.
In this phase, crossings are relevant

O(n)/O(n� 1) (Jacobsen Read Saleur)

also called the dilute (critical) point

[1]⌦L

Strictly speaking, Brauer is relevant only for the case where every edge is occupied by a “monomer”, which
corresponds to the limit K ! 1 and the low-temperature (dense) phase. Algebraically however, the following
makes sense for the dilute versions of the problem: ([]� [1])⌦L and “dilute” Brauer

Note that n can be extended to (most of) C. n = 0 describes SAW.
Of course, the meaning of “O(n)” for n 62 N⇤ has to be discussed.

Technically, the four-leg operator is irrelevant
at the dilute fixed point

n-component vectors ~Si with O(n) symmetric
~Si.

~Sj couplings
Conformal loop ensembles or loop soups

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

• This suggests there might also be an interesting low temperature phase

• The universality class is very robust: crossings do not matter at the critical point

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT, symmetry properties and phase diagrams remains challenging

Note that n can be extended to C

(A✏eck, Nienhuis, Schwimmer...)

1

for i = 1, 32 , 2, . . . , L− 1
2 , L, which imply that

ê2i−1 = Q− 1
2+2(i mod 1)si (A.13)

satisfy the Temperley–Lieb relations (A.5) with the parameter
√
Q. This Temperley–Lieb subal-

gebra is called the join-detach algebra, with si∈N detaching the site i, while si∈N+ 1
2

joins the two

sites i ± 1
2 . The random cluster formulation of the Potts-model partition function (3.25) can be

constructed in the transfer matrix formalism from this join-detach algebra, with the second term
in the expansion (3.24) corresponding to the join operator for a space-like edge, and the first term
corresponding to the detach operator for a time-like edge [34].

Rook Brauer algebra and Motzkin algebra

Let the two-parameter Rook Brauer algebra RBL(x, y) be generated by the diagrams whose blocks
have size one or two [42]. When multiplying diagrams, we eliminate the clusters that are discon-
nected from the top and bottom of the combined diagram, while giving a weight x to each loop
and y to each open path or isolated site:

= xy . (A.14)

Then RBL(Q,Q) is a subalgebra of the partition algebra PL(Q), generated by ei, pi and si.
Moreover, RBL(n+1) ≡ RBL(n+1, 1) is in Schur-Weyl duality with O(n) in the tensor product
([]⊕ [1])⊗L [39].

The planar version of the Rook Brauer algebra RBL(n+ 1) is the Motzkin algebra ML(n+ 1)
[40]. It is generated by ei, li and ri. We believe that ML(n+ 1) is in fact isomorphic to the dilute
Temperley–Lieb algebra dTLL(n) [41,43], in which we only allow loop and isolated sites, but not
open paths, and where loops have fugacity n instead of n + 1.

A.2 Periodic algebras

Let us now consider periodic algebras, i.e. algebras of diagrams that can be drawn without crossings
in an annular frame.

Affine Temperley–Lieb algebra and unoriented Jones–Temperley–Lieb algebra

The affine Temperley–Lieb algebra is a subalgebra of the Brauer algebra that is larger than the
Temperley–Lieb algebra, TLL(n) ⊂ ATLL(n) ⊂ BL(n). It is defined from TLL(n) by adding
the two generators

eL =
· · ·

· · ·
(A.15)

u =
· · ·

· · ·

· · ·

· · ·
(A.16)
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for i = 1, 32 , 2, . . . , L− 1
2 , L, which imply that

ê2i−1 = Q− 1
2+2(i mod 1)si (A.13)

satisfy the Temperley–Lieb relations (A.5) with the parameter
√
Q. This Temperley–Lieb subal-

gebra is called the join-detach algebra, with si∈N detaching the site i, while si∈N+ 1
2

joins the two

sites i ± 1
2 . The random cluster formulation of the Potts-model partition function (3.25) can be

constructed in the transfer matrix formalism from this join-detach algebra, with the second term
in the expansion (3.24) corresponding to the join operator for a space-like edge, and the first term
corresponding to the detach operator for a time-like edge [34].

Rook Brauer algebra and Motzkin algebra

Let the two-parameter Rook Brauer algebra RBL(x, y) be generated by the diagrams whose blocks
have size one or two [42]. When multiplying diagrams, we eliminate the clusters that are discon-
nected from the top and bottom of the combined diagram, while giving a weight x to each loop
and y to each open path or isolated site:

= xy . (A.14)

Then RBL(Q,Q) is a subalgebra of the partition algebra PL(Q), generated by ei, pi and si.
Moreover, RBL(n+1) ≡ RBL(n+1, 1) is in Schur-Weyl duality with O(n) in the tensor product
([]⊕ [1])⊗L [39].

The planar version of the Rook Brauer algebra RBL(n+ 1) is the Motzkin algebra ML(n+ 1)
[40]. It is generated by ei, li and ri. We believe that ML(n+ 1) is in fact isomorphic to the dilute
Temperley–Lieb algebra dTLL(n) [41,43], in which we only allow loop and isolated sites, but not
open paths, and where loops have fugacity n instead of n + 1.

A.2 Periodic algebras

Let us now consider periodic algebras, i.e. algebras of diagrams that can be drawn without crossings
in an annular frame.

Affine Temperley–Lieb algebra and unoriented Jones–Temperley–Lieb algebra

The affine Temperley–Lieb algebra is a subalgebra of the Brauer algebra that is larger than the
Temperley–Lieb algebra, TLL(n) ⊂ ATLL(n) ⊂ BL(n). It is defined from TLL(n) by adding
the two generators

eL =
· · ·

· · ·
(A.15)

u =
· · ·

· · ·

· · ·

· · ·
(A.16)
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This is ordinary Temperley-Lieb plus an element contracting around (we want periodic boundary conditions
to understand the bulk critical theory) and a translation

All non-contractible loops have weight n. Through lines winding fully around do not acquire any weight

On one side of the problem things are conceptually simple: the relevant algebra
becomes the unoriented Jones-Temperley-Lieb algebra

The first question we are interested in is, what happens to Schur-Weyl when we forbid crossings?

The case K > Kc is also critical, and referred to as the dense phase.
In this phase, crossings are relevant

O(n)/O(n� 1) (Jacobsen Read Saleur)

also called the dilute (critical) point

[1]⌦L

Strictly speaking, Brauer is relevant only for the case where every edge is occupied by a “monomer”, which
corresponds to the limit K ! 1 and the low-temperature (dense) phase. Algebraically however, the following
makes sense for the dilute versions of the problem: ([]� [1])⌦L and “dilute” Brauer

Note that n can be extended to (most of) C. n = 0 describes SAW.
Of course, the meaning of “O(n)” for n 62 N⇤ has to be discussed.

Technically, the four-leg operator is irrelevant
at the dilute fixed point

n-component vectors ~Si with O(n) symmetric
~Si.

~Sj couplings
Conformal loop ensembles or loop soups

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

• This suggests there might also be an interesting low temperature phase

• The universality class is very robust: crossings do not matter at the critical point

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT, symmetry properties and phase diagrams remains challenging

Note that n can be extended to C

1

The generator eL satisfies the Temperley–Lieb relations (A.5), where we now identify eL+1 = e1
and consider all indices modulo L. Moreover, the generator u satisfies

ueju
−1 = ej+1 , (A.17a)

u2eL−1 = e1e2 · · · eL−1 , (A.17b)

and uL is a central element.
Although making the system periodic seems rather innocuous, it has the profound consequence

that ATLL becomes infinite-dimensional. This is a consequence of the fact that it is possible to
cyclically permute the upper sites carrying through-lines without otherwise changing the diagrams.
Translating through-lines by one site to the right is called the pseudo-translation t,

t−→ (A.18)

The pseudo-translation t differs from the translation u, and its expression in terms of algebra
generators depends on the diagram it acts on. In particular, the action of tN on a diagram
in general yields diagrams that differ for all N ∈ Z, in other words we can have the through-
lines wind around the annulus an arbitrary number of times. Therefore, even for L finite, we
have dimATLL(n) = ∞. In fact, another reason why the algebra is infinite-dimensional is the
existence of non-contractible loops. For example, the following diagram concatenation leads to one
non-contractible loop:

= (A.19)

Iterating, it is possible to generate an arbitrary number of non-contractible loops.
We define the unoriented Jones–Temperley–Lieb algebra uJTLL(n) as a finite-dimensional

quotient of the affine Temperley–Lieb algebra ATLL(n), by identifying infinite families of dia-
grams. To begin with, we identify diagrams that are related by having all through-lines wind once
around the annulus, i.e. we impose that the pseudo-translation obeys

t2r =
uJTLL(n)

1 . (A.20)

We then deal with the non-contractible loops, by eliminating them with the same weight n as the
contractible loops. In other words, adding a contractible loop to a diagram, which is possible if
there are no through-lines, amounts to multiplying this diagram by n.

Representations of the unoriented Jones–Temperley–Lieb algebra

Representations of uJTLL(n) are generated by diagrams with L lower sites, 2r ≤ L upper sites,
and 2r through-lines with r ∈ 1

2N. On this set of diagrams, we can act by cyclic permutations of the
upper sites or equivalently of the through-lines. This action is described by the group Z2r generated
by t. Irreducible finite-dimensional modules W (L)

(r,s) are therefore parameterized by (r, s), where eπis

is the eigenvalue of t. Equivalently, the number s itself, which we call the pseudo-momentum, is
defined modulo 2 and obeys rs ∈ Z, so that

(
t− eπis

)
W (L)

(r,s) = 0 . (A.21)
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This is ordinary Temperley-Lieb plus an element contracting around (we want periodic boundary conditions
to understand the bulk critical theory) and a translation

All non-contractible loops have weight n. Through lines winding fully around do not acquire any weight

Translation of through lines (pseudo-translation) t

On one side of the problem things are conceptually simple: the relevant algebra
becomes the unoriented Jones-Temperley-Lieb algebra

The first question we are interested in is, what happens to Schur-Weyl when we forbid crossings?

The case K > Kc is also critical, and referred to as the dense phase.
In this phase, crossings are relevant

O(n)/O(n� 1) (Jacobsen Read Saleur)

also called the dilute (critical) point

[1]⌦L

Strictly speaking, Brauer is relevant only for the case where every edge is occupied by a “monomer”, which
corresponds to the limit K ! 1 and the low-temperature (dense) phase. Algebraically however, the following
makes sense for the dilute versions of the problem: ([]� [1])⌦L and “dilute” Brauer

Note that n can be extended to (most of) C. n = 0 describes SAW.
Of course, the meaning of “O(n)” for n 62 N⇤ has to be discussed.

Technically, the four-leg operator is irrelevant
at the dilute fixed point

n-component vectors ~Si with O(n) symmetric
~Si.

~Sj couplings
Conformal loop ensembles or loop soups

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

• This suggests there might also be an interesting low temperature phase

• The universality class is very robust: crossings do not matter at the critical point

1

The generator eL satisfies the Temperley–Lieb relations (A.5), where we now identify eL+1 = e1
and consider all indices modulo L. Moreover, the generator u satisfies

ueju
−1 = ej+1 , (A.17a)

u2eL−1 = e1e2 · · · eL−1 , (A.17b)

and uL is a central element.
Although making the system periodic seems rather innocuous, it has the profound consequence

that ATLL becomes infinite-dimensional. This is a consequence of the fact that it is possible to
cyclically permute the upper sites carrying through-lines without otherwise changing the diagrams.
Translating through-lines by one site to the right is called the pseudo-translation t,

t−→ (A.18)

The pseudo-translation t differs from the translation u, and its expression in terms of algebra
generators depends on the diagram it acts on. In particular, the action of tN on a diagram
in general yields diagrams that differ for all N ∈ Z, in other words we can have the through-
lines wind around the annulus an arbitrary number of times. Therefore, even for L finite, we
have dimATLL(n) = ∞. In fact, another reason why the algebra is infinite-dimensional is the
existence of non-contractible loops. For example, the following diagram concatenation leads to one
non-contractible loop:

= (A.19)

Iterating, it is possible to generate an arbitrary number of non-contractible loops.
We define the unoriented Jones–Temperley–Lieb algebra uJTLL(n) as a finite-dimensional

quotient of the affine Temperley–Lieb algebra ATLL(n), by identifying infinite families of dia-
grams. To begin with, we identify diagrams that are related by having all through-lines wind once
around the annulus, i.e. we impose that the pseudo-translation obeys

t2r =
uJTLL(n)

1 . (A.20)

We then deal with the non-contractible loops, by eliminating them with the same weight n as the
contractible loops. In other words, adding a contractible loop to a diagram, which is possible if
there are no through-lines, amounts to multiplying this diagram by n.

Representations of the unoriented Jones–Temperley–Lieb algebra

Representations of uJTLL(n) are generated by diagrams with L lower sites, 2r ≤ L upper sites,
and 2r through-lines with r ∈ 1

2N. On this set of diagrams, we can act by cyclic permutations of the
upper sites or equivalently of the through-lines. This action is described by the group Z2r generated
by t. Irreducible finite-dimensional modules W (L)

(r,s) are therefore parameterized by (r, s), where eπis

is the eigenvalue of t. Equivalently, the number s itself, which we call the pseudo-momentum, is
defined modulo 2 and obeys rs ∈ Z, so that

(
t− eπis

)
W (L)

(r,s) = 0 . (A.21)
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This is ordinary Temperley-Lieb plus an element contracting around (we want periodic boundary conditions
to understand the bulk critical theory) and a translation

If 2r is the number of such lines

All non-contractible loops have weight n. Through lines winding fully around do not acquire any weight

Translation of through lines (pseudo-translation) t

On one side of the problem things are conceptually simple: the relevant algebra
becomes the unoriented Jones-Temperley-Lieb algebra

The first question we are interested in is, what happens to Schur-Weyl when we forbid crossings?

The case K > Kc is also critical, and referred to as the dense phase.
In this phase, crossings are relevant

O(n)/O(n� 1) (Jacobsen Read Saleur)

also called the dilute (critical) point

[1]⌦L

Strictly speaking, Brauer is relevant only for the case where every edge is occupied by a “monomer”, which
corresponds to the limit K ! 1 and the low-temperature (dense) phase. Algebraically however, the following
makes sense for the dilute versions of the problem: ([]� [1])⌦L and “dilute” Brauer

Note that n can be extended to (most of) C. n = 0 describes SAW.
Of course, the meaning of “O(n)” for n 62 N⇤ has to be discussed.

Technically, the four-leg operator is irrelevant
at the dilute fixed point

n-component vectors ~Si with O(n) symmetric
~Si.

~Sj couplings
Conformal loop ensembles or loop soups

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

• This suggests there might also be an interesting low temperature phase

• The universality class is very robust: crossings do not matter at the critical point

1

The generator eL satisfies the Temperley–Lieb relations (A.5), where we now identify eL+1 = e1
and consider all indices modulo L. Moreover, the generator u satisfies

ueju
−1 = ej+1 , (A.17a)

u2eL−1 = e1e2 · · · eL−1 , (A.17b)

and uL is a central element.
Although making the system periodic seems rather innocuous, it has the profound consequence

that ATLL becomes infinite-dimensional. This is a consequence of the fact that it is possible to
cyclically permute the upper sites carrying through-lines without otherwise changing the diagrams.
Translating through-lines by one site to the right is called the pseudo-translation t,

t−→ (A.18)

The pseudo-translation t differs from the translation u, and its expression in terms of algebra
generators depends on the diagram it acts on. In particular, the action of tN on a diagram
in general yields diagrams that differ for all N ∈ Z, in other words we can have the through-
lines wind around the annulus an arbitrary number of times. Therefore, even for L finite, we
have dimATLL(n) = ∞. In fact, another reason why the algebra is infinite-dimensional is the
existence of non-contractible loops. For example, the following diagram concatenation leads to one
non-contractible loop:

= (A.19)

Iterating, it is possible to generate an arbitrary number of non-contractible loops.
We define the unoriented Jones–Temperley–Lieb algebra uJTLL(n) as a finite-dimensional

quotient of the affine Temperley–Lieb algebra ATLL(n), by identifying infinite families of dia-
grams. To begin with, we identify diagrams that are related by having all through-lines wind once
around the annulus, i.e. we impose that the pseudo-translation obeys

t2r =
uJTLL(n)

1 . (A.20)

We then deal with the non-contractible loops, by eliminating them with the same weight n as the
contractible loops. In other words, adding a contractible loop to a diagram, which is possible if
there are no through-lines, amounts to multiplying this diagram by n.

Representations of the unoriented Jones–Temperley–Lieb algebra

Representations of uJTLL(n) are generated by diagrams with L lower sites, 2r ≤ L upper sites,
and 2r through-lines with r ∈ 1

2N. On this set of diagrams, we can act by cyclic permutations of the
upper sites or equivalently of the through-lines. This action is described by the group Z2r generated
by t. Irreducible finite-dimensional modules W (L)

(r,s) are therefore parameterized by (r, s), where eπis

is the eigenvalue of t. Equivalently, the number s itself, which we call the pseudo-momentum, is
defined modulo 2 and obeys rs ∈ Z, so that

(
t− eπis

)
W (L)

(r,s) = 0 . (A.21)
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This is ordinary Temperley-Lieb plus an element contracting around (we want periodic boundary conditions
to understand the bulk critical theory) and a translation

If 2r is the number of such lines

sum over partitions

So what we would like are the branching rules

Irreducible modules W (L)
(r,s) with 2r 2 N and

#

All non-contractible loops have weight n. Through lines winding fully around do not acquire any weight

Translation of through lines (pseudo-translation) t

On one side of the problem things are conceptually simple: the relevant algebra
becomes the unoriented Jones-Temperley-Lieb algebra

The first question we are interested in is, what happens to Schur-Weyl when we forbid crossings?

The case K > Kc is also critical, and referred to as the dense phase.
In this phase, crossings are relevant

O(n)/O(n� 1) (Jacobsen Read Saleur)

also called the dilute (critical) point

[1]⌦L

Strictly speaking, Brauer is relevant only for the case where every edge is occupied by a “monomer”, which
corresponds to the limit K ! 1 and the low-temperature (dense) phase. Algebraically however, the following
makes sense for the dilute versions of the problem: ([]� [1])⌦L and “dilute” Brauer

Note that n can be extended to (most of) C. n = 0 describes SAW.
Of course, the meaning of “O(n)” for n 62 N⇤ has to be discussed.

Technically, the four-leg operator is irrelevant
at the dilute fixed point

n-component vectors ~Si with O(n) symmetric
~Si.

~Sj couplings
Conformal loop ensembles or loop soups

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

1

(V. Jones)

(Martin Saleur…Graham Lehrer)



This is ordinary Temperley-Lieb plus an element contracting around (we want periodic boundary conditions
to understand the bulk critical theory) and a translation

If 2r is the number of such lines
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Note that n can be extended to (most of) C. n = 0 describes SAW.
Of course, the meaning of “O(n)” for n 62 N⇤ has to be discussed.

Technically, the four-leg operator is irrelevant
at the dilute fixed point

n-component vectors ~Si with O(n) symmetric
~Si.

~Sj couplings
Conformal loop ensembles or loop soups

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

• This suggests there might also be an interesting low temperature phase

• The universality class is very robust: crossings do not matter at the critical point

1

The diagrammatic representations of the algebras TLL(n) and uJTLL(n) directly correspond
to the representation of the O(n) model as a loop model in the transfer matrix approach: the
absence of the permutation generators means that loops do not cross, and the relations e2i = nei
means that loops have weight n. However, in contrast to our construction of loops in Figure (3.27),
the representation [1] now lives on the loops themselves, rather than on sites between the loops.
This difference does not affect the critical limit.

Therefore, we expect that the algebras TLL(n) and uJTLL(n) describe symmetries of the
O(n) model. In particular, in the critical limit, we expect

lim
critical

uJTLL(n) = C̃β2 , (4.4)

where the parameter β2 of the interchiral algebra is related to n by Eq. (1.4).

Representations of the Brauer algebra

By Schur–Weyl duality, the space of states (4.1) decomposes into irreducible representations of
BL(n)× O(n) as [30]

S
O(n)
L =

BL(n)×O(n)

⊕

|λ|≤L
|λ|≡L mod 2

B(L)
λ ⊗ λ , (4.5)

where the sum is over partitions λ, which we identify with irreducible representations of O(n)

with generic n ∈ C. The irreducible finite-dimensional representations B(L)
λ of the Brauer algebra

are also labelled by partitions: we will say more on their structure when it comes to computing
branching rules in Section 4.2. For the moment, let us point out that their dimensions appear as
coefficients in the decomposition of SO(n)

L = [1]⊗L into irreducible representations of O(n),

[1]⊗L =
O(n)

⊕

|λ|≤L
|λ|≡L mod 2

(
dimB(L)

λ

)
λ . (4.6)

For example, [1]⊗3 = [3] + 2[21] + [111] + 3[1] tells us that dimB(3)
[21] = 2.

Representations of the Temperley–Lieb algebra

We now want to decompose the representations of the Brauer algebra into irreducible representa-
tions of the smaller TLL(n) and uJTLL(n) algebras. In the case of the Temperley–Lieb algebra
TLL(n), the branching rules are explicitly known [31]. The irreducible representations of TLL(n)
are called standard modules, and parametrized by positive integers in L− 2N: for ease of compar-
ison with the CFT, we will use half-integers r ∈ L

2 − N instead, and write W (L)
r for the standard

module of dimension (A.10). The decomposition takes the form

B(L)
λ =

TLL(n)
fλ

L
2⊕

r= |λ|
2

c|λ|r W (L)
r , (4.7)

26

This is ordinary Temperley-Lieb plus an element contracting around (we want periodic boundary conditions
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Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

1

Representations of the unoriented Jones–Temperley–Lieb algebra

The irreducible representations W (L)
(r,s) of uJTLL(n) are parametrized by positive half-integers

r ∈ L
2 − N, and by a rational number s called the pseudo-momentum. The possible values of the

pseudo-momentum depends on r: we have s ∈ 1
r
Z ∩ (−1, 1] if r ̸= 0, and by convention we set

s = 0 if r = 0. The decomposition of an irreducible representation of the Brauer algebra reads

B(L)
λ =

uJTLL(n)

L
2⊕

r= |λ|
2

⊕

s∈ 1
r
Z

−1<s≤1

cλ(r,s)W
(L)
(r,s) . (4.14)

The coefficients cλ(r,s) are positive integer numbers, which do not depend on n. We moreover expect

that they do not depend on L, as was the case in the decomposition of B(L)
λ into representations

of the Temperley–Lieb algebra. We will give two methods for computing these coefficients: via a
closed combinatorial formula in Section 4.2, and via transfer matrix techniques in Appendix B.1.
For the moment, let us proceed with decomposing the space of states, assuming cλ(r,s) to be given.
Inserting the decomposition of Brauer representations into Eq. (4.5), we obtain

S
O(n)
L =

uJTLL(n)×O(n)

L
2⊕

r={L
2 }

⊕

s∈ 1
r
Z

−1<s≤1

W (L)
(r,s) ⊗ Λ(r,s) with Λ(r,s) =

⊕

|λ|≤2r
|λ|≡2r mod 2

cλ(r,s)λ .

(4.15)

The representations Λ(r,s) of O(n) that we just defined should coincide with the representations
Λ(r,s) (2.23) that appeared in the spectrum (2.14) of the O(n) CFT. Moreover, the large L limit

of the representation W (L)
(r,s) should coincide with a representation of the interchiral algebra,

lim
critical

W (L)
(r,s) = W̃(r,s) . (4.16)

One may doubt the plausibility of this relation, on the grounds that W (L)
(r,s) is always irreducible,

while W̃(r,s) is logarithmic and therefore reducible for (r, s) ∈ N∗. However, logarithmic features
can emerge at L = ∞ while being absent for any finite L. A necessary requirement for this is that
two eigenvalues of the Hamiltonian differ for finite L, while having the same limit [12].

We can obtain some nontrivial information on Λ(r,s) by comparing our decomposition (4.15)
of the space of states with the decomposition (4.10) into representations of the Temperley–Lieb

algebra. As reviewed in Eq. (A.28), the representation W (L)
(r,s) of uJTLL(n) is constructed by gluing

the representations W (L)
r ,W (L)

r+1, . . . ,W
(L)
L
2

of TLL(n). The pseudo-momentum s labels different

ways of gluing these representations. (For the special case of WL
(0,0), see Eq. (A.29).) We will

review the general definition of the pseudo-momentum in Appendix A. Here we only need to know
that in the case r = L

2 , the pseudo-momentum corresponds to an eigenvalue of the translation
generator u (A.16) of uJTLL(n),

(
u− eπis

)
W (L)

(L
2
,s)

= 0 . (4.17)
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Representations of the unoriented Jones–Temperley–Lieb algebra
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while W̃(r,s) is logarithmic and therefore reducible for (r, s) ∈ N∗. However, logarithmic features
can emerge at L = ∞ while being absent for any finite L. A necessary requirement for this is that
two eigenvalues of the Hamiltonian differ for finite L, while having the same limit [12].

We can obtain some nontrivial information on Λ(r,s) by comparing our decomposition (4.15)
of the space of states with the decomposition (4.10) into representations of the Temperley–Lieb
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(r,s) of uJTLL(n) is constructed by gluing
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r ,W (L)

r+1, . . . ,W
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2

of TLL(n). The pseudo-momentum s labels different

ways of gluing these representations. (For the special case of WL
(0,0), see Eq. (A.29).) We will

review the general definition of the pseudo-momentum in Appendix A. Here we only need to know
that in the case r = L

2 , the pseudo-momentum corresponds to an eigenvalue of the translation
generator u (A.16) of uJTLL(n),
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)
W (L)
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2
,s)
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The diagrammatic representations of the algebras TLL(n) and uJTLL(n) directly correspond
to the representation of the O(n) model as a loop model in the transfer matrix approach: the
absence of the permutation generators means that loops do not cross, and the relations e2i = nei
means that loops have weight n. However, in contrast to our construction of loops in Figure (3.27),
the representation [1] now lives on the loops themselves, rather than on sites between the loops.
This difference does not affect the critical limit.

Therefore, we expect that the algebras TLL(n) and uJTLL(n) describe symmetries of the
O(n) model. In particular, in the critical limit, we expect

lim
critical

uJTLL(n) = C̃β2 , (4.4)

where the parameter β2 of the interchiral algebra is related to n by Eq. (1.4).

Representations of the Brauer algebra

By Schur–Weyl duality, the space of states (4.1) decomposes into irreducible representations of
BL(n)× O(n) as [30]

S
O(n)
L =

BL(n)×O(n)

⊕

|λ|≤L
|λ|≡L mod 2

B(L)
λ ⊗ λ , (4.5)

where the sum is over partitions λ, which we identify with irreducible representations of O(n)

with generic n ∈ C. The irreducible finite-dimensional representations B(L)
λ of the Brauer algebra

are also labelled by partitions: we will say more on their structure when it comes to computing
branching rules in Section 4.2. For the moment, let us point out that their dimensions appear as
coefficients in the decomposition of SO(n)

L = [1]⊗L into irreducible representations of O(n),

[1]⊗L =
O(n)

⊕

|λ|≤L
|λ|≡L mod 2

(
dimB(L)

λ

)
λ . (4.6)

For example, [1]⊗3 = [3] + 2[21] + [111] + 3[1] tells us that dimB(3)
[21] = 2.

Representations of the Temperley–Lieb algebra

We now want to decompose the representations of the Brauer algebra into irreducible representa-
tions of the smaller TLL(n) and uJTLL(n) algebras. In the case of the Temperley–Lieb algebra
TLL(n), the branching rules are explicitly known [31]. The irreducible representations of TLL(n)
are called standard modules, and parametrized by positive integers in L− 2N: for ease of compar-
ison with the CFT, we will use half-integers r ∈ L

2 − N instead, and write W (L)
r for the standard

module of dimension (A.10). The decomposition takes the form

B(L)
λ =

TLL(n)
fλ

L
2⊕

r= |λ|
2

c|λ|r W (L)
r , (4.7)
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This is ordinary Temperley-Lieb plus an element contracting around (we want periodic boundary conditions
to understand the bulk critical theory) and a translation

If 2r is the number of such lines

sum over partitions

So what we would like are the branching rules

Irreducible modules W (L)
(r,s) with 2r 2 N and

#

Schur-Weyl

We have a combinatorial formula for these (Jacobsen Ribault Saleur)

The problem was solved earlier in the case or ordinary Temperley-Lieb

All non-contractible loops have weight n. Through lines winding fully around do not acquire any weight

Translation of through lines (pseudo-translation) t

On one side of the problem things are conceptually simple: the relevant algebra
becomes the unoriented Jones-Temperley-Lieb algebra

The first question we are interested in is, what happens to Schur-Weyl when we forbid crossings?

The case K > Kc is also critical, and referred to as the dense phase.
In this phase, crossings are relevant

O(n)/O(n� 1) (Jacobsen Read Saleur)

also called the dilute (critical) point

[1]⌦L

Strictly speaking, Brauer is relevant only for the case where every edge is occupied by a “monomer”, which
corresponds to the limit K ! 1 and the low-temperature (dense) phase. Algebraically however, the following
makes sense for the dilute versions of the problem: ([]� [1])⌦L and “dilute” Brauer

Note that n can be extended to (most of) C. n = 0 describes SAW.
Of course, the meaning of “O(n)” for n 62 N⇤ has to be discussed.

Technically, the four-leg operator is irrelevant
at the dilute fixed point

n-component vectors ~Si with O(n) symmetric
~Si.

~Sj couplings
Conformal loop ensembles or loop soups

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

1

This is ordinary Temperley-Lieb plus an element contracting around (we want periodic boundary conditions
to understand the bulk critical theory) and a translation

If 2r is the number of such lines

sum over partitions

So what we would like are the branching rules

Irreducible modules W (L)
(r,s) with 2r 2 N and

#

Schur-Weyl

For � = [L] this amounts to decomposing Specht modules of the permutation group S|�| into
representations of a cyclic subgroup (Stembridge)

We have a combinatorial formula for these (Jacobsen Ribault Saleur)

The problem was solved earlier in the case or ordinary Temperley-Lieb

(Benkart Moon)
All non-contractible loops have weight n. Through lines winding fully around do not acquire any weight

Translation of through lines (pseudo-translation) t

On one side of the problem things are conceptually simple: the relevant algebra
becomes the unoriented Jones-Temperley-Lieb algebra

The first question we are interested in is, what happens to Schur-Weyl when we forbid crossings?

The case K > Kc is also critical, and referred to as the dense phase.
In this phase, crossings are relevant

O(n)/O(n� 1) (Jacobsen Read Saleur)

also called the dilute (critical) point

[1]⌦L

Strictly speaking, Brauer is relevant only for the case where every edge is occupied by a “monomer”, which
corresponds to the limit K ! 1 and the low-temperature (dense) phase. Algebraically however, the following
makes sense for the dilute versions of the problem: ([]� [1])⌦L and “dilute” Brauer

Note that n can be extended to (most of) C. n = 0 describes SAW.
Of course, the meaning of “O(n)” for n 62 N⇤ has to be discussed.

Technically, the four-leg operator is irrelevant
at the dilute fixed point

n-component vectors ~Si with O(n) symmetric
~Si.

~Sj couplings
Conformal loop ensembles or loop soups

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

1

Note they don’t depend on n nor L

This is ordinary Temperley-Lieb plus an element contracting around (we want periodic boundary conditions
to understand the bulk critical theory) and a translation

If 2r is the number of such lines

sum over partitions

So what we would like are the branching rules

Irreducible modules W (L)
(r,s) with 2r 2 N and

#

Schur-Weyl

For � = [L] this amounts to decomposing Specht modules of the permutation group S|�| into
representations of a cyclic subgroup (Stembridge)

We have a combinatorial formula for these (Jacobsen Ribault Saleur)

The problem was solved earlier in the case or ordinary Temperley-Lieb

(Benkart Moon)
All non-contractible loops have weight n. Through lines winding fully around do not acquire any weight

Translation of through lines (pseudo-translation) t

On one side of the problem things are conceptually simple: the relevant algebra
becomes the unoriented Jones-Temperley-Lieb algebra

The first question we are interested in is, what happens to Schur-Weyl when we forbid crossings?

The case K > Kc is also critical, and referred to as the dense phase.
In this phase, crossings are relevant

O(n)/O(n� 1) (Jacobsen Read Saleur)

also called the dilute (critical) point

[1]⌦L

Strictly speaking, Brauer is relevant only for the case where every edge is occupied by a “monomer”, which
corresponds to the limit K ! 1 and the low-temperature (dense) phase. Algebraically however, the following
makes sense for the dilute versions of the problem: ([]� [1])⌦L and “dilute” Brauer

Note that n can be extended to (most of) C. n = 0 describes SAW.
Of course, the meaning of “O(n)” for n 62 N⇤ has to be discussed.

Technically, the four-leg operator is irrelevant
at the dilute fixed point

n-component vectors ~Si with O(n) symmetric
~Si.

~Sj couplings
Conformal loop ensembles or loop soups

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

1

This problem is well defined even if n 2 C

Of course there are nice fusion relations and higher topological lines

In the microscopic models, degrees of freedom are acted on by g when the defect line
is crossed (e.g. G = Z2 and spin flips)

The phase diagram
This requires giving a satisfactory meaning to n /2 Z>0: we’ll get back to this.

reduces to the Uqsl(2) Casimir

Pr the Jones-Wenzl projector on 2r non-contractible lines

With open boundary conditions, the equivalent construction

Note: the solution of YB in [1]⌦2

so the only object that can be moved around is a loop crossing every line, which can be
eliminated (up to a factor n) by the Brauer rules

A generic O(n) lattice model (hence, Schur-Weyl dual to Brauer) does not have any (lattice)
topological symmetry

The transition from the dense phase to the O(n)/O(n� 1) spontaneously broken symmetry phase
is obtained by explicit breaking of the topological symmetry

Note that at the critical point, since crossings are irrelevant, a model with crossing would only
have emergent topological symmetry

: crossings break the topological symmetry

Another way to say this is that
[D, /\] 6= 0

(Trebst, Ardonne, Feiguin, Huse, Ludwig, Troyer)

When q is a root of unity, D is the same as the operator Y in anyonic chains

Dh1,1i = h0|D|0i = n

D(1/2,0) = h(1/2, 0)|D|(1/2, 0)i = (�q)1/2 + (�q)�1/2

The correlation functions are unchanged if we move of deform the topological line (loop) provided
we don’t cross potential operator insertions

We have a combinatorial formula for these (Jacobsen Ribault Saleur)

The dense phase is not the generic O(n)/O(n� 1) low-T phase expected in a sigma model

�1 = [1]

�2 = [2]� [11] + []

�3 = [3]� [21] + [111]

�4 = [4]� [31] + [211]� [1111] + []

1

• Our old work: torus partition function

g =
x+ 1

x
, e0 =

1

x

ended with a not very explicit result:

^ ⌘ gcd

Why should we care?

So the first technical challenge is to perform a Poisson resummation in order to write
the partition function as a sum over powers of q, q̄

This was done in

loops

(spaghettis for Philippe)

• Note: while the formula for Z was derived in the context of CFT and for n 2 [�2, 2],

it is in fact true for all n (integer or not), in finite size, and not necessarily at criticality

Therefore the question of interpreting the multiplicities in the language of O(n)
representation theory makes perfect sense

(for n /2 N it still makes sense in a (Deligne) categorical sense see below)

So the degeneracies correspond to groupings of O(n) irreducible representations into blocks

Conformal loop ensembles or loop soups

The problem was solved in

. . .

( The exact decomposition for the ⇤(r,s) is known explicitely)

What explains these (very large) degeneracies?

• The idea of an extended symmetry (Hopf algebra) doesn’t seem to work., The set of ⇤(r,s) is not stable under
the O(n) tensor product. Periodic boundary conditions seem to play a crucial role (degeneracies would be
di↵erent for open b.c.).

• On the other hand, with p.b.c. it is di�cult indeed to give a meaning to tensor products of the ⇤(r,s) (cut
and ew?)

• It is useful to start to understand why there are such degeneracies

The culprit is the non-crossing constraint

which is better understood using a bit of algebra...

Well the algebra becomes smaller - technically it is now the unoriented
Jones-Temperley-Lieb algebra

We have a combinatorial formula for these

1

(Jacobsen Ribault Saleur)

(Benkart Moon)

A smaller algebra means a bigger centralizer

• There no currents (SQ is discrete)

• Now it is �h21iD that is exactly degenerate

D

now have cluster expansions

Four point-functions can similarly be

• Non-unitarity precludes these models to be WZW theories. There are “currents” but they are not purely
chiral (e.g. the OPE Ja(z)Jb(0) might contain some z̄ dependency)

• In fact the currents do not seem to play much a role, and there is no qualitative di↵erence between O(n) and
SQ

• The symmetry is larger than O(n) or SQ.

• The spectrum is very rich, with a dense set of values of one Kac label. The theories are neither rational nor
quais-rational

• One type of field (depending on O(n) or SQ) �D
hr,1i or �

D
h1,ri is truly degenerate but not both.

• There are many fields with integer Kac labels which are degenerate and involved in rank two Jordan blocks

• When x is a root of unity, Jordan blocks of higher rank (in fact, arbitrarily high) appear

• Four-point functions can be accurately determined using the bootstrap. They are regular as a function of x.

• There are indications (e.g. exact amplitude ratios) that these theories are analytically solvable
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• Our old work: torus partition function

g =
x+ 1

x
, e0 =

1

x

ended with a not very explicit result:

^ ⌘ gcd

Why should we care?

So the first technical challenge is to perform a Poisson resummation in order to write
the partition function as a sum over powers of q, q̄

This was done in

loops

(spaghettis for Philippe)

• Note: while the formula for Z was derived in the context of CFT and for n 2 [�2, 2],

it is in fact true for all n (integer or not), in finite size, and not necessarily at criticality

Therefore the question of interpreting the multiplicities in the language of O(n)
representation theory makes perfect sense

(for n /2 N it still makes sense in a (Deligne) categorical sense see below)

So the degeneracies correspond to groupings of O(n) irreducible representations into blocks

Conformal loop ensembles or loop soups

The problem was solved in

. . .

( The exact decomposition for the ⇤(r,s) is known explicitely)

What explains these (very large) degeneracies?

• The idea of an extended symmetry (Hopf algebra) doesn’t seem to work., The set of ⇤(r,s) is not stable under
the O(n) tensor product. Periodic boundary conditions seem to play a crucial role (degeneracies would be
di↵erent for open b.c.).

• On the other hand, with p.b.c. it is di�cult indeed to give a meaning to tensor products of the ⇤(r,s) (cut
and ew?)

• It is useful to start to understand why there are such degeneracies

The culprit is the non-crossing constraint

which is better understood using a bit of algebra...

Well the algebra becomes smaller - technically it is now the unoriented
Jones-Temperley-Lieb algebra

We have a combinatorial formula for these

And from these branching rules the ⇤(r,s) follow

1

Since Brauer representations split, O(n) representations get glued

where the
are now multiplicity spaces for physical observables (fields). Here are some examples

In 2D not all tensors can be realized without crossings (of course)
e.g. [111] and [3] can’t be distinguished

Note they don’t depend on n nor L

This is ordinary Temperley-Lieb plus an element contracting around (we want periodic boundary conditions
to understand the bulk critical theory) and a translation

If 2r is the number of such lines

sum over partitions

So what we would like are the branching rules

Irreducible modules W (L)
(r,s) with 2r 2 N and

#

Schur-Weyl

For � = [L] this amounts to decomposing Specht modules of the permutation group S|�| into
representations of a cyclic subgroup (Stembridge)

We also have a combinatorial formula for these
(Jacobsen Ribault Saleur)

The problem was solved earlier in the case or ordinary Temperley-Lieb

(Benkart Moon)
All non-contractible loops have weight n. Through lines winding fully around do not acquire any weight

Translation of through lines (pseudo-translation) t

On one side of the problem things are conceptually simple: the relevant algebra
becomes the unoriented Jones-Temperley-Lieb algebra

The first question we are interested in is, what happens to Schur-Weyl when we forbid crossings?

The case K > Kc is also critical, and referred to as the dense phase.
In this phase, crossings are relevant

O(n)/O(n� 1) (Jacobsen Read Saleur)

also called the dilute (critical) point

[1]⌦L

Strictly speaking, Brauer is relevant only for the case where every edge is occupied by a “monomer”, which
corresponds to the limit K ! 1 and the low-temperature (dense) phase. Algebraically however, the following
makes sense for the dilute versions of the problem: ([]� [1])⌦L and “dilute” Brauer

Note that n can be extended to (most of) C. n = 0 describes SAW.
Of course, the meaning of “O(n)” for n 62 N⇤ has to be discussed.

1

all this means is that 
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• It is useful to start to understand why there are such degeneracies

The culprit is the non-crossing constraint
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Well the algebra becomes smaller - technically it is now the unoriented
Jones-Temperley-Lieb algebra

We have a combinatorial formula for these

And from these branching rules the ⇤(r,s) follow

So what’s the “symmetry”?

1

time evolution 

under H

Note: the continuum limit of the uJTL algebra contains in particular
Vir⌦Vir (Koo Saleur) so this guarantees that in this limit

[Vir,D] =
⇥
Vir,D

⇤
= 0 (1)

which be can illustrate graphically e.g. by

D = (�q)�L/2
u(1� qeL�1) · · · (1� qe2)(1� qe1) + (�q)N/2(1� q

�1
e1) · · · (1� q

�1
eL�1)u

�1

D = (�q)L/2
⌧(1� q

�1
eL�1) · · · (1� q

�1
e2)(1� q

�1
e1) + (�q)�L/2(1� qe1) · · · (1� qeL�1)u

�1

Topological invariance translates into

[uJTLL(n),D] =
⇥
uJTLL(n),D

⇤
= 0

We can for instance think of this algebraically by mapping the plane onto the cylinder
and introducing the corresponding operators D,D

This can be thought of as a topological defect line (loop)

The weights (from a solution of the Yang-Baxter equation at infinite spectral parameter) guarantee that
the graphical representation is correct: Reidemeister moves are allowed

Add to the configurations of the loop gas a fixed extra loop (line) going over everything else

Note: for simplicity the discussion is set in the continuum, but it can be done on the lattice as well

What going over means is that we decompose the projected crossings according to:

and we evaluate the diagrams according to the old rules (n per loop, K per ordinary monomer)

(Read Saleur; Gorbenko Zan)

So the O(n) symmetry alone cannot prevent coupling to this (dangerously irrelevant) operator
along the RG: how can the model nevertheless generically reach the dense fixed point?

Hence a copy of it comes as an O(n) scalar

So the four-leg operator comes with multiplicity content ⇤(2,0)

But this is a physically motivated question. Indeed the �(r,s=0) fields are the 2r legs
watermelon operators

Note: the ⇤(r,s) are not stable under O(n) tensor product

The periodic structure of the lattice Hilbert space makes the definition of tensor products di�cult.
Same problem on the Schur-Weyl dual side - tensor product of a�ne Temperley-Lieb representations.

A natural (physics) question: is whatever glues the O(n) representations a “symmetry”?
Can we use it for something?

n 2 [�2, 2], �2 2 [1, 2] (dilute) critical point

�N
(2,0) is the four-leg operator. But observe that the corresponding field comes with O(n) content

At the critical point this gives rise to the space of states of the non-unitary CFT
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(2,0) is the four-leg operator. But observe that the corresponding field comes with O(n) content

At the critical point this gives rise to the space of states of the non-unitary CFT

This decomposition holds in finite size, and is independent of criticality (i.e. the value of K)

Since Brauer representations split, O(n) representations get glued

di↵erent types of V ir ⌦ ¯V ir modules (some of them logarithmic,
i.e. with non diagonalizable action)
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(Jacobsen Saleur)
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Figure 2: Commutativity of defect operator Y with ej generators of aTL.

consider only the case of q a generic complex number (not a root of unity, we leave the root of unity
case discussion for a forthcoming paper). The aTL algebra can be obtained as a quotient of the
so-called affine Hecke algebra of type Ân−1 where all central elements are known—they form the
algebra of symmetric Laurent polynomials in Jucys-Murphy elements Ji, for 1 ≤ i ≤ n. One of our
main mathematical results in this paper is that the image of this affine Hecke center inside aTL is
generated by the two elements Y and Ȳ , i.e. their powers can be written as symmetric polynomials
in the Ji, and vice versa. We shall call this natural subalgebra in the center of aTL the symmetric
center Zsym. Moreover, we show that products of Chebyshev polynomials in Y and Ȳ provide
a “canoncical” basis in Zsym with non-negative integer structure constants, i.e. a product of two
defect operators is decomposed onto defect operators again, and with non-negative multiplicities.
The multiplicities are interpreted as fusion rules of the defects.

Of course, the line passing above or below the loops can as well be taken to run along the axis
of the cylinder, i.e. along the time direction. This corresponds to having the defect in the direct
channel. In this setting, the presence of the defect line leads to a modified Hilbert space where
an extra representation of spin j is introduced, together with a Hamiltonian suitably modified by
corresponding “defect” terms. This is discussed in Section 4, where we relate spectral properties
of such a modified Hamiltonian (which is hard to study directly) to a clear and precise algebraic
construction within the representation theory of aTL algebras—namely the fusion product and
fusion quotient. The first is based on a certain induction, while the second is dual to it and
practically very convenient for actual calculations. In simple terms, the spectrum of the spin-
j defect Hamiltonian is given by the spectrum of the standard affine TL Hamiltonian with no
defects however acting on the fusion quotient of an aTL representation by the spin-j standard
TL representation. The advantage of this construction is that it allows us to perform precise
calculations, as we demonstrate in several examples, including the case of the twisted XXZ model.

In the last section 5, we provide conclusions and discuss a CFT interpretation together with
further steps that will be discussed in the next papers, like the analysis of modular S-transformation
in infinite lattices and the continuum limit from a more physical point of view. In Section 5, we also
make an attempt to give a precise mathematical definition of lattice defects studied in this work.
Finally, several appendices contain proofs of our mathematical results and auxiliary calculations,
such as examples of fusion products and fusion quotients.

2 Algebraic preliminaries: the affine TL algebra

In this section, we fix our notations and conventions. We first give a definition of the affine
Temperley-Lieb algebra in terms of generators, and in terms of diagrams. We give the definition
both in terms of the translation generator, which is very standard, and a new one in terms of the

5

In theories with a global symmetry group G there exists invertible topological defects associated
with an element g. They act as Dg|�i = g|�i, if |�i is a state in the Hilbert space,
and of course DgDg�1 = 1.

and thus that we have a topological defect in the CFT

Note: the continuum limit of the uJTL algebra contains in particular
Vir⌦Vir (Koo Saleur) so this guarantees that in this limit
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watermelon operators

Note: the ⇤(r,s) are not stable under O(n) tensor product

The periodic structure of the lattice Hilbert space makes the definition of tensor products di�cult.
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A natural (physics) question: is whatever glues the O(n) representations a “symmetry”?
Can we use it for something?
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• There no currents (SQ is discrete)

• Now it is �h21iD that is exactly degenerate

D

now have cluster expansions

Four point-functions can similarly be

• Non-unitarity precludes these models to be WZW theories. There are “currents” but they are not purely
chiral (e.g. the OPE Ja(z)Jb(0) might contain some z̄ dependency)

• In fact the currents do not seem to play much a role, and there is no qualitative di↵erence between O(n) and
SQ

• The symmetry is larger than O(n) or SQ.

• The spectrum is very rich, with a dense set of values of one Kac label. The theories are neither rational nor
quais-rational

• One type of field (depending on O(n) or SQ) �D
hr,1i or �

D
h1,ri is truly degenerate but not both.

• There are many fields with integer Kac labels which are degenerate and involved in rank two Jordan blocks

• When x is a root of unity, Jordan blocks of higher rank (in fact, arbitrarily high) appear

• Four-point functions can be accurately determined using the bootstrap. They are regular as a function of x.

• There are indications (e.g. exact amplitude ratios) that these theories are analytically solvable

9

In the microscopic models, degrees of freedom are acted on by g when the defect line
is crossed (e.g. G = Z2 and spin flips)

The phase diagram
This requires giving a satisfactory meaning to n /2 Z>0: we’ll get back to this.

reduces to the Uqsl(2) Casimir

Pr the Jones-Wenzl projector on 2r non-contractible lines

With open boundary conditions, the equivalent construction

Note: the solution of YB in [1]⌦2

so the only object that can be moved around is a loop crossing every line, which can be
eliminated (up to a factor n) by the Brauer rules

A generic O(n) lattice model (hence, Schur-Weyl dual to Brauer) does not have any (lattice)
topological symmetry

The transition from the dense phase to the O(n)/O(n� 1) spontaneously broken symmetry phase
is obtained by explicit breaking of the topological symmetry

Note that at the critical point, since crossings are irrelevant, a model with crossing would only
have emergent topological symmetry

: crossings break the topological symmetry

Another way to say this is that
[D, /\] 6= 0

(Trebst, Ardonne, Feiguin, Huse, Ludwig, Troyer)

When q is a root of unity, D is the same as the operator Y in anyonic chains

Dh1,1i = h0|D|0i = n

D(1/2,0) = h(1/2, 0)|D|(1/2, 0)i = (�q)1/2 + (�q)�1/2

The correlation functions are unchanged if we move of deform the topological line (loop) provided
we don’t cross potential operator insertions

We have a combinatorial formula for these (Jacobsen Ribault Saleur)

The dense phase is not the generic O(n)/O(n� 1) low-T phase expected in a sigma model

�1 = [1]

�2 = [2]� [11] + []

�3 = [3]� [21] + [111]

�4 = [4]� [31] + [211]� [1111] + []

dimO(n)�p = n

1

The culprit is the non-crossing constraint

which is better understood using a bit of algebra...

Well the algebra becomes smaller - technically it is now the unoriented
Jones-Temperley-Lieb algebra

We have a combinatorial formula for these

And from these branching rules the ⇤(r,s) follow

So what’s the “symmetry”?

• Apart from the generators of O(n) there are other operators commuting

with the Hamiltonian.

• They are in fact topological defect lines (TDLs) operators, and commute with

the full left and right Virasoro algebras

• This happens because they commute with the full lattice algebra

Here the defect is TDL is not invertible
(technically it is a Verlinde line associated with operator (h21, 0))

⇣
Z = Tr qL0�c/24

q̄
L̄0�c/24

⌘
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K
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L
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clusters
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dense loop gas
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L

(1)

O(n) vectors ~Si with ~Si.
~Sj coupling

Discrete spins � = 1, . . . , Q with ��i�j coupling

1

Figure 1.2: Illustration of loops (red) formed from bonds on the honeycomb lattice (left)

and on the square lattice (right).

Next, we compute the the spin configuration sum over each term, and we find

X

{✏}

(✏i1✏i2)(✏i3✏i4) . . . (✏i2m�1✏i2m) =

8
>><

>>:

2N2
if {⇥} consists of only loops

0 otherwise

(1.11)

for the following reason. If the bonds in {⇥} do not form only loops, then the sum

will have the same number of +1 terms as �1 terms as a result of the ± symmetry, so

it equals zero. However, if the bonds in {⇥} form a loop (figure 1.2), then the indices

of the spins may be arranged so that ✏i2 = ✏i3 , ✏i4 = ✏i5 , etc., and ✏i2m = ✏i1 . With

this rearrangement, we see that each term in the sum is one, so with |{✏}| = 2N2

terms, we arrive with (1.11). Similar reasoning leads to the same result when the

collection of bonds {⇥} consists of several non-crossing loops. Therefore we can write

the partition function as

ZO(1)(K) = 2N2
cosh2N2

(K/2)
X

{⇤}

x�, x := tanh(K/2), (1.12)

where {⇤} is the collection of non-crossing loops, � is the total number of bonds that

comprise the loops of {⇤}, and the sum is taken over all collections of non-crossing

loops. This is the high-temperature expansion of the Ising model, so called because it

is a power series in x centered at zero, or equivalently, in the temperature centered

at infinity.

We momentarily digress to exploit the self-duality of the square lattice in order
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Figure 1:
4-leg operator

Thermal operator
dilute dense

�-model

Figure 2:

= (�q)1/2 + (�q)�1/2 (1a)

= (�q)1/2 + (�q)�1/2 (1b)

Figure 3:

= (�q) + + + (�q)�1

= (q + q�1) (2)

Figure 4:

= (3)

Figure 5:

= (�q)1/2 + (�q)�1/2 (4)

Figure 6:

(5)
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(K > Kc)

2

dense with crossings

It is in fact crucial, as the passage from lattice to continuum is not as harmless as it may seem

The question of realizing topological defect lines in lattice models is interesting and still rather open
(Krammers Wannier, Fröhlich Runkel Schweigert, Aasen Fendley Mong, Belletête Gainutdinov
Jacobsen Saleur Tavares. . . )

The eigenvalues of D on the W
(L)
(r,s) (or the dilute equivalent) are easy to calculate

and for q generic determine the module uniquely

Schur-Weyl for a general O(n) interaction would lead to

CFT

Specifically I want to illustrate an “out of context” use of generalized symmet This is one of the few examples
where categorical symmetry plays an explicit role in an

interacting system (not in the realm of topological phases)

There is probably a use for this in the context of quantum loop models

The question of realizing topological defect lines in lattice models is interesting and still rather open
(Krammers Wannier, Aasen Fendley Mong, Belletête Gainutdinov Jacobsen Saleur Tavares. . . )

Of course there are nice fusion relations and higher topological lines

“categorical symmetry”

(there’s a tiny subtlety for r = 0)

(Martin Saleur . . . Graham Lehrer. . . )

(there are 3 diagrams/operators
because [1]⌦2 = []� [1]� [2])

D and its generalizations satisfy a fusion algebra

The formula:

where �
2 ⌘ �⌦ � in O(n). . .

This makes perfect sense for n 2 Z>0 (arbitrarily large if necessary)

But an e↵ort will be required if we want to connect with CFT for n 2 [�2, 2] or n 2 C:
Deligne category theory (Binder Rychkov).

This problem is well defined even if n 2 C

In the microscopic models, degrees of freedom are acted on by g when the defect line
is crossed (e.g. G = Z2 and spin flips)

The phase diagram
This requires giving a satisfactory meaning to n /2 Z>0: we’ll get back to this.

reduces to the Uqsl(2) Casimir

Pr the Jones-Wenzl projector on 2r non-contractible lines
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Z = Tr (transfer matrix)power =
X

degeneracies⇥ eigenvaluespower

• Any amount of coupling to the 4-leg operator drives the system away from the

dense fixed point (operator is dangerously irrelevant)

and such coupling is not prevented by O(n) symmetry...

• But it is prevented by topological symmetry (all terms/counter-terms generated by

the RG are in the topological sector of the identity, not of the 4-leg operator)

is in a very di↵erent universality
(Goldstone) class

2



But it is prevented by topological symmetry (all terms/
counter-terms generated by  

the RG are in the topological sector of the  identity, not 
of the 4-leg operator) 

Another way to say this is that
[D, /\] 6= 0

(Trebst, Ardonne, Feiguin, Huse, Ludwig, Troyer)

When q is a root of unity, D is the same as the operator Y in anyonic chains

Dh1,1i = h0|D|0i = n

D(1/2,0) = h(1/2, 0)|D|(1/2, 0)i = (�q)1/2 + (�q)�1/2

The correlation functions are unchanged if we move of deform the topological line (loop) provided
we don’t cross potential operator insertions

We have a combinatorial formula for these (Jacobsen Ribault Saleur)

The dense phase is not the generic O(n)/O(n� 1) low-T phase expected in a sigma model

�1 = [1]

�2 = [2]� [11] + []

�3 = [3]� [21] + [111]

�4 = [4]� [31] + [211]� [1111] + []

dimO(n)�p = n

So the four-leg operator cannot appear in the RG under perturbation K 6= Kc

The flow is topologically protected

with Dh1,1i

This sector is stable under OPE

The four leg operator couples to

((r, s) = (2, 0))

with D(2,0)

Hence the lattice energy operator K 6= Kc (coupling to
) cannot couple to the four-leg operator. Moreover the sector

L
Rh1,si

The lattice energy operator couples to

is stable under OPE. Hence neither corrections to scaling

come within O(n) singlets (are not distinguished by O(n) symmetry)

But they come within di↵erent representations of the non-invertible symmetry D

For instance at the critical point we have

Dh1,1i = q + q
�1

1
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Hence the lattice energy operator K 6= Kc (coupling to
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1

• There no currents (SQ is discrete)

• Now it is �h21iD that is exactly degenerate

D

now have cluster expansions

Four point-functions can similarly be

• Non-unitarity precludes these models to be WZW theories. There are “currents” but they are not purely
chiral (e.g. the OPE Ja(z)Jb(0) might contain some z̄ dependency)

• In fact the currents do not seem to play much a role, and there is no qualitative di↵erence between O(n) and
SQ

• The symmetry is larger than O(n) or SQ.

• The spectrum is very rich, with a dense set of values of one Kac label. The theories are neither rational nor
quais-rational

• One type of field (depending on O(n) or SQ) �D
hr,1i or �

D
h1,ri is truly degenerate but not both.

• There are many fields with integer Kac labels which are degenerate and involved in rank two Jordan blocks

• When x is a root of unity, Jordan blocks of higher rank (in fact, arbitrarily high) appear

• Four-point functions can be accurately determined using the bootstrap. They are regular as a function of x.

• There are indications (e.g. exact amplitude ratios) that these theories are analytically solvable
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is in a very di↵erent universality
(Goldstone) class

• and arise in the study of O(n) lattice spin models

Z /
Z Y

d~Si

Y

<ij>

(1 +K~Si.
~Sj)

n = 2 cos
⇡

x

In other words,
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In other words,

and thus can’t appear if the latter is conserved
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At the crossroads of physics and mathematics

“when you come to a fork in the road, take it!’’ (Yogi Berra) 

Happy Birthday Philippe!

math
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