The magic number conjecture for the $m=2$ amplituhedron and Parke-Taylor identities

Lauren K. Williams, Harvard

noncrossing
lattice paths

plane partition

3	3	2	2
1	1	1	

rhombic tiling
perfect matching

Based on: arXiv:2404.03026,
joint with Matteo Parisi, Melissa Sherman-Bennett, and Ran Tessler

Outline

- Partial cyclic orders and tricolored subdivisions
- Applications to Parke-Taylor identities and Parke-Taylor polytopes
- What is the amplituhedron?
- Magic number conjecture for the amplituhedron
- Proof of Magic number conjecture when $m=2$

Outline

- Partial cyclic orders and tricolored subdivisions
- Applications to Parke-Taylor identities and Parke-Taylor polytopes
- What is the amplituhedron?
- Magic number conjecture for the amplituhedron
- Proof of Magic number conjecture when $m=2$

Outline

- Partial cyclic orders and tricolored subdivisions
- Applications to Parke-Taylor identities and Parke-Taylor polytopes
- What is the amplituhedron?
- Magic number conjecture for the amplituhedron
- Proof of Magic number conjecture when $m=2$

Outline

- Partial cyclic orders and tricolored subdivisions
- Applications to Parke-Taylor identities and Parke-Taylor polytopes
- What is the amplituhedron?
- Magic number conjecture for the amplituhedron
- Proof of Magic number conjecture when $m=2$

Outline

- Partial cyclic orders and tricolored subdivisions
- Applications to Parke-Taylor identities and Parke-Taylor polytopes
- What is the amplituhedron?
- Magic number conjecture for the amplituhedron
- Proof of Magic number conjecture when $m=2$

Outline

- Partial cyclic orders and tricolored subdivisions
- Applications to Parke-Taylor identities and Parke-Taylor polytopes
- What is the amplituhedron?
- Magic number conjecture for the amplituhedron
- Proof of Magic number conjecture when $m=2$

Partial and total cyclic orders

A (partial) cyclic order on a finite set X is a ternary relation $C \subset X^{3}$ such that for all $a, b, c, d \in X$:

$$
\begin{aligned}
(a, b, c) \in C & \Longrightarrow(c, a, b) \in C & \text { cyclicity } \\
(a, b, c) \in C & \Longrightarrow(c, b, a) \notin C & \text { asymmetry } \\
(a, b, c) \in C \text { and }(a, c, d) \in C & \Longrightarrow(a, b, d) \in C & \text { transitivity }
\end{aligned}
$$

Ex: The triples $\{(2,5,7),(5,7,6),(1,8,7),(8,7,2)\}$ determine a partial cyclic order on [8]

A cyclic order C is total if for all $a, b, c \in X$, either $(a, b, c) \in C$ or $(a, c, b) \in C$.

Informally, a total cyclic order C on $[n]$ is a way of placing $1, \ldots, n$ on a circle, just as a total order is a way of placing $1, \ldots, n$ on a line.

Partial and total cyclic orders

A (partial) cyclic order on a finite set X is a ternary relation $C \subset X^{3}$ such that for all $a, b, c, d \in X$:

$$
\begin{array}{rlr}
(a, b, c) \in C & \Longrightarrow(c, a, b) \in C & \text { cyclicity } \\
(a, b, c) \in C & \Longrightarrow(c, b, a) \notin C & \text { asymmetry } \\
(a, b, c) \in C \text { and }(a, c, d) \in C & \Longrightarrow(a, b, d) \in C & \text { transitivity }
\end{array}
$$

Ex: The triples $\{(2,5,7),(5,7,6),(1,8,7),(8,7,2)\}$ determine a partial cyclic order on [8]

A cyclic order C is total if for all $a, b, c \in X$, either $(a, b, c) \in C$ or $(a, c, b) \in C$.

Informally, a total cyclic order C on $[n]$ is a way of placing $1, \ldots, n$ on a circle, just as a total order is a way of placing $1, \ldots, n$ on a line.

Partial and total cyclic orders

A (partial) cyclic order on a finite set X is a ternary relation $C \subset X^{3}$ such that for all $a, b, c, d \in X$:

$$
\begin{aligned}
(a, b, c) \in C & \Longrightarrow(c, a, b) \in C & \text { cyclicity } \\
(a, b, c) \in C & \Longrightarrow(c, b, a) \notin C & \text { asymmetry } \\
(a, b, c) \in C \text { and }(a, c, d) \in C & \Longrightarrow(a, b, d) \in C & \text { transitivity }
\end{aligned}
$$

Ex: The triples $\{(2,5,7),(5,7,6),(1,8,7),(8,7,2)\}$ determine a partial cyclic order on [8]

A cyclic order C is total if for all $a, b, c \in X$, either $(a, b, c) \in C$ or $(a, c, b) \in C$.

Informally, a total cyclic order C on $[n]$ is a way of placing $1, \ldots, n$ on a circle, just as a total order is a way of placing $1, \ldots, n$ on a line.

Partial and total cyclic orders

A (partial) cyclic order on a finite set X is a ternary relation $C \subset X^{3}$ such that for all $a, b, c, d \in X$:

$$
\begin{array}{lrr}
(a, b, c) \in C & \Longrightarrow(c, a, b) \in C & \text { cyclicity } \\
(a, b, c) \in C \Longrightarrow(c, b, a) \notin C & \text { asymmetry }
\end{array}
$$

$(a, b, c) \in C$ and $(a, c, d) \in C \longrightarrow(a, b, d) \in C \quad$ transitivity

Ex: The triples $\{(2,5,7),(5,7,6),(1,8,7),(8,7,2)\}$ determine a partial cyclic order on [8]

A cyclic order C is total if for all $a, b, c \in X$, either $(a, b, c) \in C$ or $(a, c, b) \in C$.

Informally, a total cyclic order C on $[n]$ is a way of placing $1, \ldots, n$ on a circle, just as a total order is a way of placing $1, \ldots, n$ on a line.

Partial and total cyclic orders

A (partial) cyclic order on a finite set X is a ternary relation $C \subset X^{3}$ such that for all $a, b, c, d \in X$:

$$
\begin{array}{rlr}
(a, b, c) \in C & \Longrightarrow(c, a, b) \in C & \text { cyclicity } \\
(a, b, c) \in C & \Longrightarrow(c, b, a) \notin C & \text { asymmetry } \\
(a, b, c) \in C \text { and }(a, c, d) \in C & \Longrightarrow(a, b, d) \in C & \text { transitivity }
\end{array}
$$

Ex: The triples $\{(2,5,7),(5,7,6),(1,8,7),(8,7,2)\}$ determine a partial cyclic order on [8]

A cyclic order C is total if for all $a, b, c \in X$, either $(a, b, c) \in C$ or $\frac{(a, c, b) \in C}{\text { Informally, a total cyclic order } C \text { on }[n] \text { is a way of placing } 1}$ circle, just as a total order is a way of placing $1, \ldots, n$ on a line.

Partial and total cyclic orders

A (partial) cyclic order on a finite set X is a ternary relation $C \subset X^{3}$ such that for all $a, b, c, d \in X$:

$$
\begin{array}{rlr}
(a, b, c) \in C & \Longrightarrow(c, a, b) \in C & \text { cyclicity } \\
(a, b, c) \in C & \Longrightarrow(c, b, a) \notin C & \text { asymmetry } \\
(a, b, c) \in C \text { and }(a, c, d) \in C & \Longrightarrow(a, b, d) \in C & \text { transitivity }
\end{array}
$$

Ex: The triples $\{(2,5,7),(5,7,6),(1,8,7),(8,7,2)\}$ determine a partial cyclic order on [8].

A cyclic order C is total if for all $a, b, c \in X$, either $(a, b, c) \in C$ or

Informally, a total cyclic order C on $[n]$ is a way of placing $1, \ldots, n$ on a circle, just as a total order is a way of placing $1, \ldots, n$ on a line.

Partial and total cyclic orders

A (partial) cyclic order on a finite set X is a ternary relation $C \subset X^{3}$ such that for all $a, b, c, d \in X$:

$$
\begin{array}{rlr}
(a, b, c) \in C & \Longrightarrow(c, a, b) \in C & \text { cyclicity } \\
(a, b, c) \in C & \Longrightarrow(c, b, a) \notin C & \text { asymmetry } \\
(a, b, c) \in C \text { and }(a, c, d) \in C & \Longrightarrow(a, b, d) \in C & \text { transitivity }
\end{array}
$$

Ex: The triples $\{(2,5,7),(5,7,6),(1,8,7),(8,7,2)\}$ determine a partial cyclic order on [8].

A cyclic order C is total if for all $a, b, c \in X$, either $(a, b, c) \in C$ or $(a, c, b) \in C$.

Informally, a total cyclic order C on $[n]$ is a way of placing $1, \ldots, n$ on a circle, just as a total order is a way of placing $1, \ldots, n$ on a line.

Partial and total cyclic orders

A (partial) cyclic order on a finite set X is a ternary relation $C \subset X^{3}$ such that for all $a, b, c, d \in X$:

$$
\begin{array}{rlr}
(a, b, c) \in C & \Longrightarrow(c, a, b) \in C & \text { cyclicity } \\
(a, b, c) \in C & \Longrightarrow(c, b, a) \notin C & \text { asymmetry } \\
(a, b, c) \in C \text { and }(a, c, d) \in C & \Longrightarrow(a, b, d) \in C & \text { transitivity }
\end{array}
$$

Ex: The triples $\{(2,5,7),(5,7,6),(1,8,7),(8,7,2)\}$ determine a partial cyclic order on [8].

A cyclic order C is total if for all $a, b, c \in X$, either $(a, b, c) \in C$ or $(a, c, b) \in C$.

Informally, a total cyclic order C on $[n]$ is a way of placing $1, \ldots, n$ on a circle,

Partial and total cyclic orders

A (partial) cyclic order on a finite set X is a ternary relation $C \subset X^{3}$ such that for all $a, b, c, d \in X$:

$$
\begin{array}{rlr}
(a, b, c) \in C & \Longrightarrow(c, a, b) \in C & \text { cyclicity } \\
(a, b, c) \in C & \Longrightarrow(c, b, a) \notin C & \text { asymmetry } \\
(a, b, c) \in C \text { and }(a, c, d) \in C & \Longrightarrow(a, b, d) \in C & \text { transitivity }
\end{array}
$$

Ex: The triples $\{(2,5,7),(5,7,6),(1,8,7),(8,7,2)\}$ determine a partial cyclic order on [8].

A cyclic order C is total if for all $a, b, c \in X$, either $(a, b, c) \in C$ or $(a, c, b) \in C$.

Informally, a total cyclic order C on $[n]$ is a way of placing $1, \ldots, n$ on a circle, just as a total order is a way of placing $1, \ldots, n$ on a line.

Tricolored subdivisions and cyclic orders

- A tricolored subdivision τ of an n-gon is a subdivision of the polygon into smaller polygons (black, grey, or white) in which every edge connects two vertices of the n-gon.
- From each τ, can read off a cyclic order C_{T}. To get C_{T} from τ, read vertices of white (resp black) polygons clockwise (resp counterclockwise), and ignore the grey.
- The C_{τ} from our example requires that $(2,5,7),(5,7,6)$, and $(1,8,7,2)$ are circularly ordered.
- A circular extension of C_{τ} is a total circular order compatible with C_{τ}. E.g. one circular extension of our example is: (25187634).

Tricolored subdivisions and cyclic orders

- A tricolored subdivision τ of an n-gon is a subdivision of the polygon into smaller polygons (black, grey, or white) in which every edge connects two vertices of the n-gon.

- From each τ, can read off a cyclic order C_{τ}. To get C_{τ} from τ, read vertices of white (resp black) polygons clockwise (resp counterclockwise), and ignore the grey.
- The C_{T} from our example requires that $(2,5,7),(5,7,6)$, and $(1,8,7,2)$ are circularly ordered.
- A circular extension of C_{T} is a total circular order compatible with C_{T} E.g. one circular extension of our example is: (

Tricolored subdivisions and cyclic orders

- A tricolored subdivision τ of an n-gon is a subdivision of the polygon into smaller polygons (black, grey, or white) in which every edge connects two vertices of the n-gon.

- From each τ, can read off a cyclic order C_{τ}. To get C_{τ} from τ, read vertices of white (resp black) polygons clockwise (resp counterclockwise), and ignore the grey.
- The C_{T} from our example requires that $(2,5,7),(5,7,6)$, and $(1,8,7,2)$ are circularly ordered.
- A circular extension of C_{T} is a total circular order compatible with C_{T} E.g. one circular extension of our example is: (

Tricolored subdivisions and cyclic orders

- A tricolored subdivision τ of an n-gon is a subdivision of the polygon into smaller polygons (black, grey, or white) in which every edge connects two vertices of the n-gon.

- From each τ, can read off a cyclic order C_{τ}. To get C_{τ} from τ, read vertices of white (resp black) polygons clockwise (resp counterclockwise), and ignore the grey.
- The C_{T} from our example requires that $(2,5,7),(5,7,6)$, and $(1,8,7,2)$ are circularly ordered.
- A circular extension of C_{T} is a total circular order compatible with C_{T} E.g. one circular extension of our example is:

Tricolored subdivisions and cyclic orders

- A tricolored subdivision τ of an n-gon is a subdivision of the polygon into smaller polygons (black, grey, or white) in which every edge connects two vertices of the n-gon.

- From each τ, can read off a cyclic order C_{τ}. To get C_{τ} from τ, read vertices of white (resp black) polygons clockwise (resp counterclockwise), and ignore the grey.
- The C_{τ} from our example requires that $(2,5,7),(5,7,6)$, and $(1,8,7,2)$ are circularly ordered.

Tricolored subdivisions and cyclic orders

- A tricolored subdivision τ of an n-gon is a subdivision of the polygon into smaller polygons (black, grey, or white) in which every edge connects two vertices of the n-gon.

- From each τ, can read off a cyclic order C_{τ}. To get C_{τ} from τ, read vertices of white (resp black) polygons clockwise (resp counterclockwise), and ignore the grey.
- The C_{τ} from our example requires that $(2,5,7),(5,7,6)$, and $(1,8,7,2)$ are circularly ordered.
- A circular extension of C_{τ} is a total circular order compatible with C_{τ}.

Tricolored subdivisions and cyclic orders

- A tricolored subdivision τ of an n-gon is a subdivision of the polygon into smaller polygons (black, grey, or white) in which every edge connects two vertices of the n-gon.

- From each τ, can read off a cyclic order C_{τ}. To get C_{τ} from τ, read vertices of white (resp black) polygons clockwise (resp counterclockwise), and ignore the grey.
- The C_{τ} from our example requires that $(2,5,7),(5,7,6)$, and $(1,8,7,2)$ are circularly ordered.
- A circular extension of C_{τ} is a total circular order compatible with C_{τ}. E.g. one circular extension of our example is: (25187634).

The Grassmannian and Plücker coordinates

The Grassmannian $G r_{k, n}(\mathbb{C}):=\left\{V \mid V \subset \mathbb{C}^{n}, \operatorname{dim} V=k\right\}$ Represent an element of $G r_{k, n}$ by a full-rank $k \times n$ matrix C

Given $I \in\binom{[n]}{k}$, the Plücker coordinate $p_{l}(C)$ is the minor of the $k \times k$ submatrix of C in column set l.

The Grassmannian and Plücker coordinates

The Grassmannian $G r_{k, n}(\mathbb{C}):=\left\{V \mid V \subset \mathbb{C}^{n}, \operatorname{dim} V=k\right\}$ Represent an element of $G r_{k, n}$ by a full-rank $k \times n$ matrix C.

Given $I \in\binom{[n]}{k}$, the Plücker coordinate $p_{I}(C)$ is the minor of the $k \times k$ submatrix of C in column set l.

The Grassmannian and Plücker coordinates

The Grassmannian $G r_{k, n}(\mathbb{C}):=\left\{V \mid V \subset \mathbb{C}^{n}, \operatorname{dim} V=k\right\}$ Represent an element of $G r_{k, n}$ by a full-rank $k \times n$ matrix C.

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 2 & 1
\end{array}\right)
$$

Given $I \in\binom{[n]}{k}$, the Plücker coordinate $p_{I}(C)$ is the minor of the $k \times k$ submatrix of C in column set I.

The Grassmannian and Plücker coordinates

The Grassmannian $G r_{k, n}(\mathbb{C}):=\left\{V \mid V \subset \mathbb{C}^{n}, \operatorname{dim} V=k\right\}$ Represent an element of $G r_{k, n}$ by a full-rank $k \times n$ matrix C.

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 2 & 1
\end{array}\right)
$$

Given $I \in\binom{[n]}{k}$, the Plücker coordinate $p_{I}(C)$ is the minor of the $k \times k$ submatrix of C in column set l.

Grassmannian identities from tricolored subdivisions

- Given a permutation $w=w_{1} \ldots w_{n}$, define the Parke-Taylor function

where the $P_{i j}$ are Plücker coordinates on the Grassmannian $\mathrm{Gr}_{2, n}^{\circ}$. We get the following identity.

Theorem (Parisi-ShermanBennett-Tessler-W)

Grassmannian identities from tricolored subdivisions

- Given a permutation $w=w_{1} \ldots w_{n}$, define the Parke-Taylor function

$$
\operatorname{PT}(w):=\frac{1}{P_{w_{1} w_{2}} P_{w_{2} w_{3}} \ldots P_{w_{n} w_{1}}}
$$

where the $P_{i j}$ are Plücker coordinates on the Grassmannian $\mathrm{Gr}_{2, n}^{\circ}$ We get the following identity.

Theorem (Parisi-ShermanBernett-Tessler-W)

Grassmannian identities from tricolored subdivisions

- Given a permutation $w=w_{1} \ldots w_{n}$, define the Parke-Taylor function

$$
\operatorname{PT}(w):=\frac{1}{P_{w_{1} w_{2}} P_{w_{2} w_{3}} \ldots P_{w_{n} w_{1}}},
$$

where the $P_{i j}$ are Plücker coordinates on the Grassmannian $\mathrm{Gr}_{2, n}^{\circ}$. We get the following identity.

Theorem (Parisi-ShermanBennett-Tessler-W)

Grassmannian identities from tricolored subdivisions

- Given a permutation $w=w_{1} \ldots w_{n}$, define the Parke-Taylor function

$$
\operatorname{PT}(w):=\frac{1}{P_{w_{1} w_{2}} P_{w_{2} w_{3}} \ldots P_{w_{n} w_{1}}}
$$

where the $P_{i j}$ are Plücker coordinates on the Grassmannian $\mathrm{Gr}_{2, n}^{\circ}$. We get the following identity.

Theorem (Parisi-ShermanBennett-Tessler-W)

Grassmannian identities from tricolored subdivisions

- Given a permutation $w=w_{1} \ldots w_{n}$, define the Parke-Taylor function

$$
\operatorname{PT}(w):=\frac{1}{P_{w_{1} w_{2}} P_{w_{2} w_{3}} \ldots P_{w_{n} w_{1}}}
$$

where the $P_{i j}$ are Plücker coordinates on the Grassmannian $\mathrm{Gr}_{2, n}^{\circ}$. We get the following identity.

Theorem (Parisi-ShermanBennett-Tessler-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

where the sum is over all circular extensions (w) of C_{τ}.

Grassmannian identities from tricolored subdivisions

- Given a permutation $w=w_{1} \ldots w_{n}$, define the Parke-Taylor function

$$
\operatorname{PT}(w):=\frac{1}{P_{w_{1} w_{2}} P_{w_{2} w_{3}} \ldots P_{w_{n} w_{1}}},
$$

where the $P_{i j}$ are Plücker coordinates on the Grassmannian $\mathrm{Gr}_{2, n}^{\circ}$.
We get the following identity.

Theorem (Parisi-ShermanBennett-Tessler-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order.

where the sum is over all circular extensions (w) of C_{τ}.

Grassmannian identities from tricolored subdivisions

- Given a permutation $w=w_{1} \ldots w_{n}$, define the Parke-Taylor function

$$
\operatorname{PT}(w):=\frac{1}{P_{w_{1} w_{2}} P_{w_{2} w_{3}} \ldots P_{w_{n} w_{1}}},
$$

where the $P_{i j}$ are Plücker coordinates on the Grassmannian $\mathrm{Gr}_{2, n}^{\circ}$.
We get the following identity.

Theorem (Parisi-ShermanBennett-Tessler-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$
\sum_{w} \mathrm{PT}(w)=0
$$

where the sum is over all circular extensions (w) of C_{τ}.

Grassmannian identities from tricolored subdivisions

- Given a permutation $w=w_{1} \ldots w_{n}$, define the Parke-Taylor function

$$
\operatorname{PT}(w):=\frac{1}{P_{w_{1} w_{2}} P_{w_{2} w_{3}} \ldots P_{w_{n} w_{1}}},
$$

where the $P_{i j}$ are Plücker coordinates on the Grassmannian $\mathrm{Gr}_{2, n}^{\circ}$.
We get the following identity.

Theorem (Parisi-ShermanBennett-Tessler-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$
\sum_{w} \mathrm{PT}(w)=0,
$$

where the sum is over all circular extensions (w) of C_{τ}.

Grassmannian identities from tricolored subdivisions

The Parke-Taylor function is $\operatorname{PT}\left(w_{1} \ldots w_{n}\right):=\frac{1}{P_{w_{1} w_{2}} P_{w_{2} w_{3} \ldots P_{w_{n} w_{1}}}}$.

Theorem (P-SB-T-W)
 Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

where the sum is over all circular extensions (w) of C_{τ}

```
Example:
The circular extensions of C}\mp@subsup{C}{\tau}{}\mathrm{ are (1234),(1243), (1423),
so Thm says}\frac{1}{\mp@subsup{P}{12}{}\mp@subsup{P}{23}{}\mp@subsup{P}{34}{}\mp@subsup{P}{41}{}}+\frac{1}{\mp@subsup{P}{12}{}\mp@subsup{P}{24}{}\mp@subsup{P}{43}{}\mp@subsup{P}{31}{}}+\frac{1}{\mp@subsup{P}{14}{}\mp@subsup{P}{42}{}\mp@subsup{P}{23}{}\mp@subsup{P}{31}{}}=
(Rk: 3-term Plücker relation)
```


Grassmannian identities from tricolored subdivisions

The Parke-Taylor function is $\operatorname{PT}\left(w_{1} \ldots w_{n}\right):=\frac{1}{P_{w_{1} w_{2}} P_{w_{2} w_{3} \ldots P_{w_{n} w_{1}}}}$.

Theorem (P-SB-T-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$
\sum_{w} \mathrm{PT}(w)=0,
$$

where the sum is over all circular extensions (w) of C_{τ}.

Grassmannian identities from tricolored subdivisions

The Parke-Taylor function is $\operatorname{PT}\left(w_{1} \ldots w_{n}\right):=\frac{1}{P_{w_{1} w_{2}} P_{w_{2} w_{3} \ldots P_{w_{n} w_{1}}}}$.

Theorem (P-SB-T-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$
\sum_{w} \mathrm{PT}(w)=0,
$$

where the sum is over all circular extensions (w) of C_{τ}.

Example:

The circular extensions of C_{τ} are (1234), (1243), (1423),
so Thm says $\frac{1}{P_{12} P_{23} P_{34} P_{41}}+\frac{1}{P_{12} P_{24} P_{43} P_{31}}+\frac{1}{P_{14} P_{42} P_{23} P_{31}}=0$
(Rk: 3-term Plücker relation)

Grassmannian identities from tricolored subdivisions

The Parke-Taylor function is $\operatorname{PT}\left(w_{1} \ldots w_{n}\right):=\frac{1}{P_{w_{1} w_{2}} P_{w_{2} w_{3}} \ldots P_{w_{n} w_{1}}}$.

Theorem (P-SB-T-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$
\sum_{w} \mathrm{PT}(w)=0,
$$

where the sum is over all circular extensions (w) of C_{τ}.

Example:

The circular extensions of C_{τ} are (1234), (1243), (1423),
(Rk: 3-term Plücker relation)

Grassmannian identities from tricolored subdivisions

The Parke-Taylor function is $\operatorname{PT}\left(w_{1} \ldots w_{n}\right):=\frac{1}{P_{w_{1} w_{2}} P_{w_{2} w_{3}} \ldots P_{w_{n} w_{1}}}$.

Theorem (P-SB-T-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$
\sum_{w} \mathrm{PT}(w)=0,
$$

where the sum is over all circular extensions (w) of C_{τ}.

Example:

The circular extensions of C_{τ} are (1234), (1243), (1423), so Thm says $\frac{1}{P_{12} P_{23} P_{34} P_{41}}+\frac{1}{P_{12} P_{24} P_{43} P_{31}}+\frac{1}{P_{14} P_{42} P_{23} P_{31}}=0$.

Grassmannian identities from tricolored subdivisions

The Parke-Taylor function is $\operatorname{PT}\left(w_{1} \ldots w_{n}\right):=\frac{1}{P_{w_{1} w_{2}} P_{w_{2} w_{3} \ldots P_{w_{n} w_{1}}}}$.

Theorem (P-SB-T-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$
\sum_{w} \mathrm{PT}(w)=0,
$$

where the sum is over all circular extensions (w) of C_{τ}.

Example:

The circular extensions of C_{τ} are (1234), (1243), (1423), so Thm says $\frac{1}{P_{12} P_{23} P_{34} P_{41}}+\frac{1}{P_{12} P_{24} P_{43} P_{31}}+\frac{1}{P_{14} P_{42} P_{23} P_{31}}=0$. (Rk: 3-term Plücker relation)

Parke-Taylor identities from tricolored subdivisions

Theorem (P-SB-T-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$
\sum_{w} \mathrm{PT}(w)=0,
$$

where the sum is over all circular extensions (w) of C_{τ}.

- PT functions related to: cohomology of $M_{0, n}$ and scattering eqns (Cachazo-He-Yuan); Lie polynomials (Frost-Mason); non-planar plabic graphs (Arkani-Hamed-Bourjaily-Cachazo-Postnikov-Trnka)
- Thm above implies the $U(1)$ decoupling identities and shuffle identities for Parke-Taylor functions.
- There are some analogous results for linear extensions of posets due to Curtis Greene, in connection to the Murnaghan-Nakayama formula (rep theory of S_{n}).

Parke-Taylor identities from tricolored subdivisions

Theorem (P-SB-T-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$
\sum_{w} \mathrm{PT}(w)=0,
$$

where the sum is over all circular extensions (w) of C_{τ}.

- PT functions related to: cohomology of $\mathcal{M}_{0, n}$ and scattering eqns (Cachazo-He-Yuan); Lie polynomials (Frost-Mason); non-planar plabic graphs (Arkani-Hamed-Bourjaily-Cachazo-Postnikov-Trnka)
- Thm above implies the $U(1)$ decoupling identities and shuffle identities for Parke-Taylor functions.
- There are some analogous results for linear extensions of posets due to Curtis Greene, in connection to the Murnaghan-Nakayama formula

Parke-Taylor identities from tricolored subdivisions

Theorem (P-SB-T-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$
\sum_{w} \mathrm{PT}(w)=0,
$$

where the sum is over all circular extensions (w) of C_{τ}.

- PT functions related to: cohomology of $\mathcal{M}_{0, n}$ and scattering eqns (Cachazo-He-Yuan); Lie polynomials (Frost-Mason); non-planar plabic graphs (Arkani-Hamed-Bourjaily-Cachazo-Postnikov-Trnka).
- Ihm above implies the U(1) decoupling identities and shutfle identities for Parke-Taylor functions.
- There are some analogous results for linear extensions of posets due to Curtis Greene, in connection to the Murnaghan-Nakayama formula
\square

Parke-Taylor identities from tricolored subdivisions

Theorem (P-SB-T-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$
\sum_{w} \mathrm{PT}(w)=0,
$$

where the sum is over all circular extensions (w) of C_{τ}.

- PT functions related to: cohomology of $\mathcal{M}_{0, n}$ and scattering eqns (Cachazo-He-Yuan); Lie polynomials (Frost-Mason); non-planar plabic graphs (Arkani-Hamed-Bourjaily-Cachazo-Postnikov-Trnka).
- Thm above implies the $U(1)$ decoupling identities and shuffle identities for Parke-Taylor functions.
- There are some analogous results for linear extensions of posets due to Curtis Greene, in connection to the Murnaghan-Nakayama formula (rep theory of S_{n})

Parke-Taylor identities from tricolored subdivisions

Theorem (P-SB-T-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$
\sum_{w} \mathrm{PT}(w)=0,
$$

where the sum is over all circular extensions (w) of C_{τ}.

- PT functions related to: cohomology of $\mathcal{M}_{0, n}$ and scattering eqns (Cachazo-He-Yuan); Lie polynomials (Frost-Mason); non-planar plabic graphs (Arkani-Hamed-Bourjaily-Cachazo-Postnikov-Trnka).
- Thm above implies the $U(1)$ decoupling identities and shuffle identities for Parke-Taylor functions.
- There are some analogous results for linear extensions of posets due to Curtis Greene, in connection to the Murnaghan-Nakayama formula (rep theory of S_{n}).

Tricolored subdivisions and Parke-Taylor polytopes

- We can associate a Parke-Taylor polytope $\Gamma_{\tau} \subset \mathbb{R}^{n-1}$ to each tricolored subdivision on $[n]$: for any compatible arc $i \rightarrow j$ with $i<j$, $\operatorname{area}(i \rightarrow j) \leq x_{i}+x_{i+1}+\cdots+x_{j-1} \leq \operatorname{area}(i \rightarrow j)+\operatorname{gr-area}(i \rightarrow j)+1$.
- A compatible arc is an edge of a polygon or lies entirely inside a black or white polygon.
- $\operatorname{area}(i \rightarrow j)($ resp gr-area $(i \rightarrow j))$ is the "black area" (resp. "grey area") to the left of the arc.
- Above, $2 \rightarrow 7$ is a compatible arc. Gives inequality:

Tricolored subdivisions and Parke-Taylor polytopes

- We can associate a Parke-Taylor polytope $\Gamma_{\tau} \subset \mathbb{R}^{n-1}$ to each tricolored subdivision on [n]:
area $(i \rightarrow j) \leq x_{i}+x_{i+1}+\cdots+x_{j-1} \leq \operatorname{area}(i \rightarrow j)+\operatorname{gr-area}(i \rightarrow j)+1$.
- A compatible arc is an edge of a polygon or lies entirely inside a black or white polygon.
- $\operatorname{area}(i \rightarrow j)($ resp gr-area $(i \rightarrow j))$ is the "black area" (resp. "grey area") to the left of the arc.
- Above, $2 \rightarrow 7$ is a compatible arc. Gives inequality:

Tricolored subdivisions and Parke-Taylor polytopes

- We can associate a Parke-Taylor polytope $\Gamma_{\tau} \subset \mathbb{R}^{n-1}$ to each tricolored subdivision on [n]: for any compatible arc $i \rightarrow j$ with $i<j$, area $(i \rightarrow j) \leq x_{i}+x_{i+1}+\cdots+x_{j-1} \leq \operatorname{area}(i \rightarrow j)+\operatorname{gr-area}(i \rightarrow j)+1$. - A compatible arc is an edge of a polygon or lies entirely inside a black or white polygon.
- $\operatorname{area}(i \rightarrow j)($ resp gr-area $(i \rightarrow j))$ is the "black area" (resp. "grey area") to the left of the arc.
- Above, $2 \rightarrow 7$ is a compatible arc. Gives inequality:

Tricolored subdivisions and Parke-Taylor polytopes

- We can associate a Parke-Taylor polytope $\Gamma_{\tau} \subset \mathbb{R}^{n-1}$ to each tricolored subdivision on [n]: for any compatible arc $i \rightarrow j$ with $i<j$, $\operatorname{area}(i \rightarrow j) \leq x_{i}+x_{i+1}+\cdots+x_{j-1} \leq \operatorname{area}(i \rightarrow j)+\operatorname{gr-area}(i \rightarrow j)+1$.
A compatible arc is an edge of a polygon or lies entirely inside a black or white polygon.
- $\operatorname{area}(i \rightarrow j)($ resp gr-area $(i \rightarrow j))$ is the "black area" (resp. "grey area") to the left of the arc.
- Above, $2 \rightarrow 7$ is a compatible arc. Gives inequality:

Tricolored subdivisions and Parke-Taylor polytopes

- We can associate a Parke-Taylor polytope $\Gamma_{\tau} \subset \mathbb{R}^{n-1}$ to each tricolored subdivision on [n]: for any compatible arc $i \rightarrow j$ with $i<j$, $\operatorname{area}(i \rightarrow j) \leq x_{i}+x_{i+1}+\cdots+x_{j-1} \leq \operatorname{area}(i \rightarrow j)+\operatorname{gr-area}(i \rightarrow j)+1$.
- A compatible arc is an edge of a polygon or lies entirely inside a black or white polygon.
- area $(i \rightarrow j)($ resp gr-area $(i \rightarrow j))$ is the "black area" (resp. area") to the left of the arc.
- Above, $2 \rightarrow 7$ is a compatible arc. Gives inequality:

Tricolored subdivisions and Parke-Taylor polytopes

- We can associate a Parke-Taylor polytope $\Gamma_{\tau} \subset \mathbb{R}^{n-1}$ to each tricolored subdivision on [n]: for any compatible arc $i \rightarrow j$ with $i<j$, $\operatorname{area}(i \rightarrow j) \leq x_{i}+x_{i+1}+\cdots+x_{j-1} \leq \operatorname{area}(i \rightarrow j)+\operatorname{gr-area}(i \rightarrow j)+1$.
- A compatible arc is an edge of a polygon or lies entirely inside a black or white polygon.
- area $(i \rightarrow j)$ (resp gr-area $(i \rightarrow j)$) is the "black area" (resp. "grey area") to the left of the arc.
- Above, $2 \rightarrow 7$ is a compatible arc. Gives inequality:

Tricolored subdivisions and Parke-Taylor polytopes

- We can associate a Parke-Taylor polytope $\Gamma_{\tau} \subset \mathbb{R}^{n-1}$ to each tricolored subdivision on [n]: for any compatible arc $i \rightarrow j$ with $i<j$, $\operatorname{area}(i \rightarrow j) \leq x_{i}+x_{i+1}+\cdots+x_{j-1} \leq \operatorname{area}(i \rightarrow j)+\operatorname{gr-area}(i \rightarrow j)+1$.
- A compatible arc is an edge of a polygon or lies entirely inside a black or white polygon.
- area $(i \rightarrow j)$ (resp gr-area $(i \rightarrow j)$) is the "black area" (resp. "grey area") to the left of the arc.
- Above, $2 \rightarrow 7$ is a compatible arc. Gives inequality:

$$
1 \leq x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \leq 1+2+1
$$

Decompositions of Parke-Taylor polytopes

> We've seen how each tricolored subdivision τ gives rise to: a partial cyclic order C_{τ} and a Parke-Taylor polytope Γ_{τ}.

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Decompositions of Parke-Taylor polytopes

We've seen how each tricolored subdivision τ gives rise to: a partial cyclic order C_{τ} and a Parke-Taylor polytope Γ_{τ}.

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Decompositions of Parke-Taylor polytopes

We've seen how each tricolored subdivision τ gives rise to: a partial cyclic order C_{τ} and a Parke-Taylor polytope Γ_{τ}.

Theorem (Parisi-Sherman-Bennett-Tessler-W.)
Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γ_{τ} has
a triangulation

$$
\Gamma_{\tau}=\bigcup \Delta_{(w)}
$$

into unit simplices $\Delta_{(w)}$, where w ranges over all circular extensions of the partial cyclic order C_{τ}. In particular, the normalized volume of Γ_{τ} equals the number of circular extensions of C_{T}.

Decompositions of Parke-Taylor polytopes

We've seen how each tricolored subdivision τ gives rise to: a partial cyclic order C_{τ} and a Parke-Taylor polytope Γ_{τ}.

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Let τ be a tricolored subdivision.
a triangulation

$$
\Gamma_{\tau}=\bigcup \Delta_{(w)}
$$

into unit simplices $\Delta_{(w)}$, where w ranges over all circular extensions of the partial cyclic order C_{τ}. In particular, the normalized volume of Γ_{τ} equals the number of circular extensions of C_{T}.

Decompositions of Parke-Taylor polytopes

We've seen how each tricolored subdivision τ gives rise to: a partial cyclic order C_{τ} and a Parke-Taylor polytope Γ_{τ}.

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γ_{τ} has a triangulation

$$
\Gamma_{\tau}=\bigcup \Delta_{(w)}
$$

into unit simplices $\Delta_{(w)}$, where w ranges over all circular extensions of the partial cyclic order C_{τ}. In particular, the normalized volume of Γ_{τ} equals the number of circular extensions of C_{τ}.

Decompositions of Parke-Taylor polytopes

We've seen how each tricolored subdivision τ gives rise to: a partial cyclic order C_{τ} and a Parke-Taylor polytope Γ_{τ}.

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γ_{τ} has a triangulation

$$
\Gamma_{\tau}=\bigcup \Delta_{(w)}
$$

into unit simplices $\Delta_{(w)}$, where w ranges over all circular extensions of the partial cyclic order C_{τ}.

Decompositions of Parke-Taylor polytopes

We've seen how each tricolored subdivision τ gives rise to: a partial cyclic order C_{τ} and a Parke-Taylor polytope Γ_{τ}.

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γ_{τ} has a triangulation

$$
\Gamma_{\tau}=\bigcup \Delta_{(w)}
$$

into unit simplices $\Delta_{(w)}$, where w ranges over all circular extensions of the partial cyclic order C_{τ}. In particular, the normalized volume of Γ_{τ} equals the number of circular extensions of C_{τ}.

Decompositions of Parke-Taylor polytopes

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γ_{τ} has a triangulation

$$
\Gamma_{\tau}=\bigcup \Delta_{(w)}
$$

into unit simplices $\Delta_{(w)}$, where w ranges over circular extensions of C_{τ}.

- Reminiscent of Stanley's result that the volume of the order polytope of a poset P equals the number of linear extensions of P. Related to work of Ayyer-Josuat-Verges-Ramassamy, and Gonzalez D'Leon-Hanusa-Morales-Yip.

Decompositions of Parke－Taylor polytopes

Theorem（Parisi－Sherman－Bennett－Tessler－W．）

Let τ be a tricolored subdivision．Then the Parke－Taylor polytope Γ_{τ} has a triangulation

$$
\Gamma_{\tau}=\bigcup \Delta_{(w)}
$$

into unit simplices $\Delta_{(w)}$ ，where w ranges over circular extensions of C_{τ} ．
－Reminiscent of Stanley＇s result that the volume of the order polytope of a poset P equals the number of linear extensions of P Related to work of Ayyer－Josuat－Verges－Ramassamy，and Gonzalez D＇Leon－Hanusa－Morales－Yip
－Yuhan Jiang（in progress）：gives formula for the h⿱⿱⺌冖口⿴囗十心．vector of Γ_{T} ．

Decompositions of Parke-Taylor polytopes

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γ_{τ} has a triangulation

$$
\Gamma_{\tau}=\bigcup \Delta_{(w)}
$$

into unit simplices $\Delta_{(w)}$, where w ranges over circular extensions of C_{τ}.

- Reminiscent of Stanley's result that the volume of the order polytope of a poset P equals the number of linear extensions of P.
Related to work of Ayyer-Josuat-Verges-Ramassamy, and
Gonzalez D'Leon-Hanusa-Morales-Yip
- Yuhan Jiang (in progress): gives formula for the havector of $\boldsymbol{T}_{\tau} \cdot \bar{\equiv}$

Decompositions of Parke-Taylor polytopes

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γ_{τ} has a triangulation

$$
\Gamma_{\tau}=\bigcup \Delta_{(w)}
$$

into unit simplices $\Delta_{(w)}$, where w ranges over circular extensions of C_{τ}.

- Reminiscent of Stanley's result that the volume of the order polytope of a poset P equals the number of linear extensions of P. Related to work of Ayyer-Josuat-Verges-Ramassamy, and Gonzalez D'Leon-Hanusa-Morales-Yip.

Decompositions of Parke-Taylor polytopes

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γ_{τ} has a triangulation

$$
\Gamma_{\tau}=\bigcup \Delta_{(w)}
$$

into unit simplices $\Delta_{(w)}$, where w ranges over circular extensions of C_{τ}.

- Reminiscent of Stanley's result that the volume of the order polytope of a poset P equals the number of linear extensions of P. Related to work of Ayyer-Josuat-Verges-Ramassamy, and Gonzalez D'Leon-Hanusa-Morales-Yip.
- Yuhan Jiang (in progress): gives formula for the h^{*} vector of Γ_{τ}.

What is the amplituhedron?

Recall: the Grassmannian $G r_{k, n}(\mathbb{C}):=\left\{V \mid V \subset \mathbb{C}^{n}, \operatorname{dim} V=k\right\}$ Represent an element of $G r_{k, n}$ by a full-rank $k \times n$ matrix C.

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 2 & 1
\end{array}\right)
$$

Given $I \in\binom{[n]}{k}$, the Plücker coordinate $p_{I}(C)$ is the minor of the $k \times k$ submatrix of C in column set l.
The matroid associated to $C \in G r_{k, n}$ is $\mathcal{M}(C):=\left\{\left.I \in\binom{[n]}{k} \right\rvert\, p_{I}(C) \neq 0.\right\}$
Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid stratification of $G r_{k, n}$.
Given $\mathcal{M} \subset\binom{[n]}{k}$, let $S_{\mathcal{M}}=\left\{C \in G r_{k, n} \mid p_{I}(C) \neq 0\right.$ iff $\left.I \in \mathcal{M}\right\}$
Matroid stratification: $G r_{k, n}=\sqcup_{\mathcal{M}} S_{\mathcal{M}}$
However, the tonology of matroid strata is terrible -
Mnev's universality theorem (1987)

What is the amplituhedron?

Recall: the Grassmannian $G r_{k, n}(\mathbb{C}):=\left\{V \mid V \subset \mathbb{C}^{n}, \operatorname{dim} V=k\right\}$ Represent an element of $G r_{k, n}$ by a full-rank $k \times n$ matrix C.

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 2 & 1
\end{array}\right)
$$

Given $I \in\binom{[n]}{k}$, the Plücker coordinate $p_{I}(C)$ is the minor of the $k \times k$ submatrix of C in column set l.
The matroid associated to $C \in G r_{k, n}$ is $\mathcal{M}(C):=\left\{\left.I \in\binom{[n]}{k} \right\rvert\, p_{I}(C) \neq 0.\right\}$ Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid stratification of $G r_{k, n}$.
Given $\mathcal{M} \subset\binom{[n]}{k}$, let $S_{\mathcal{M}}=\left\{C \in G r_{k, n} \mid p_{l}(C) \neq 0\right.$ iff $\left.I \in \mathcal{M}\right\}$ Matroid stratification: $G r_{k, n}=U_{M} S_{M}$.

However, the topology of matroid strata is terrible -
Mnev's universality theorem (1987)

What is the amplituhedron?

Recall: the Grassmannian $G r_{k, n}(\mathbb{C}):=\left\{V \mid V \subset \mathbb{C}^{n}, \operatorname{dim} V=k\right\}$ Represent an element of $G r_{k, n}$ by a full-rank $k \times n$ matrix C.

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 2 & 1
\end{array}\right)
$$

Given $I \in\binom{[n]}{k}$, the Plücker coordinate $p_{I}(C)$ is the minor of the $k \times k$ submatrix of C in column set l.
The matroid associated to $C \in G r_{k, n}$ is $\mathcal{M}(C):=\left\{\left.I \in\binom{[n]}{k} \right\rvert\, p_{I}(C) \neq 0.\right\}$ Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid stratification of $G r_{k, n}$.
Given $\mathcal{M} \subset\binom{[n]}{k}$, let $S_{\mathcal{M}}=\left\{C \in G r_{k, n} \mid p_{I}(C) \neq 0\right.$ iff $\left.I \in \mathcal{M}\right\}$
Matroid stratification: $G r_{k, n}=\sqcup_{\mathcal{M}} S_{\mathcal{M}}$
However, the tonology of matroid strata is terrible -
Mnev's universality theorem (1987)

What is the amplituhedron?

Recall: the Grassmannian $G r_{k, n}(\mathbb{C}):=\left\{V \mid V \subset \mathbb{C}^{n}, \operatorname{dim} V=k\right\}$ Represent an element of $G r_{k, n}$ by a full-rank $k \times n$ matrix C.

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 2 & 1
\end{array}\right)
$$

Given $I \in\binom{[n]}{k}$, the Plücker coordinate $p_{I}(C)$ is the minor of the $k \times k$ submatrix of C in column set l.
The matroid associated to $C \in G r_{k, n}$ is $\mathcal{M}(C):=\left\{\left.I \in\binom{[n]}{k} \right\rvert\, p_{I}(C) \neq 0.\right\}$ Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid stratification of $G r_{k, n}$.
Given $\mathcal{M} \subset\binom{[n]}{k}$, let $S_{\mathcal{M}}=\left\{C \in G r_{k, n} \mid p_{l}(C) \neq 0\right.$ iff $\left.I \in \mathcal{M}\right\}$.

$$
\text { Matroid stratification: } G r_{k, n}=\sqcup_{\mathcal{M}} S_{\mathcal{M}} \text {. }
$$

However, the topology of matroid strata is terrible -
Mnev's universality theorem (1987)

What is the amplituhedron?

Recall: the Grassmannian $G r_{k, n}(\mathbb{C}):=\left\{V \mid V \subset \mathbb{C}^{n}, \operatorname{dim} V=k\right\}$ Represent an element of $G r_{k, n}$ by a full-rank $k \times n$ matrix C.

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 2 & 1
\end{array}\right)
$$

Given $I \in\binom{[n]}{k}$, the Plücker coordinate $p_{I}(C)$ is the minor of the $k \times k$ submatrix of C in column set l.
The matroid associated to $C \in G r_{k, n}$ is $\mathcal{M}(C):=\left\{\left.I \in\binom{[n]}{k} \right\rvert\, p_{I}(C) \neq 0.\right\}$ Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid stratification of $G r_{k, n}$.
Given $\mathcal{M} \subset\binom{[n]}{k}$, let $S_{\mathcal{M}}=\left\{C \in G r_{k, n} \mid p_{l}(C) \neq 0\right.$ iff $\left.I \in \mathcal{M}\right\}$.
Matroid stratification: $G r_{k, n}=\sqcup_{\mathcal{M}} S_{\mathcal{M}}$.
However, the topology of matroid strata is terrible -
Mnev's universality theorem (1987)

What is the amplituhedron?

Recall: the Grassmannian $G_{k, n}(\mathbb{C}):=\left\{V \mid V \subset \mathbb{C}^{n}, \operatorname{dim} V=k\right\}$ Represent an element of $G_{r, n}$ by a full-rank $k \times n$ matrix C.

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 2 & 1
\end{array}\right)
$$

Given $I \in\binom{[n]}{k}$, the Plücker coordinate $p_{I}(C)$ is the minor of the $k \times k$ submatrix of C in column set l.
The matroid associated to $C \in G r_{k, n}$ is $\mathcal{M}(C):=\left\{\left.I \in\binom{[n]}{k} \right\rvert\, p_{I}(C) \neq 0.\right\}$ Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid stratification of $G r_{k, n}$.
Given $\mathcal{M} \subset\binom{[n]}{k}$, let $S_{\mathcal{M}}=\left\{C \in G r_{k, n} \mid p_{l}(C) \neq 0\right.$ iff $\left.I \in \mathcal{M}\right\}$.
Matroid stratification: $G r_{k, n}=\sqcup_{\mathcal{M}} S_{\mathcal{M}}$.
However, the topology of matroid strata is terrible -

What is the amplituhedron?

Recall: the Grassmannian $G r_{k, n}(\mathbb{C}):=\left\{V \mid V \subset \mathbb{C}^{n}, \operatorname{dim} V=k\right\}$ Represent an element of $G r_{k, n}$ by a full-rank $k \times n$ matrix C.

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 2 & 1
\end{array}\right)
$$

Given $I \in\binom{[n]}{k}$, the Plücker coordinate $p_{I}(C)$ is the minor of the $k \times k$ submatrix of C in column set l.
The matroid associated to $C \in G r_{k, n}$ is $\mathcal{M}(C):=\left\{\left.I \in\binom{[n]}{k} \right\rvert\, p_{I}(C) \neq 0.\right\}$ Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid stratification of $G r_{k, n}$.
Given $\mathcal{M} \subset\binom{[n]}{k}$, let $S_{\mathcal{M}}=\left\{C \in G r_{k, n} \mid p_{l}(C) \neq 0\right.$ iff $\left.I \in \mathcal{M}\right\}$.
Matroid stratification: $G r_{k, n}=\sqcup_{\mathcal{M}} S_{\mathcal{M}}$.
However, the topology of matroid strata is terrible Mnev's universality theorem (1987).

What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on totally non-negative (TNN) or "positive" Grassmannian.

Let $G r \geq 0$ be subset of $G r_{k, n}(\mathbb{R})$ where Plucker coords $p_{I} \geq 0$ for all /.
Inspired by matroid stratification, one can partition $G r \geq 0$ into pieces based on which Plücker coordinates are positive and which are 0.

Let $\mathcal{M} \subseteq\binom{[n]}{k}$.
In contrast to terrible topology of matroid strata
(Postnikov, see also Rietsch) If $S_{\mathcal{M}}$ is non-empty it is a (positroid) cell, i.e. homeomorphic to an open ball.

What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on totally non-negative (TNN) or "positive" Grassmannian.

In contrast to terrible topology of matroid strata
(Postnikov, see also Rietsch) If $S_{\mathcal{M}}$ is non-empty it is a (positroid) cell, i.e. homeomorphic to an open ball.

What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on totally non-negative (TNN) or "positive" Grassmannian.

Let $G r_{k, n}^{\geq 0}$ be subset of $G r_{k, n}(\mathbb{R})$ where Plucker coords $p_{I} \geq 0$ for all I.

n contrast to terrible topology of matroid strata
(Postnikov, see also Rietsch) If $S_{\mathcal{M}}$ is non-empty it is a (positroid) cell, i.e. homeomorphic to an open ball.

What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on totally non-negative (TNN) or "positive" Grassmannian.

Let $G r_{k, n}^{\geq 0}$ be subset of $G r_{k, n}(\mathbb{R})$ where Plucker coords $p_{I} \geq 0$ for all I.
Inspired by matroid stratification, one can partition $G r_{k, n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

In contrast to terrible topology of matroid strata
(Postnikov, see also Rietsch) If $S_{\mathcal{M}}$ is non-empty it is a (positroid) cell, i.e homeomorphic to an open ball.

What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on totally non-negative (TNN) or "positive" Grassmannian.

Let $G r_{k, n}^{\geq 0}$ be subset of $G r_{k, n}(\mathbb{R})$ where Plucker coords $p_{I} \geq 0$ for all I.
Inspired by matroid stratification, one can partition $G r_{k, n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let $\mathcal{M} \subseteq\binom{[n]}{k}$.
In contrast to terrible topology of matroid strata
(Postnikov, see also Rietsch) If $S_{\mathcal{M}}$ is non-empty it is a (positroid) cell, i.e homeomorphic to an open ball.

What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on totally non-negative (TNN) or "positive" Grassmannian.

Let $G r_{k, n}^{\geq 0}$ be subset of $G r_{k, n}(\mathbb{R})$ where Plucker coords $p_{I} \geq 0$ for all I.
Inspired by matroid stratification, one can partition $G r_{k, n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let $\mathcal{M} \subseteq\binom{[n]}{k}$. Let $S_{\mathcal{M}}:=\left\{C \in G r_{k, n}^{\geq 0} \mid p_{l}(C)>0\right.$ iff $\left.I \in \mathcal{M}\right\}$.
In contrast to terrible topology of matroid strata
(Postnikov, see also Rietsch) If $S_{\mathcal{M}}$ is non-empty it is a (positroid) cell, i.e homeomorphic to an open ball.

What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on totally non-negative (TNN) or "positive" Grassmannian.

Let $G r_{k, n}^{\geq 0}$ be subset of $G r_{k, n}(\mathbb{R})$ where Plucker coords $p_{I} \geq 0$ for all I.
Inspired by matroid stratification, one can partition $G r_{k, n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let $\mathcal{M} \subseteq\binom{[n]}{k}$. Let $S_{\mathcal{M}}:=\left\{C \in G r_{k, n}^{\geq 0} \mid p_{l}(C)>0\right.$ iff $\left.I \in \mathcal{M}\right\}$.
In contrast to terrible topology of matroid strata ...

What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on totally non-negative (TNN) or "positive" Grassmannian.

Let $G r_{k, n}^{\geq 0}$ be subset of $G r_{k, n}(\mathbb{R})$ where Plucker coords $p_{I} \geq 0$ for all I.
Inspired by matroid stratification, one can partition $G r_{k, n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

$$
\text { Let } \mathcal{M} \subseteq\binom{[n]}{k} . \text { Let } S_{\mathcal{M}}:=\left\{C \in G r_{k, n}^{\geq 0} \mid p_{l}(C)>0 \text { iff } I \in \mathcal{M}\right\} .
$$

In contrast to terrible topology of matroid strata ...
(Postnikov, see also Rietsch) If $S_{\mathcal{M}}$ is non-empty it is a (positroid) cell, i.e. homeomorphic to an open ball.

Can classify the (nonempty) cells

What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on totally non-negative (TNN) or "positive" Grassmannian.

Let $G r_{k, n}^{\geq 0}$ be subset of $G r_{k, n}(\mathbb{R})$ where Plucker coords $p_{I} \geq 0$ for all I.
Inspired by matroid stratification, one can partition $G r_{k, n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

$$
\text { Let } \mathcal{M} \subseteq\binom{[n]}{k} \text {. Let } S_{\mathcal{M}}:=\left\{C \in G r_{k, n}^{\geq 0} \mid p_{l}(C)>0 \text { iff } I \in \mathcal{M}\right\} .
$$

In contrast to terrible topology of matroid strata ...
(Postnikov, see also Rietsch) If $S_{\mathcal{M}}$ is non-empty it is a (positroid) cell, i.e. homeomorphic to an open ball. So we have positroid cell decomposition

$$
G r_{k, n}^{\geq 0}=\sqcup S_{\mathcal{M}}
$$

Can classify the (nonempty) cells

What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on totally non-negative (TNN) or "positive" Grassmannian.

Let $G r_{k, n}^{\geq 0}$ be subset of $G r_{k, n}(\mathbb{R})$ where Plucker coords $p_{I} \geq 0$ for all I.
Inspired by matroid stratification, one can partition $G r_{k, n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

$$
\text { Let } \mathcal{M} \subseteq\binom{[n]}{k} \text {. Let } S_{\mathcal{M}}:=\left\{C \in G r_{k, n}^{\geq 0} \mid p_{I}(C)>0 \text { iff } I \in \mathcal{M}\right\} .
$$

In contrast to terrible topology of matroid strata ...
(Postnikov, see also Rietsch) If $S_{\mathcal{M}}$ is non-empty it is a (positroid) cell, i.e. homeomorphic to an open ball. So we have positroid cell decomposition

$$
G r_{k, n}^{\geq 0}=\sqcup S_{\mathcal{M}}
$$

Can classify the (nonempty) cells ...

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$, Arkani-Hamed-Trnka (2013).

Fix n, k, m with $k+m \leq n$.
Let $Z \in$ Mat $_{n, k+m}^{>0}$ be an $n \times(k+m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k} k+m$ sending a $k \times n$ matrix C to $\operatorname{span}(C Z)$. Set $\mathcal{A}_{n, k, m}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.

Motivation for the amplituhedron $(\mathcal{N}=4$ SYM $)$:

- the recurrence of Britto-Cachazo-Feng-Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" - singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- $\mathrm{AH}-\mathrm{T}$ found the amplituhedron as the answer to this question; BCFW recurrence is interpreted as "triangulation" \square of st

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$, Arkani-Hamed-Trnka (2013).

Fix n, k, m with $k+m \leq n$.
Let $Z \in$ Mat $_{n, k+m}^{>0}$ be an $n \times(k+m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $\operatorname{span}(C Z)$. Set $\mathcal{A}_{n, k, m}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k . k+m}$.

Motivation for the amplituhedron ($\mathcal{N}=4$ SYM)

- the recurrence of Britto-Cachazo-Feng-Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" - singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH-T found the amplituhedron as the answer to this question;

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$, Arkani-Hamed-Trnka (2013).

Fix n, k, m with $k+m \leq n$.
Let $Z \in$ Mat $_{n, k+m}^{>0}$ be an $n \times(k+m)$ matrix with max'l minors positive. Let Z be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $\operatorname{span}(C Z)$. Set $\mathcal{A}_{n, k, m}(Z):=\tilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.

Motivation for the amplituhedron ($\mathcal{N}=4$ SYM)

- the recurrence of Britto-Cachazo-Feng-Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" - singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH-T found the amplituhedron as the answer to this question:

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$, Arkani-Hamed-Trnka (2013).

Fix n, k, m with $k+m \leq n$.
Let $Z \in$ Mat $_{n, k+m}^{>0}$ be an $n \times(k+m)$ matrix with max'l minors positive. Let \tilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $\operatorname{span}(C Z)$. Set $\mathcal{A}_{n, k, m}(Z):=Z\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.

Motivation for the amplituhedron ($\mathcal{N}=4$ SYM)

- the recurrence of Britto-Cachazo-Feng-Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" - singularities not present in amplitude
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH-T found the amplituhedron as the answer to this question;

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$, Arkani-Hamed-Trnka (2013).

Fix n, k, m with $k+m \leq n$.
Let $Z \in$ Mat $_{n, k+m}^{>0}$ be an $n \times(k+m)$ matrix with max'l minors positive. Let \tilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $\operatorname{span}(C Z)$. Set $\mathcal{A}_{n, k, m}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.

Motivation for the amplituhedron ($\mathcal{N}=4$ SYM)

- the recurrence of Britto-Cachazo-Feng-Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" - singularities not present in amplitude
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH-T found the amplituhedron as the answer to this question:

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$, Arkani-Hamed-Trnka (2013).

Fix n, k, m with $k+m \leq n$.
Let $Z \in$ Mat $_{n, k+m}^{>0}$ be an $n \times(k+m)$ matrix with max'l minors positive. Let \tilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $\operatorname{span}(C Z)$. Set $\mathcal{A}_{n, k, m}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.

Motivation for the amplituhedron ($\mathcal{N}=4$ SYM):

- the recurrence of Britto-Cachazo-Feng-Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" - singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH-T found the amplituhedron as the answer to this question:

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$, Arkani-Hamed-Trnka (2013).

Fix n, k, m with $k+m \leq n$.
Let $Z \in$ Mat $_{n, k+m}^{>0}$ be an $n \times(k+m)$ matrix with max'l minors positive. Let \tilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $\operatorname{span}(C Z)$. Set $\mathcal{A}_{n, k, m}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.

Motivation for the amplituhedron ($\mathcal{N}=4$ SYM):

- the recurrence of Britto-Cachazo-Feng-Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta.
terms have "spurious poles" - singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the
volume of a polytope, with spurious poles arising from internal
boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- $\mathrm{AH}-\mathrm{T}$ found the amplituhedron as the answer to this question;

BCFW recurrence is interpreted as "triangulation" "oof (

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$, Arkani-Hamed-Trnka (2013).

Fix n, k, m with $k+m \leq n$.
Let $Z \in$ Mat $_{n, k+m}^{>0}$ be an $n \times(k+m)$ matrix with max'l minors positive. Let \tilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $\operatorname{span}(C Z)$. Set $\mathcal{A}_{n, k, m}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.

Motivation for the amplituhedron ($\mathcal{N}=4$ SYM):

- the recurrence of Britto-Cachazo-Feng-Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" - singularities not present in amplitude.
volume of a polytope, with spurious poles arising from internal
boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH-T found the amplituhedron as the answer to this question;

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$, Arkani-Hamed-Trnka (2013).

Fix n, k, m with $k+m \leq n$.
Let $Z \in$ Mat $_{n, k+m}^{>0}$ be an $n \times(k+m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $\operatorname{span}(C Z)$. Set $\mathcal{A}_{n, k, m}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.

Motivation for the amplituhedron ($\mathcal{N}=4$ SYM):

- the recurrence of Britto-Cachazo-Feng-Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" - singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. \qquad amplitude is the volume of some geometric object
- AH-T found the amplituhedron as the answer to this question;

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$, Arkani-Hamed-Trnka (2013).

Fix n, k, m with $k+m \leq n$.
Let $Z \in$ Mat $_{n, k+m}^{>0}$ be an $n \times(k+m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $\operatorname{span}(C Z)$. Set $\mathcal{A}_{n, k, m}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.

Motivation for the amplituhedron ($\mathcal{N}=4$ SYM):

- the recurrence of Britto-Cachazo-Feng-Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" - singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH-T found the amplituhedron as the answer to this question;

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$, Arkani-Hamed-Trnka (2013).

Fix n, k, m with $k+m \leq n$.
Let $Z \in$ Mat $_{n, k+m}^{>0}$ be an $n \times(k+m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $\operatorname{span}(C Z)$. Set $\mathcal{A}_{n, k, m}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.

Motivation for the amplituhedron ($\mathcal{N}=4$ SYM):

- the recurrence of Britto-Cachazo-Feng-Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" - singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- $\mathrm{AH}-\mathrm{T}$ found the amplituhedron as the answer to this question;

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$, Arkani-Hamed-Trnka (2013).

Fix n, k, m with $k+m \leq n$.
Let $Z \in$ Mat $_{n, k+m}^{>0}$ be an $n \times(k+m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $\operatorname{span}(C Z)$. Set $\mathcal{A}_{n, k, m}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.

Motivation for the amplituhedron ($\mathcal{N}=4$ SYM):

- the recurrence of Britto-Cachazo-Feng-Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" - singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH-T found the amplituhedron as the answer to this question; BCFW recurrence is interpreted as "triangulation" of $\mathcal{A}_{n, k, 4}(Z)$.

What is the amplituhedron?

- A "jewel at the heart of quantum physics" - Wired Magazine.

What is the amplituhedron?

- \#10 among the 100 top stories of 2013, Discover Magazine.

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$

Fix n, k, m with $k+m \leq n$, let $Z \in \operatorname{Mat}_{n, k+m}^{>0}$ (max minors >0). Let \widetilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $C Z$. Set $\left.A_{n k m}(Z):=\tilde{Z}\left(G r_{k}^{\geq 0}\right) \subset G r_{k}\right)+m$.

Special cases:

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$

Fix n, k, m with $k+m \leq n$, let $Z \in \operatorname{Mat}_{n, k+m}^{>0}$ (max minors >0).
Let Z be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $C Z$.
Set $\mathcal{A}_{n, k, m}(Z):=\tilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.
Special cases:

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$

Fix n, k, m with $k+m \leq n$, let $Z \in$ Mat $_{n, k+m}^{>0}$ (max minors >0). Let \widetilde{Z} be map $G r_{k . n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $C Z$.
Set $\mathcal{A}_{n, k, m}(Z):=\tilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.
Special cases:

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$

Fix n, k, m with $k+m \leq n$, let $Z \in$ Mat $_{n, k+m}^{>0}$ (max minors >0). Let \tilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $C Z$.
$\underset{\text { Special cases: }}{\mathcal{A}_{n, k, m}(Z)}$

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$

Fix n, k, m with $k+m \leq n$, let $Z \in$ Mat $_{n, k+m}^{>0}$ (max minors >0). Let \widetilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $C Z$. Set $\mathcal{A}_{n, k, m}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$

Fix n, k, m with $k+m \leq n$, let $Z \in$ Mat $_{n, k+m}^{>0}$ (max minors >0). Let \tilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $C Z$.
Set $\mathcal{A}_{n, k, m}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.
Special cases:

-
- If $k=1$ and $m=2, \mathcal{A}_{n, k, m} \subset G r_{1,3}$ is equivalent to an n-gon in $\mathbb{R P}^{2}$
- For $k=1$ and general m, n, get cyclic polytope in $\mathbb{R P}^{m}$
- For $m=1$ and general k, n, get bounded complex of cyclic hyperplane arrangement in \mathbb{R}^{k} (Karp-W.)

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$

Fix n, k, m with $k+m \leq n$, let $Z \in$ Mat $_{n, k+m}^{>0}$ (max minors >0).
Let \tilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $C Z$.
Set $\mathcal{A}_{n, k, m}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.
Special cases:

- If $m=n-k, \mathcal{A}_{n, k, m}(Z)=G r \geq 0$.
- If $k=1$ and $m=2, \mathcal{A}_{n, k, m} \subset G r_{1,3}$ is equivalent to an n-gon in $\mathbb{R P}^{2}$
- For $k=1$ and general m, n, get cyclic polytope in $\mathbb{R P P}^{m}$
- For $m=1$ and general k, n, get bounded complex of cyclic hyperplane arrangement in \mathbb{R}^{k} (Karp-W.)

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$

Fix n, k, m with $k+m \leq n$, let $Z \in$ Mat $_{n, k+m}^{>0}$ (max minors >0).
Let \widetilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $C Z$.
Set $\mathcal{A}_{n, k, m}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.
Special cases:

- If $m=n-k, \mathcal{A}_{n, k, m}(Z)=G r_{k, n}^{\geq 0}$.
- If $k=1$ and $m=2, \mathcal{A}_{n, k, m} \subset G r_{1,3}$ is equivalent to an n-gon in $\mathbb{R P}^{2}$:
- For $k=1$ and general m, n, get cyclic polytope in $\mathbb{R P P}^{m}$. hyperplane arrangement in \mathbb{R}^{k} (Karp-W.)

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$

Fix n, k, m with $k+m \leq n$, let $Z \in$ Mat $_{n, k+m}^{>0}$ (max minors >0).
Let \widetilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $C Z$.
Set $\mathcal{A}_{n, k, m}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.
Special cases:

- If $m=n-k, \mathcal{A}_{n, k, m}(Z)=G r_{k, n}^{\geq 0}$.
- If $k=1$ and $m=2, \mathcal{A}_{n, k, m} \subset G r_{1,3}$ is equivalent to an n-gon in $\mathbb{R P}^{2}$:
- For $k=1$ and general m, n, get cyclic polytope in $\mathbb{R P}^{m}$.
- For $m=1$ and general k, n, get bounded complex of cyclic hyperplane arrangement in \mathbb{R}^{k} (Karp-W.)

What is the amplituhedron?

The amplituhedron $\mathcal{A}_{n, k, m}(Z)$

Fix n, k, m with $k+m \leq n$, let $Z \in$ Mat $_{n, k+m}^{>0}$ (max minors >0).
Let \widetilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+m}$ sending a $k \times n$ matrix C to $C Z$.
Set $\mathcal{A}_{n, k, m}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+m}$.
Special cases:

- If $m=n-k, \mathcal{A}_{n, k, m}(Z)=G r_{k, n}^{\geq 0}$.
- If $k=1$ and $m=2, \mathcal{A}_{n, k, m} \subset G r_{1,3}$ is equivalent to an n-gon in $\mathbb{R P}^{2}$:
- For $k=1$ and general m, n, get cyclic polytope in $\mathbb{R P}^{m}$.
- For $m=1$ and general k, n, get bounded complex of cyclic hyperplane arrangement in \mathbb{R}^{k} (Karp-W.)

We'd like to "triangulate" or "tile" the amplituhedron

Motivation:

the "volume" of the amplituhedron computes scattering amplitudes; $\mathrm{AH}-\mathrm{T}$ conjectured that certain "BCFW cells" give a tiling of $\mathcal{A}_{n, k, 4}(Z)$; (proved for the "standard" BCFW tiling by EvenZohar-Lakrec-Tessler and generalized to all BCFW tilings by EZ-L-P-SB-T-W. $)_{\text {a }}$.

We'd like to "triangulate" or "tile" the amplituhedron

$$
\begin{aligned}
& \text { Have } G_{r, k, n}^{>0}=\sqcup_{\pi} S_{\pi} \text { cell complex, and } \tilde{Z}: G_{k, n}^{>0} \rightarrow \mathcal{A}_{n, k, k}(Z) \text { a continuous } \\
& \text { surjective map onto } k m \text {-dim'l amplituhedron } \mathcal{A}_{n, k, m}(Z) \text {. }
\end{aligned}
$$

Motivation:

the "volume" of the amplituhedron computes scattering amplitudes; $\mathrm{AH}-\mathrm{T}$ conjectured that certain "BCFW cells" give a tiling of $\mathcal{A}_{n, k, 4}(Z)$; (proved for the "standard" BCFW tiling by EvenZohar-Lakrec-Tessler and generalized to all BCFW tilings by EZ-L-P-SB-T-W. $)_{\text {a }}$.

We'd like to "triangulate" or "tile" the amplituhedron

Have $G r_{k, n}^{\geq 0}=\sqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z}: G r_{k, n}^{\geq 0} \rightarrow \mathcal{A}_{n, k, m}(Z)$ a continuous surjective map onto $k m$-dim'l amplituhedron $\mathcal{A}_{n, k, m}(Z)$.

Motivation:

the "volume" of the amplituhedron computes scattering amplitudes;
$\mathrm{AH}-\mathrm{T}$ conjectured that certain "BCFW cells" give a tiling of $\mathcal{A}_{n, k, 4}(Z)$;
(proved for the "standard" BCFW tiling by EvenZohar-Lakrec-Tessler and

We'd like to "triangulate" or "tile" the amplituhedron

Have $G r_{k, n}^{\geq 0}=\sqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z}: G r_{k, n}^{\geq 0} \rightarrow \mathcal{A}_{n, k, m}(Z)$ a continuous surjective map onto $k m$-dim'l amplituhedron $\mathcal{A}_{n, k, m}(Z)$.

A tiling of $\mathcal{A}_{n, k, m}(Z)$ is a collection $\left\{\overline{\tilde{Z}\left(S_{\pi}\right)} \mid \pi \in \mathcal{C}\right\}$ of closures of images of $k m$-dimensional cells, such that:

- \tilde{Z} is injective on each S_{π} for $\pi \in C \quad\left(\tilde{Z}\left(S_{\pi}\right)\right.$ a tile $)$
- their union equals $\mathcal{A}_{n, k, m}(Z)$
- their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.

Motivation:

the "volume" of the amplituhedron computes scattering amplitudes; AH-T conjectured that certain "BCFW cells" give a tiling of $\mathcal{A}_{n, k, 4}(Z)$ (proved for the "standard" BCFW tiling by EvenZohar-Lakrec-Tessler and generalized to all BCFW tilings by EZ-L-P-SB-T-W. $)_{\text {an }}$.

We'd like to "triangulate" or "tile" the amplituhedron

Have $G r_{k, n}^{\geq 0}=\sqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z}: G r_{k, n}^{\geq 0} \rightarrow \mathcal{A}_{n, k, m}(Z)$ a continuous surjective map onto $k m$-dim'l amplituhedron $\mathcal{A}_{n, k, m}(Z)$.

A tiling of $\mathcal{A}_{n, k, m}(Z)$ is a collection $\left\{\overline{\tilde{Z}\left(S_{\pi}\right)} \mid \pi \in \mathcal{C}\right\}$ of closures of images of $k m$-dimensional cells, such that:

- \tilde{Z} is injective on each S_{π} for $\pi \in \mathcal{C} \quad\left(\overline{\tilde{Z}\left(S_{\pi}\right)}\right.$ a tile)
- their union equals $\mathcal{A}_{n, k, m}(Z)$
- their interiors are pairwise disjoint

Motivation:

the "volume" of the amplituhedron computes scattering amplitudes; AH-T conjectured that certain "BCFW cells" give a tiling of $\mathcal{A}_{n, k, 4}(Z)$ (proved for the "standard" BCFW tiling by EvenZohar-Lakrec-Tessler and generalized to all BCFW tilings by EZ-L-P-SB-T-W. $)_{\text {a }}$.

We'd like to "triangulate" or "tile" the amplituhedron

Have $G r_{k, n}^{\geq 0}=\sqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z}: G r_{k, n}^{\geq 0} \rightarrow \mathcal{A}_{n, k, m}(Z)$ a continuous surjective map onto $k m$-dim'l amplituhedron $\mathcal{A}_{n, k, m}(Z)$.

A tiling of $\mathcal{A}_{n, k, m}(Z)$ is a collection $\left\{\overline{\tilde{Z}\left(S_{\pi}\right)} \mid \pi \in \mathcal{C}\right\}$ of closures of images of $k m$-dimensional cells, such that:

- \tilde{Z} is injective on each S_{π} for $\pi \in \mathcal{C} \quad\left(\overline{\tilde{Z}\left(S_{\pi}\right)}\right.$ a tile)
- their union equals $\mathcal{A}_{n, k, m}(Z)$
- their interiors are pairwise disjoint

Motivation:

the "volume" of the amplituhedron computes scattering amplitudes; AH-T conjectured that certain "BCFW cells" give a tiling of $\mathcal{A}_{n, k, 4}(Z)$ (proved for the "standard" BCFW tiling by EvenZohar-Lakrec-Tessler and generalized to all BCFW tilings by EZ-L-P-SB-T-W. $)_{\text {a }}$.

We'd like to "triangulate" or "tile" the amplituhedron

Have $G r_{k, n}^{\geq 0}=\sqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z}: G r_{k, n}^{\geq 0} \rightarrow \mathcal{A}_{n, k, m}(Z)$ a continuous surjective map onto $k m$-dim'l amplituhedron $\mathcal{A}_{n, k, m}(Z)$.

A tiling of $\mathcal{A}_{n, k, m}(Z)$ is a collection $\left\{\overline{\tilde{Z}\left(S_{\pi}\right)} \mid \pi \in \mathcal{C}\right\}$ of closures of images of $k m$-dimensional cells, such that:

- \tilde{Z} is injective on each S_{π} for $\pi \in \mathcal{C} \quad\left(\overline{\tilde{Z}\left(S_{\pi}\right)}\right.$ a tile)
- their union equals $\mathcal{A}_{n, k, m}(Z)$
- their interiors are pairwise disjoint

Motivation:

the "volume" of the amplituhedron computes scattering amplitudes; AH - T conjectured that certain "BCFW cells" give a tiling of $\mathcal{A}_{n, k, 4}(Z)$ (proved for the "standard" BCFW tiling by EvenZohar-Lakrec-Tessler and

We'd like to "triangulate" or "tile" the amplituhedron

Have $G r_{k, n}^{\geq 0}=\sqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z}: G r_{k, n}^{\geq 0} \rightarrow \mathcal{A}_{n, k, m}(Z)$ a continuous surjective map onto $k m$-dim'l amplituhedron $\mathcal{A}_{n, k, m}(Z)$.

A tiling of $\mathcal{A}_{n, k, m}(Z)$ is a collection $\left\{\overline{\tilde{Z}\left(S_{\pi}\right)} \mid \pi \in \mathcal{C}\right\}$ of closures of images of $k m$-dimensional cells, such that:

- \tilde{Z} is injective on each S_{π} for $\pi \in \mathcal{C} \quad\left(\overline{\tilde{Z}\left(S_{\pi}\right)}\right.$ a tile)
- their union equals $\mathcal{A}_{n, k, m}(Z)$
- their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.

Motivation:

the "volume" of the amplituhedron computes scattering amplitudes; AH -T conjectured that certain "BCFW cells" give a tiling of $\mathcal{A}_{n, k, 4}(Z)$ (proved for the "standard" BCFW tiling by EvenZohar-Lakrec-Tessler and

We'd like to "triangulate" or "tile" the amplituhedron

Have $G r_{k, n}^{\geq 0}=\sqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z}: G r_{k, n}^{\geq 0} \rightarrow \mathcal{A}_{n, k, m}(Z)$ a continuous surjective map onto $k m$-dim'l amplituhedron $\mathcal{A}_{n, k, m}(Z)$.

A tiling of $\mathcal{A}_{n, k, m}(Z)$ is a collection $\left\{\overline{\tilde{Z}\left(S_{\pi}\right)} \mid \pi \in \mathcal{C}\right\}$ of closures of images of $k m$-dimensional cells, such that:

- \tilde{Z} is injective on each S_{π} for $\pi \in \mathcal{C}$
$\left(\overline{\tilde{Z}\left(S_{\pi}\right)}\right.$ a tile)
- their union equals $\mathcal{A}_{n, k, m}(Z)$
- their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.

Motivation:

the "volume" of the amplituhedron computes scattering amplitudes;
(proved for the "standard" BCFW tiling by EvenZohar-Lakrec-Tessler and generalized to all BCFW tilings by EZ-L-P-SB-T-W. $)_{\text {a }}$.

We'd like to "triangulate" or "tile" the amplituhedron

Have $G r_{k, n}^{\geq 0}=\sqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z}: G r_{k, n}^{\geq 0} \rightarrow \mathcal{A}_{n, k, m}(Z)$ a continuous surjective map onto $k m$-dim'l amplituhedron $\mathcal{A}_{n, k, m}(Z)$.

A tiling of $\mathcal{A}_{n, k, m}(Z)$ is a collection $\left\{\overline{\tilde{Z}\left(S_{\pi}\right)} \mid \pi \in \mathcal{C}\right\}$ of closures of images of $k m$-dimensional cells, such that:

- \tilde{Z} is injective on each S_{π} for $\pi \in \mathcal{C}$
$\left(\overline{\tilde{Z}\left(S_{\pi}\right)}\right.$ a tile)
- their union equals $\mathcal{A}_{n, k, m}(Z)$
- their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.

Motivation:

the "volume" of the amplituhedron computes scattering amplitudes; AH -T conjectured that certain "BCFW cells" give a tiling of $\mathcal{A}_{n, k, 4}(Z)$;
(proved for the "standard" BCFW tiling by EvenZohar-Lakrec-Tessler and generalized to all BCFW

We'd like to "triangulate" or "tile" the amplituhedron

Have $G r_{k, n}^{\geq 0}=\sqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z}: G r_{k, n}^{\geq 0} \rightarrow \mathcal{A}_{n, k, m}(Z)$ a continuous surjective map onto $k m$-dim'l amplituhedron $\mathcal{A}_{n, k, m}(Z)$.

A tiling of $\mathcal{A}_{n, k, m}(Z)$ is a collection $\left\{\overline{\tilde{Z}\left(S_{\pi}\right)} \mid \pi \in \mathcal{C}\right\}$ of closures of images of $k m$-dimensional cells, such that:

- \tilde{Z} is injective on each S_{π} for $\pi \in \mathcal{C}$
$\left(\overline{\bar{Z}\left(S_{\pi}\right)}\right.$ a tile)
- their union equals $\mathcal{A}_{n, k, m}(Z)$
- their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.

Motivation:

the "volume" of the amplituhedron computes scattering amplitudes; AH-T conjectured that certain "BCFW cells" give a tiling of $\mathcal{A}_{n, k, 4}(Z)$; (proved for the "standard" BCFW tiling by EvenZohar-Lakrec-Tessler and generalized to all BCFW tilings by EZ-L-P-SB-T-W. $)^{\mathscr{Z}}$

Tilings of the amplituhedron

Tilings have been studied in special cases. Their cardinalities are interesting!

special case	cardinality of tiling of $\mathcal{A}_{n, k, m}$	explanation
$m=0$ or $k=0$	1	\mathcal{A} is a point
$k+m=n$	1	$\mathcal{A} \cong \mathrm{Gr}_{\mathrm{k}, n}^{\geq 0}$
$m=1$	$\binom{n-1}{k}$	Karp-W.
$m=2$	$\binom{n-2}{k}$	AH-T-T, Bao-He, P-SB-W
$m=4$	$\frac{1}{n-3}\binom{n-3}{k+1}\binom{n-3}{k}$	AH-T, EZ-L-T, EZ-L-P-SB-T-W
$k=1, m$ even	$\binom{n-1-\frac{m}{2}}{\frac{m}{2}}$	$\mathcal{A} \cong$ cyclic polytope $C(n, m)$
Lauren K. Williams (rvard) The magic number for \mathcal{A}_{n}	$\begin{array}{lll}2(Z) & 2024 & 19 / 25\end{array}$

Tilings of the amplituhedron

Tilings have been studied in special cases. Their cardinalities are interesting!

special case	cardinality of tiling of $\mathcal{A}_{n, k, m}$	explanation
$m=0$ or $k=0$	1	\mathcal{A} is a point
$k+m=n$	1	$\mathcal{A} \cong \mathrm{Gr}_{k, n}^{\geq 0}$
$m=1$	$\binom{n-1}{k}$	Karp-W.
$m=2$	$\binom{n-2}{k}$	AH-T-T, Bao-He, P-SB-W
$m=4$	$\frac{1}{n-3}\binom{n-3}{k+1}\binom{n-3}{k}$	AH-T, EZ-L-T, EZ-L-P-SB-T-W
$k=1, m$ even	$\binom{n-1-\frac{m}{2}}{\frac{m}{2}}$	$\mathcal{A} \cong$ cyclic polytope $C(n, m)$

Tilings of the amplituhedron

Observation (Karp-Zhang-W, 2017)

Remark: Consistent with results for $m=2, m=4, k=1$. Symmetries! The number $M(a, b, c)$ counts: (In figure, $a, b, c=2,4,3$.)
noncrossing \quad plane partition rhombic tiling \quad perfect
lattice paths matching

Tilings of the amplituhedron

Observation (Karp-Zhang-W, 2017)

$$
\text { Let } M(a, b, c):=\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2} .
$$

All known tilings of $\mathcal{A}_{n, k, m}$ for even m have cardinality $M\left(k, n-k-m, \frac{m}{2}\right)$. Call this prediction the Magic Number Conjecture.

Remark: Consistent with results for $m=2, m=4, k=1$. Symmetries! The number $M(a, b, c)$ counts: (In figure, $a, b, c=2,4,3$.)

noncrossing

lattice paths

Tilings of the amplituhedron

Observation (Karp-Zhang-W, 2017)

$$
\text { Let } M(a, b, c):=\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}
$$

All known tilings of $\mathcal{A}_{n, k, m}$ for even m have cardinality $M\left(k, n-k-m, \frac{m}{2}\right)$. Call this prediction the Magic Number Conjecture.

Remark: Consistent with results for $m=2, m=4, k=1$. Symmetries! The number $M(a, b, c)$ counts: (In figure, $a, b, c=2,4,3$.)
noncrossing
lattice paths

Tilings of the amplituhedron

Observation (Karp-Zhang-W, 2017)

$$
\text { Let } M(a, b, c):=\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}
$$

All known tilings of $\mathcal{A}_{n, k, m}$ for even m have cardinality $M\left(k, n-k-m, \frac{m}{2}\right)$. Call this prediction the Magic Number Conjecture.

Remark: Consistent with results for $m=2, m=4, k=1$. Symmetries The number $M(a, b, c)$ counts: (In figure, $a, b, c=2,4,3$.)
noncrossing
lattice paths
plane partition

Tilings of the amplituhedron

Observation (Karp-Zhang-W, 2017)

$$
\text { Let } M(a, b, c):=\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}
$$

All known tilings of $\mathcal{A}_{n, k, m}$ for even m have cardinality $M\left(k, n-k-m, \frac{m}{2}\right)$. Call this prediction the Magic Number Conjecture.

Remark: Consistent with results for $m=2, m=4, k=1$. Symmetries

 The number $M(a, b, c)$ counts: (In figure, $a, b, c=2,4,3$.)noncrossing
lattice paths

plane partition

Tilings of the amplituhedron

Observation (Karp-Zhang-W, 2017)

$$
\text { Let } M(a, b, c):=\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}
$$

All known tilings of $\mathcal{A}_{n, k, m}$ for even m have cardinality $M\left(k, n-k-m, \frac{m}{2}\right)$. Call this prediction the Magic Number Conjecture.

Remark: Consistent with results for $m=2, m=4, k=1$.
noncrossing
lattice paths
plane partition rhombic tiling

Tilings of the amplituhedron

Observation (Karp-Zhang-W, 2017)

$$
\text { Let } M(a, b, c):=\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2} \text {. }
$$

All known tilings of $\mathcal{A}_{n, k, m}$ for even m have cardinality $M\left(k, n-k-m, \frac{m}{2}\right)$. Call this prediction the Magic Number Conjecture.

Remark: Consistent with results for $m=2, m=4, k=1$. Symmetries!
noncrossing
lattice paths
plane partition rhombic tiling

Tilings of the amplituhedron

Observation (Karp-Zhang-W, 2017)

$$
\text { Let } M(a, b, c):=\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}
$$

All known tilings of $\mathcal{A}_{n, k, m}$ for even m have cardinality $M\left(k, n-k-m, \frac{m}{2}\right)$. Call this prediction the Magic Number Conjecture.

Remark: Consistent with results for $m=2, m=4, k=1$. Symmetries! The number $M(a, b, c)$ counts:
noncrossing
lattice paths

perfect rhombic tiling
matching

Tilings of the amplituhedron

Observation (Karp-Zhang-W, 2017)

$$
\text { Let } M(a, b, c):=\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}
$$

All known tilings of $\mathcal{A}_{n, k, m}$ for even m have cardinality $M\left(k, n-k-m, \frac{m}{2}\right)$. Call this prediction the Magic Number Conjecture.

Remark: Consistent with results for $m=2, m=4, k=1$. Symmetries! The number $M(a, b, c)$ counts:
noncrossing
lattice paths

plane partition

3	3	2	2
1	1	1	

rhombic tiling
perfect matching

Tilings of the amplituhedron

Observation (Karp-Zhang-W, 2017)

$$
\text { Let } M(a, b, c):=\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}
$$

All known tilings of $\mathcal{A}_{n, k, m}$ for even m have cardinality $M\left(k, n-k-m, \frac{m}{2}\right)$. Call this prediction the Magic Number Conjecture.

Remark: Consistent with results for $m=2, m=4, k=1$. Symmetries! The number $M(a, b, c)$ counts: (In figure, $a, b, c=2,4,3$.)
noncrossing
lattice paths

plane partition

3	3	2	2
1	1	1	

rhombic tiling
perfect matching

The magic number theorem for the $m=2$ amplituhedron

Magic Number Theorem (P-SB-T-W)

All tilings of ampl. $\mathcal{A}_{n, k, 2}(Z)$ have size $M(k, n-k-2,1)=\binom{n-2}{k}$
$k=1$: Thm says that all triangulations of an n-gon have size $n-2$. Ideas of the proof:

- There is a classification of tiles for the $m=2$ amplituhedron using bicolored subdivisions (P-SB-W).
- Just as each Parke-Taylor polytope has a decomposition into w-simplices where w ranges over certain circular extensions, each tile has a decomposition into "w-chambers" where w ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $\mathcal{A}_{n, k, 2}(Z)$ and each tile, and show that this function is the same for ALL tiles.
- Therefore each tiling of $\mathcal{A}_{n, k, 2}(Z)$ has the same size.
- Rk: total number of w-chambers of $\mathcal{A}_{n, k, 2}(Z)$ is the Eulerian number

The magic number theorem for the $m=2$ amplituhedron

Magic Number Theorem (P-SB-T-W)

All tilings of ampl. $\mathcal{A}_{n, k, 2}(Z)$ have size $M(k, n-k-2,1)=\binom{n-2}{k}$.
$k=1$: Thm says that all triangulations of an n-gon have size $n-2$. Ideas of the proof:

- There is a classification of tiles for the $m=2$ amplituhedron using bicolored subdivisions ($\mathrm{P}-\mathrm{SB}-\mathrm{W}$)
- Just as each Parke-Taylor polytope has a decomposition into w-simplices where w ranges over certain circular extensions, each tile has a decomposition into "w-chambers" where w ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $\mathcal{A}_{n, k, 2}(Z)$ and each tile, and show that this function is the same for ALL tiles
- Therefore each tiling of $\mathcal{A}_{n, k, 2}(Z)$ has the same size
- Rk: total number of w-chambers of $\mathcal{A}_{n, k, 2}(Z)$ is the Eulerian number

The magic number theorem for the $m=2$ amplituhedron

Magic Number Theorem (P-SB-T-W)

All tilings of ampl. $\mathcal{A}_{n, k, 2}(Z)$ have size $M(k, n-k-2,1)=\binom{n-2}{k}$.
$k=1$: Thm says that all triangulations of an n-gon have size $n-2$.

- There is a classification of tiles for the $m=2$ amplituhedron using bicolored subdivisions (P-SB-W)
- Just as each Parke-Taylor polytope has a decomposition into w-simplices where w ranges over certain circular extensions, each tile has a decomposition into "w-chambers" where w ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $\mathcal{A}_{n, k, 2}(Z)$ and each tile, and show that this function is the same for ALL tiles
- Therefore each tiling of $\mathcal{A}_{n, k, 2}(Z)$ has the same size
- Rk: total number of w-chambers of $\mathcal{A}_{n, k, 2}(Z)$ is the Eulerian number

The magic number theorem for the $m=2$ amplituhedron

Magic Number Theorem (P-SB-T-W)

All tilings of ampl. $\mathcal{A}_{n, k, 2}(Z)$ have size $M(k, n-k-2,1)=\binom{n-2}{k}$.
$k=1$: Thm says that all triangulations of an n-gon have size $n-2$. Ideas of the proof:

- There is a classification of tiles for the $m=2$ amplituhedron using bicolored subdivisions (P-SB-W)
- Just as each Parke-Taylor polytope has a decomposition into w-simplices where w ranges over certain circular extensions, each tile has a decomposition into "w-chambers" where w ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $\mathcal{A}_{n, k, 2}(Z)$ and each tile, and show that this function is the same for ALL tiles
- Therefore each tiling of $\mathcal{A}_{n, k, 2}(Z)$ has the same size
- Rk: total number of w-chambers of $\mathcal{A}_{n, k, 2}(Z)$ is the Eulerian number

The magic number theorem for the $m=2$ amplituhedron

Magic Number Theorem (P-SB-T-W)

All tilings of ampl. $\mathcal{A}_{n, k, 2}(Z)$ have size $M(k, n-k-2,1)=\binom{n-2}{k}$.
$k=1$: Thm says that all triangulations of an n-gon have size $n-2$. Ideas of the proof:

- There is a classification of tiles for the $m=2$ amplituhedron using bicolored subdivisions (P-SB-W).
- Just as each Parke-Taylor polytope has a decomposition into w-simplices where w ranges over certain circular extensions, each tile has a decomposition into "w-chambers" where w ranges over certain circular extensions
- Use above decompositions to define the P-T function of $\mathcal{A}_{n, k, 2}(Z)$ and each tile, and show that this function is the same for ALL tiles
- Therefore each tiling of $\mathcal{A}_{n \cdot k .2}(Z)$ has the same size
- Rk: total number of w-chambers of $\mathcal{A}_{n, k, 2}(Z)$ is the Eulerian number

The magic number theorem for the $m=2$ amplituhedron

Magic Number Theorem (P-SB-T-W)

All tilings of ampl. $\mathcal{A}_{n, k, 2}(Z)$ have size $M(k, n-k-2,1)=\binom{n-2}{k}$.
$k=1$: Thm says that all triangulations of an n-gon have size $n-2$. Ideas of the proof:

- There is a classification of tiles for the $m=2$ amplituhedron using bicolored subdivisions (P-SB-W).
- Just as each Parke-Taylor polytope has a decomposition into w-simplices where w ranges over certain circular extensions, each tile has a decomposition into "w-chambers" where w ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $\mathcal{A}_{n, k, 2}(Z)$ and each tile, and show that this function is the same for ALL tiles
- Therefore each tiling of $\mathcal{A}_{n, k .2}(Z)$ has the same size
- Rk: total number of w-chambers of $\mathcal{A}_{n, k, 2}(Z)$ is the Eulerian number

The magic number theorem for the $m=2$ amplituhedron

Magic Number Theorem (P-SB-T-W)

All tilings of ampl. $\mathcal{A}_{n, k, 2}(Z)$ have size $M(k, n-k-2,1)=\binom{n-2}{k}$.
$k=1$: Thm says that all triangulations of an n-gon have size $n-2$. Ideas of the proof:

- There is a classification of tiles for the $m=2$ amplituhedron using bicolored subdivisions (P-SB-W).
- Just as each Parke-Taylor polytope has a decomposition into w-simplices where w ranges over certain circular extensions, each tile has a decomposition into "w-chambers" where w ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $\mathcal{A}_{n, k, 2}(Z)$ and each tile, and show that this function is the same for ALL tiles
- Therefore each tiling of $\mathcal{A}_{n, k, 2}(Z)$ has the same size.
- Rk: total number of w-chambers of $\mathcal{A}_{n, k, 2}(Z)$ is the Eulerian number

The magic number theorem for the $m=2$ amplituhedron

Magic Number Theorem (P-SB-T-W)

All tilings of ampl. $\mathcal{A}_{n, k, 2}(Z)$ have size $M(k, n-k-2,1)=\binom{n-2}{k}$.
$k=1$: Thm says that all triangulations of an n-gon have size $n-2$. Ideas of the proof:

- There is a classification of tiles for the $m=2$ amplituhedron using bicolored subdivisions (P-SB-W).
- Just as each Parke-Taylor polytope has a decomposition into w-simplices where w ranges over certain circular extensions, each tile has a decomposition into "w-chambers" where w ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $\mathcal{A}_{n, k, 2}(Z)$ and each tile, and show that this function is the same for ALL tiles.
- \square
- Rk: total number of w-chambers of $\mathcal{A}_{n, k, 2}(Z)$ is the Eulerian number

The magic number theorem for the $m=2$ amplituhedron

Magic Number Theorem (P-SB-T-W)

All tilings of ampl. $\mathcal{A}_{n, k, 2}(Z)$ have size $M(k, n-k-2,1)=\binom{n-2}{k}$.
$k=1$: Thm says that all triangulations of an n-gon have size $n-2$. Ideas of the proof:

- There is a classification of tiles for the $m=2$ amplituhedron using bicolored subdivisions (P-SB-W).
- Just as each Parke-Taylor polytope has a decomposition into w-simplices where w ranges over certain circular extensions, each tile has a decomposition into "w-chambers" where w ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $\mathcal{A}_{n, k, 2}(Z)$ and each tile, and show that this function is the same for ALL tiles.
- Therefore each tiling of $\mathcal{A}_{n, k, 2}(Z)$ has the same size.
- Rk: total number of w-chambers of $\mathcal{A}_{n, k, 2}(Z)$ is the Eulerian number

The magic number theorem for the $m=2$ amplituhedron

Magic Number Theorem (P-SB-T-W)

All tilings of ampl. $\mathcal{A}_{n, k, 2}(Z)$ have size $M(k, n-k-2,1)=\binom{n-2}{k}$.
$k=1$: Thm says that all triangulations of an n-gon have size $n-2$. Ideas of the proof:

- There is a classification of tiles for the $m=2$ amplituhedron using bicolored subdivisions (P-SB-W).
- Just as each Parke-Taylor polytope has a decomposition into w-simplices where w ranges over certain circular extensions, each tile has a decomposition into "w-chambers" where w ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $\mathcal{A}_{n, k, 2}(Z)$ and each tile, and show that this function is the same for ALL tiles.
- Therefore each tiling of $\mathcal{A}_{n, k, 2}(Z)$ has the same size.
- Rk: total number of w-chambers of $\mathcal{A}_{n, k, 2}(Z)$ is the Eulerian number.

Tiles of the amplituhedron

Recall: $\overline{\tilde{Z}\left(S_{\pi}\right)}$ is a tile for $\tilde{Z}: G r_{k, n}^{\geq 0} \rightarrow \mathcal{A}_{n, k, m}(Z)$ if \tilde{Z} is injective on km -dim'I cell S_{π}. Lukowski-Parisi-Spradlin-Volovich conjectured:

Theorem (Parisi-Sherman-Bennett-W)

Tiles of the amplituhedron

Recall: $\overline{\tilde{Z}\left(S_{\pi}\right)}$ is a tile for $\tilde{Z}: G r_{k, n}^{\geq 0} \rightarrow \mathcal{A}_{n, k, m}(Z)$ if \tilde{Z} is injective on $k m$-dim'l cell S_{π}. Lukowski-Parisi-Spradlin-Volovich conjectured:

Theorem (Parisi-Sherman-Bennett-W)

Tiles of the amplituhedron

Recall: $\overline{\tilde{Z}\left(S_{\pi}\right)}$ is a tile for $\tilde{Z}: G r_{k, n}^{\geq 0} \rightarrow \mathcal{A}_{n, k, m}(Z)$ if \tilde{Z} is injective on $k m$-dim'l cell S_{π}. Lukowski-Parisi-Spradlin-Volovich conjectured:

Theorem (Parisi-Sherman-Bennett-W)

The tiles for $\mathcal{A}_{n, k, 2}(Z) \leftrightarrow$ collections of bicolored subdivisions of an n-gon with total "area" k. To construct the cell S_{π}

- Choose triangulation of black polygons into k black triangles.
- Put white vertex in every black triangle, connected to three vertices
- Elements of S_{π} are the $k \times n$ Kasteleyn matrices with rows/columns indexed by the white and black vertices.

Tiles of the amplituhedron

Recall: $\overline{\tilde{Z}\left(S_{\pi}\right)}$ is a tile for $\tilde{Z}: G r_{k, n}^{\geq 0} \rightarrow \mathcal{A}_{n, k, m}(Z)$ if \tilde{Z} is injective on $k m$-dim'l cell S_{π}. Lukowski-Parisi-Spradlin-Volovich conjectured:

Theorem (Parisi-Sherman-Bennett-W)

The tiles for $\mathcal{A}_{n, k, 2}(Z) \leftrightarrow$ collections of bicolored subdivisions of an n-gon with total "area" k.

- Choose triangulation of black polygons into k black triangles.
- Put white vertex in every black triangle, connected to three vertices.
- Elements of S_{π} are the $k \times n$ Kasteleyn matrices with rows/columns indexed by the white and black vertices.

Tiles of the amplituhedron

Recall: $\overline{\tilde{Z}\left(S_{\pi}\right)}$ is a tile for $\tilde{Z}: G r_{k, n}^{\geq 0} \rightarrow \mathcal{A}_{n, k, m}(Z)$ if \tilde{Z} is injective on $k m$-dim'l cell S_{π}. Lukowski-Parisi-Spradlin-Volovich conjectured:

Theorem (Parisi-Sherman-Bennett-W)

The tiles for $\mathcal{A}_{n, k, 2}(Z) \leftrightarrow$ collections of bicolored subdivisions of an n-gon with total "area" k. To construct the cell S_{π} :

- Choose triangulation of black polygons into k black triangles.
- Put white vertex in every black triangle, connected to three vertices
- Elements of S_{π} are the $k \times n$ Kasteleyn matrices with rows/columns indexed by the white and black vertices.

Tiles of the amplituhedron

Recall: $\overline{\tilde{Z}\left(S_{\pi}\right)}$ is a tile for $\tilde{Z}: G r \geq 0 \rightarrow \mathcal{A}_{n, k, m}(Z)$ if \tilde{Z} is injective on km -dim'l cell S_{π}. Lukowski-Parisi-Spradlin-Volovich conjectured:

Theorem (Parisi-Sherman-Bennett-W)

The tiles for $\mathcal{A}_{n, k, 2}(Z) \leftrightarrow$ collections of bicolored subdivisions of an n-gon with total "area" k. To construct the cell S_{π} :

- Choose triangulation of black polygons into k black triangles.
- Put white vertex in every black triangle, connected to three vertices.
- Elements of S_{π} are the $k \times n$ Kasteleyn matrices with rows/columns indexed by the white and black vertices.

Tiles of the amplituhedron

Recall: $\overline{\tilde{Z}\left(S_{\pi}\right)}$ is a tile for $\tilde{Z}: G r \geq 0 \rightarrow \mathcal{A}_{n, k, m}(Z)$ if \tilde{Z} is injective on km -dim'l cell S_{π}. Lukowski-Parisi-Spradlin-Volovich conjectured:

Theorem (Parisi-Sherman-Bennett-W)

The tiles for $\mathcal{A}_{n, k, 2}(Z) \leftrightarrow$ collections of bicolored subdivisions of an n-gon with total "area" k. To construct the cell S_{π} :

- Choose triangulation of black polygons into k black triangles.
- Put white vertex in every black triangle, connected to three vertices.
- Elements of S_{π} are the $k \times n$ Kasteleyn matrices with rows/columns indexed by the white and black vertices.

Tiles of the amplituhedron

Recall: $\overline{\tilde{Z}\left(S_{\pi}\right)}$ is a tile for $\tilde{Z}: G r \geq 0, \mathcal{A}_{n, k, m}(Z)$ if \tilde{Z} is injective on $k m$-dim'l cell S_{π}. Lukowski-Parisi-Spradlin-Volovich conjectured:

Theorem (Parisi-Sherman-Bennett-W)

The tiles for $\mathcal{A}_{n, k, 2}(Z) \leftrightarrow$ collections of bicolored subdivisions of an n-gon with total "area" k. To construct the cell S_{π} :

- Choose triangulation of black polygons into k black triangles.
- Put white vertex in every black triangle, connected to three vertices.
- Elements of S_{π} are the $k \times n$ Kasteleyn matrices with rows/columns indexed by the white and black vertices.

$\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 0 & 0 & 0 & 0 & 0 & 0 & * & * & * \\ * & 0 & 0 & 0 & 0 & 0 & * & 0 & * \\ 0 & * & * & 0 & 0 & 0 & * & 0 & 0 \\ 0 & 0 & * & * & 0 & 0 & * & 0 & 0 \\ 0 & 0 & 0 & * & * & 0 & * & 0 & 0\end{array}\right]$

Chambers of the amplituhedron $\mathcal{A}_{n, k, 2}(Z)$

Let $Z \in$ Mat $_{n, k+2}^{>0}$. Let \widetilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+2}$ sending $C \mapsto C Z$. Recall $\mathcal{A}_{n, k, 2}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+2}$.

- Let Z_{1}, \ldots, Z_{n} be rows of Z. Let $Y \in G r_{k . k+2}$ (viewed as matrix).
- Given $I=\left\{i_{1}<i_{2}\right\} \subset[n]$, define the twistor coordinate

$$
\left\langle Y Z_{I}\right\rangle=\left\langle Y Z_{i_{1}} Z_{i_{2}}\right\rangle:=\operatorname{det}\left[\begin{array}{ccc}
- & Y & - \\
- & Z_{i_{1}} & - \\
- & Z_{i_{2}} & -
\end{array}\right]
$$

- Inspired by matroid stratification, we define the amplituhedron sign stratification - decompose $\mathcal{A}_{n, k, 2}(Z)$ into pieces based on the signs of twistor coordinates. (Parisi-Sherman-Bennett-W.; Karp-W.)
- Call the top-dimensional pieces chambers.
- Thm: (P-SB-W) The number of nonempty chambers of $\mathcal{A}_{n, k, 2}$ is the Eulerian number.

Chambers of the amplituhedron $\mathcal{A}_{n, k, 2}(Z)$

Let $Z \in$ Mat $_{n, k+2}^{>0}$. Let \tilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+2}$ sending $C \mapsto C Z$. Recall $\mathcal{A}_{n, k, 2}(Z):=\tilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+2}$.

- Let Z_{1}, \ldots, Z_{n} be rows of Z. Let $Y \in G r_{k, k+2}$ (viewed as matrix)
- Given $/=\left\{i_{1}<i_{2}\right\} \subset[n]$, define the twistor coordinate

- Inspired by matroid stratification, we define the amplituhedron sign stratification - decompose $\mathcal{A}_{n, k, 2}(Z)$ into pieces based on the signs of twistor coordinates. (Parisi-Sherman-Bennett-W.; Karp-W.)
- Call the top-dimensional pieces chambers.
- Thm: (P-SB-W) The number of nonempty chambers of $\mathcal{A}_{n, k, 2}$ is the Eulerian number.

Chambers of the amplituhedron $\mathcal{A}_{n, k, 2}(Z)$

Let $Z \in$ Mat $_{n, k+2}^{>0}$. Let \tilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+2}$ sending $C \mapsto C Z$. Recall $\mathcal{A}_{n, k, 2}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+2}$.

- Let Z_{1}, \ldots, Z_{n} be rows of Z. Let $Y \in G r_{k, k+2}$ (viewed as matrix).
- Given $/=\left\{i_{1}<i_{2}\right\} \subset[n]$, define the twistor coordinate

- Inspired by matroid stratification, we define the amplituhedron sign stratification - decompose $\mathcal{A}_{n, k, 2}(Z)$ into pieces based on the signs of twistor coordinates. (Parisi-Sherman-Bennett-W.; Karp-W.)
- Call the top-dimensional pieces chambers.
- Thm: (P-SB-W) The number of nonempty chambers of $\mathcal{A}_{n, k, 2}$ is the Eulerian number

Chambers of the amplituhedron $\mathcal{A}_{n, k, 2}(Z)$

Let $Z \in$ Mat $_{n, k+2}^{>0}$. Let \tilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+2}$ sending $C \mapsto C Z$. Recall $\mathcal{A}_{n, k, 2}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+2}$.

- Let Z_{1}, \ldots, Z_{n} be rows of Z. Let $Y \in G r_{k, k+2}$ (viewed as matrix).
- Given $I=\left\{i_{1}<i_{2}\right\} \subset[n]$, define the twistor coordinate

- Inspired by matroid stratification, we define the amplituhedron sign stratification - decompose $\mathcal{A}_{n, k, 2}(Z)$ into pieces based on the signs of twistor coordinates. (Parisi-Sherman-Bennett-W.; Karp-W.)
- Call the top-dimensional pieces chambers.
- Thm: (P-SB-W) The number of nonempty chambers of $\mathcal{A}_{n, k, 2}$ is the Eulerian number

Chambers of the amplituhedron $\mathcal{A}_{n, k, 2}(Z)$

Let $Z \in$ Mat $_{n, k+2}^{>0}$. Let \tilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+2}$ sending $C \mapsto C Z$. Recall $\mathcal{A}_{n, k, 2}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+2}$.

- Let Z_{1}, \ldots, Z_{n} be rows of Z. Let $Y \in G r_{k, k+2}$ (viewed as matrix).
- Given $I=\left\{i_{1}<i_{2}\right\} \subset[n]$, define the twistor coordinate

$$
\left\langle Y Z_{I}\right\rangle=\left\langle Y Z_{i_{1}} Z_{i_{2}}\right\rangle:=\operatorname{det}\left[\begin{array}{ccc}
- & Y & - \\
- & Z_{i_{1}} & - \\
- & Z_{i_{2}} & -
\end{array}\right]
$$

- Inspired by matroid stratification, we define the amplituhedron sign stratification - decompose $\mathcal{A}_{n, k, 2}(Z)$ into pieces based on the signs of twistor coordinates. (Parisi-Sherman-Bennett-W.; Karp-W.)
- Call the top-dimensional pieces chambers.
- Thm: (P-SB-W) The number of nonempty chambers of $\mathcal{A}_{n, k, 2}$ is the Eulerian number

Chambers of the amplituhedron $\mathcal{A}_{n, k, 2}(Z)$

Let $Z \in$ Mat $_{n, k+2}^{>0}$. Let \widetilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+2}$ sending $C \mapsto C Z$. Recall $\mathcal{A}_{n, k, 2}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+2}$.

- Let Z_{1}, \ldots, Z_{n} be rows of Z. Let $Y \in G r_{k, k+2}$ (viewed as matrix).
- Given $I=\left\{i_{1}<i_{2}\right\} \subset[n]$, define the twistor coordinate

$$
\left\langle Y Z_{I}\right\rangle=\left\langle Y Z_{i_{1}} Z_{i_{2}}\right\rangle:=\operatorname{det}\left[\begin{array}{ccc}
- & Y & - \\
- & Z_{i_{1}} & - \\
- & Z_{i_{2}} & -
\end{array}\right]
$$

- Inspired by matroid stratification, we define the amplituhedron sign stratification - decompose $\mathcal{A}_{n, k, 2}(Z)$ into pieces based on the signs of twistor coordinates. (Parisi-Sherman-Bennett-W.; Karp-W.)

Chambers of the amplituhedron $\mathcal{A}_{n, k, 2}(Z)$

Let $Z \in$ Mat $_{n, k+2}^{>0}$. Let \tilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+2}$ sending $C \mapsto C Z$. Recall $\mathcal{A}_{n, k, 2}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+2}$.

- Let Z_{1}, \ldots, Z_{n} be rows of Z. Let $Y \in G r_{k, k+2}$ (viewed as matrix).
- Given $I=\left\{i_{1}<i_{2}\right\} \subset[n]$, define the twistor coordinate

$$
\left\langle Y Z_{I}\right\rangle=\left\langle Y Z_{i_{1}} Z_{i_{2}}\right\rangle:=\operatorname{det}\left[\begin{array}{ccc}
- & Y & - \\
- & Z_{i_{1}} & - \\
- & Z_{i_{2}} & -
\end{array}\right]
$$

- Inspired by matroid stratification, we define the amplituhedron sign stratification - decompose $\mathcal{A}_{n, k, 2}(Z)$ into pieces based on the signs of twistor coordinates. (Parisi-Sherman-Bennett-W.; Karp-W.)
- Call the top-dimensional pieces chambers.
Thm: (P-SB-W) The number of nonempty chambers of $\mathcal{A}_{n, k, 2}$ is the Eulerian number

Chambers of the amplituhedron $\mathcal{A}_{n, k, 2}(Z)$

Let $Z \in$ Mat $_{n, k+2}^{>0}$. Let \tilde{Z} be map $G r_{k, n}^{\geq 0} \rightarrow G r_{k, k+2}$ sending $C \mapsto C Z$. Recall $\mathcal{A}_{n, k, 2}(Z):=\widetilde{Z}\left(G r_{k, n}^{\geq 0}\right) \subset G r_{k, k+2}$.

- Let Z_{1}, \ldots, Z_{n} be rows of Z. Let $Y \in G r_{k, k+2}$ (viewed as matrix).
- Given $I=\left\{i_{1}<i_{2}\right\} \subset[n]$, define the twistor coordinate

$$
\left\langle Y Z_{I}\right\rangle=\left\langle Y Z_{i_{1}} Z_{i_{2}}\right\rangle:=\operatorname{det}\left[\begin{array}{ccc}
- & Y & - \\
- & Z_{i_{1}} & - \\
- & Z_{i_{2}} & -
\end{array}\right]
$$

- Inspired by matroid stratification, we define the amplituhedron sign stratification - decompose $\mathcal{A}_{n, k, 2}(Z)$ into pieces based on the signs of twistor coordinates. (Parisi-Sherman-Bennett-W.; Karp-W.)
- Call the top-dimensional pieces chambers.
- Thm: (P-SB-W) The number of nonempty chambers of $\mathcal{A}_{n, k, 2}$ is the Eulerian number.

The Magic Number Theorem for $\mathcal{A}_{n, k, 2}(Z)$

- Given any region R of $\mathcal{A}_{n, k, 2}(Z)$ that admits a tiling, we define its weight function

$$
\Omega(R):=\sum \mathrm{PT}\left(\Delta_{(w)}^{Z}\right),
$$

where the sum is over all w-chambers $\Delta_{(w)}^{Z} \subset R$.

- We prove that for any tile Z_{T} of $\mathcal{A}_{n, k, 2}(Z)$,

$$
\Omega\left(Z_{\tau}\right)=(-1)^{k} \operatorname{PT}\left(\mathbf{I}_{n}\right),
$$

where \mathbf{I}_{n} is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n, k, 2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega\left(\mathcal{A}_{n, k, 2}(Z)\right)=(-1)^{k}\binom{n-2}{k} \operatorname{PT}\left(\mathbf{I}_{n}\right)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$.

The Magic Number Theorem for $\mathcal{A}_{n, k, 2}(Z)$

- Given any region R of $\mathcal{A}_{n, k, 2}(Z)$ that admits a tiling, we define its weight function

where the sum is over all w-chambers $\Delta_{(w)}^{Z} \subset R$.
- We prove that for any tile Z_{T} of $\mathcal{A}_{n, k, 2}(Z)$,

$$
\Omega\left(Z_{\tau}\right)=(-1)^{k} \operatorname{PT}\left(\mathbf{I}_{n}\right),
$$

where I_{n} is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n, k, 2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega\left(\mathcal{A}_{n, k, 2}(Z)\right)=(-1)^{k}\binom{n-2}{k} \mathrm{PT}\left(\mathbf{I}_{n}\right)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$

The Magic Number Theorem for $\mathcal{A}_{n, k, 2}(Z)$

- Given any region R of $\mathcal{A}_{n, k, 2}(Z)$ that admits a tiling, we define its weight function

$$
\Omega(R):=\sum \mathrm{PT}\left(\Delta_{(w)}^{Z}\right),
$$

where the sum is over all w-chambers $\triangle_{(w)}^{Z} \subset R$.

- We prove that for any tile Z_{T} of $\mathcal{A}_{n, k, 2}(Z)$,

$$
\Omega\left(Z_{\tau}\right)=(-1)^{k} \mathrm{PT}\left(\mathbf{I}_{n}\right),
$$

where I_{n} is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n, k, 2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega\left(\mathcal{A}_{n, k, 2}(Z)\right)=(-1)^{k}\binom{n-2}{k} \operatorname{PT}\left(\mathbf{I}_{n}\right)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$

The Magic Number Theorem for $\mathcal{A}_{n, k, 2}(Z)$

- Given any region R of $\mathcal{A}_{n, k, 2}(Z)$ that admits a tiling, we define its weight function

$$
\Omega(R):=\sum \mathrm{PT}\left(\Delta_{(w)}^{Z}\right),
$$

where the sum is over all w-chambers $\Delta_{(w)}^{Z} \subset R$.

- We prove that for any tile Z_{τ} of $\mathcal{A}_{n, k, 2}(Z)$,

$$
\Omega\left(Z_{\tau}\right)=(-1)^{k} \mathrm{PT}\left(\mathbf{I}_{n}\right),
$$

where \mathbf{I}_{n} is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n, k, 2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega\left(\mathcal{A}_{n, k, 2}(Z)\right)=(-1)^{k}\binom{n-2}{k} \mathrm{PT}\left(\mathbf{I}_{n}\right)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$

The Magic Number Theorem for $\mathcal{A}_{n, k, 2}(Z)$

- Given any region R of $\mathcal{A}_{n, k, 2}(Z)$ that admits a tiling, we define its weight function

$$
\Omega(R):=\sum \mathrm{PT}\left(\Delta_{(w)}^{Z}\right),
$$

where the sum is over all w-chambers $\Delta_{(w)}^{Z} \subset R$.

- We prove that for any tile Z_{τ} of $\mathcal{A}_{n, k, 2}(Z)$,

$$
\Omega\left(Z_{\tau}\right)=(-1)^{k} \operatorname{PT}\left(\mathbf{I}_{n}\right),
$$

where \mathbf{I}_{n} is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n, k, 2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega\left(\mathcal{A}_{n, k, 2}(Z)\right)=(-1)^{k}\binom{n-2}{k} \mathrm{PT}\left(\mathbf{I}_{n}\right)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$

The Magic Number Theorem for $\mathcal{A}_{n, k, 2}(Z)$

- Given any region R of $\mathcal{A}_{n, k, 2}(Z)$ that admits a tiling, we define its weight function

$$
\Omega(R):=\sum \mathrm{PT}\left(\Delta_{(w)}^{Z}\right)
$$

where the sum is over all w-chambers $\Delta_{(w)}^{Z} \subset R$.

- We prove that for any tile Z_{τ} of $\mathcal{A}_{n, k, 2}(Z)$,

$$
\Omega\left(Z_{\tau}\right)=(-1)^{k} \operatorname{PT}\left(\mathbf{I}_{n}\right)
$$

where \mathbf{I}_{n} is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n, k, 2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega\left(\mathcal{A}_{n, k, 2}(Z)\right)=(-1)^{k}\binom{n-2}{k} \mathrm{PT}\left(\mathbf{I}_{n}\right)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$

The Magic Number Theorem for $\mathcal{A}_{n, k, 2}(Z)$

- Given any region R of $\mathcal{A}_{n, k, 2}(Z)$ that admits a tiling, we define its weight function

$$
\Omega(R):=\sum \mathrm{PT}\left(\Delta_{(w)}^{Z}\right)
$$

where the sum is over all w-chambers $\Delta_{(w)}^{Z} \subset R$.

- We prove that for any tile Z_{τ} of $\mathcal{A}_{n, k, 2}(Z)$,

$$
\Omega\left(Z_{\tau}\right)=(-1)^{k} \operatorname{PT}\left(\mathbf{I}_{n}\right)
$$

where \mathbf{I}_{n} is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n, k, 2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega\left(\mathcal{A}_{n, k, 2}(Z)\right)=(-1)^{k}\binom{n-2}{k} \mathrm{PT}\left(\mathbf{I}_{n}\right)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$

The Magic Number Theorem for $\mathcal{A}_{n, k, 2}(Z)$

- Given any region R of $\mathcal{A}_{n, k, 2}(Z)$ that admits a tiling, we define its weight function

$$
\Omega(R):=\sum \mathrm{PT}\left(\Delta_{(w)}^{Z}\right)
$$

where the sum is over all w-chambers $\Delta_{(w)}^{Z} \subset R$.

- We prove that for any tile Z_{τ} of $\mathcal{A}_{n, k, 2}(Z)$,

$$
\Omega\left(Z_{\tau}\right)=(-1)^{k} \operatorname{PT}\left(\mathbf{I}_{n}\right)
$$

where \mathbf{I}_{n} is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n, k, 2}(Z)$ consisting of $\binom{n-2}{k}$ tiles,
so $\Omega\left(\mathcal{A}_{n, k, 2}(Z)\right)=(-1)^{k}\binom{n-2}{k} \mathrm{PT}\left(\mathbf{I}_{n}\right)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$

The Magic Number Theorem for $\mathcal{A}_{n, k, 2}(Z)$

- Given any region R of $\mathcal{A}_{n, k, 2}(Z)$ that admits a tiling, we define its weight function

$$
\Omega(R):=\sum \mathrm{PT}\left(\Delta_{(w)}^{Z}\right)
$$

where the sum is over all w-chambers $\Delta_{(w)}^{Z} \subset R$.

- We prove that for any tile Z_{τ} of $\mathcal{A}_{n, k, 2}(Z)$,

$$
\Omega\left(Z_{\tau}\right)=(-1)^{k} \operatorname{PT}\left(\mathbf{I}_{n}\right)
$$

where \mathbf{I}_{n} is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n, k, 2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega\left(\mathcal{A}_{n, k, 2}(Z)\right)=(-1)^{k}\binom{n-2}{k} \mathrm{PT}\left(\mathbf{I}_{n}\right)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$

The Magic Number Theorem for $\mathcal{A}_{n, k, 2}(Z)$

- Given any region R of $\mathcal{A}_{n, k, 2}(Z)$ that admits a tiling, we define its weight function

$$
\Omega(R):=\sum \mathrm{PT}\left(\Delta_{(w)}^{Z}\right)
$$

where the sum is over all w-chambers $\Delta_{(w)}^{Z} \subset R$.

- We prove that for any tile Z_{τ} of $\mathcal{A}_{n, k, 2}(Z)$,

$$
\Omega\left(Z_{\tau}\right)=(-1)^{k} \operatorname{PT}\left(\mathbf{I}_{n}\right)
$$

where \mathbf{I}_{n} is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n, k, 2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega\left(\mathcal{A}_{n, k, 2}(Z)\right)=(-1)^{k}\binom{n-2}{k} \mathrm{PT}\left(\mathbf{I}_{n}\right)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$.

Thank you, and HAPPY BIRTHDAY Philippe!

noncrossing
lattice paths

$$
\begin{aligned}
& \text { plane partition } \\
& \begin{array}{|l|l|l|l|}
\hline 3 & 3 & 2 & 2 \\
\hline 1 & 1 & 1 & \\
\hline
\end{array}
\end{aligned}
$$

perfect matching

- The magic number conjecture for the $m=2$ amplituhedron and Parke-Taylor identities arXiv:2404.03026, joint with Matteo Parisi, Melissa Sherman-Bennett, and Ran Tessler.
- "The $m=2$ amplituhedron and the hypersimplex: signs, clusters, triangulations, Eulerian numbers, Communications of the AMS, 2023, joint with Matteo Parisi and Melissa Sherman-Bennett.

