Elliptic Calogero-Moser and Gauge Theory

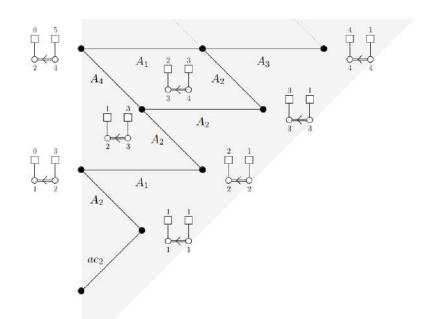
Antoine Bourget

IPhT, CEA Saclay, June 25, 2024.

At the crossroads of physics and mathematics The joy of integrable combinatorics

Based on work with Jan Troost [1501.05074], [1702.02102] and ongoing work with Romain Vandepopeliere, Valdo Tatitscheff, Riccardo Argurio...

Quivers?



4/20

Particles on a torus

Consider N particles on a torus T^2 with a pairwise interaction. What are the stable configurations?

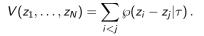
What kind of interaction on a torus?

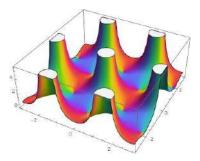
Particles on a torus

Consider the torus as $\mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$. The particles are

$$z_i \in \mathbb{C}/(\mathbb{Z}+\tau\mathbb{Z}), \qquad i=1,\ldots,N$$

We need the potential to be doubly periodic: use





Translation invariance : one can assume $z_N = 0$.

Particles on a torus

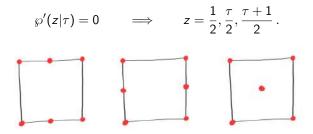
Hamiltonian:

$$H=\sum_{i}\frac{p_i^2}{2}+V(z_1,\ldots,z_N)$$

Equilibrium positions:

$$p_i = 0, \qquad \frac{\partial}{\partial z_i} V(z_1, \ldots, z_N) = 0.$$

Example: N = 2. Then $V(z) = \wp(z|\tau)$. Equilibrium positions



$$V(z_1, z_2) = \wp(z_1|\tau) + \wp(z_2|\tau) + \wp(z_1 - z_2|\tau).$$

Equilibrium positions

$$\wp'(z_1|\tau) = -\wp'(z_1-z_2|\tau) = \wp'(z_2|\tau)$$

Two types:

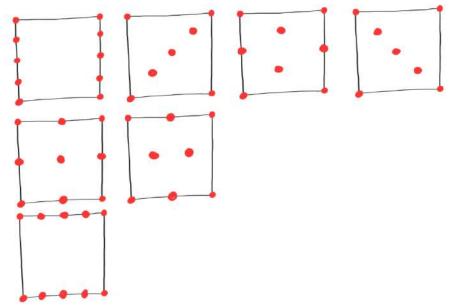
- Isolated equilibrium: J > 0.
- Non-isolated equilibrium: J = 0.

with

$$J = \left| \frac{\partial^2 V}{\partial z_1^2} \frac{\partial^2 V}{\partial z_2^2} - \left(\frac{\partial^2 V}{\partial z_1 \partial z_2} \right)^2 \right|$$

From now on, we focus on the *isolated* ones.

Particles on a torus : N = 4



Elliptic Calogero-Moser Potential

Let \mathfrak{g} be a simple complex Lie algebra of type ADE.

$$V(\mathbf{z}|\tau) = \sum_{\alpha \in \operatorname{Roots}^+(\mathfrak{g})} \wp(\alpha \cdot \mathbf{z}|\tau).$$

Isolated equilibria : $z^a(\tau)$, $a \in A$. Value of the potential at each isolated equilibrium:

$$V^{a}(\tau) := V(\mathbf{z}^{a}(\tau)|\tau).$$

Recall that

$$orall \begin{pmatrix} \mathsf{a} & b \\ \mathsf{c} & d \end{pmatrix} \in \mathrm{SL}(2,\mathbb{Z}), \qquad \wp\left(rac{z}{c au+d} \mid rac{\mathsf{a} au+b}{c au+d}
ight) = (c au+d)^2 \wp(z,| au)$$

Questions:

- How many isolated equilibria?
- How do they evolve as τ is modified?

Elliptic Calogero-Moser Potential

Expectations:

• There exist *permutations* $T, S : A \to A$ such that

$$V^{a}(\tau+1) = V^{T(a)}(\tau), \qquad V^{a}(-1/\tau) = \tau^{2} V^{S(a)}(\tau)$$

2 The vector

$$\left(egin{array}{c} V^1(au) \ dots \ V^{|\mathcal{A}|}(au) \end{array}
ight)$$

is a vector-valued modular form of weight 2.

③ The permutations *S* and *T* define a *permutation representation* of $PSL(2, \mathbb{Z})$.

Elliptic Calogero-Moser Potential

Solution for $\mathfrak{g} = A_{N-1}$:

z is an isolated equilibrium iff it lies on a sublattice of order N of $\frac{1}{N}\mathbb{Z} + \frac{\tau}{N}\mathbb{Z}$.

These are parametrized by pairs (d, k) where d|N and $0 \le k < d$. So

$$|\mathcal{A}| = \sum_{d|N} d.$$

Actually,

$$\mathcal{A} \cong \mathrm{SL}(2,\mathbb{Z})/\Gamma^0(N)$$

and

$$\mathcal{V}^{(d,k)}(\tau) = E_2(\tau) - \frac{N}{d^2} E_2\left(\frac{N\tau + kd}{d^2}\right) .$$

What about $\mathfrak{g} = D_N$?

Consider $\mathcal{N} = 4$ SYM with gauge algebra \mathfrak{g} , and break supersymmetry to $\mathcal{N} = 1^*$ by giving a mass m to all three chiral multiplets.

The Calogero-Moser system arises as the complex integrable system associated to the theory on $\mathbb{R}^{1,2} \times S^1$. (This can be deduced from the *class S* realization).

The Calogero-Moser potential is the *non-perturbative superpotential* of the gauge theory. So there is a one-to-one correspondence between

- Isolated extrema of the Calogero-Moser Hamiltonian (counted with appropriate multiplicity)
- ${\it @}~$ Massive (gapped) vacua of the ${\cal N}=1^*$ gauge theories

Using the correspondence and *nilpotent orbit* theory, one can get their number.

The $\mathcal{N}=1^*$ gauge theories

Semiclassical analysis:

 $\mathcal{W} \sim \mathrm{Tr} \big(\Phi_1 [\Phi_2, \Phi_3] \big)$

Vacua correspond to embeddings

 $\mathfrak{sl}(2) \to \mathfrak{g}$.

These correspond to *nilpotent orbits* in \mathfrak{g} .

If $\mathfrak{g} = \mathfrak{sl}(N)$ these are classified by partitions of N. The residual gauge group is non-abelian only for *rectangular* partitions $[(N/d)^d]$. One deduces

$$|\mathcal{A}| = \sum_{d|N} d$$
.

Turn to $\mathfrak{g} = \mathfrak{so}(8)$.

• There exist *permutations* $T, S : A \to A$ such that

$$V^{a}(\tau+1) = V^{T(a)}(\tau), \qquad V^{a}(-1/\tau) = \tau^{2} V^{S(a)}(\tau)$$

2 The vector

$$\left(egin{array}{c} V^1(au) \ dots \ dots \ V^{|\mathcal{A}|}(au) \end{array}
ight)$$

is NOT a vector-valued modular form of weight 2.

● The permutations S and T DO NOT define a permutation representation of PSL(2, ℤ).

Type D₄ Calogero-Moser

Strategy:

- Find approximate extrema numerically.
- Exploit the fact that

$$\sum_{a \in \mathcal{A}} (V^a(\tau))^k \in \mathcal{M}_{2k}(\mathrm{SL}(2,\mathbb{Z})) \qquad \text{and} \qquad \dim \mathcal{M}_{2k}(\mathrm{SL}(2,\mathbb{Z})) \leq 1 + \frac{\kappa}{6}$$

to find the exact polynomial

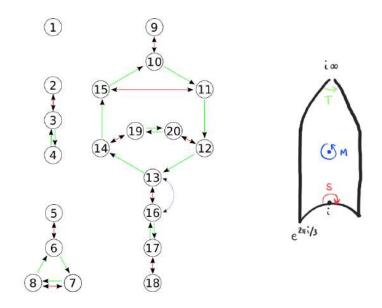
$$P(v|\tau) = \prod_{a \in \mathcal{A}} (v - V^{a}(\tau)) \in \mathbb{Z}[E_{4}(\tau), E_{6}(\tau)][v]$$

Study how the roots of P are permuted as τ moves in the complement of the discriminant locus Δ:

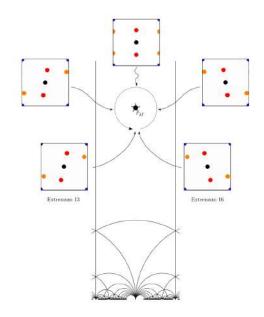
$$\pi_1(\mathcal{H} \setminus \Delta) \to \operatorname{Bij}(\mathcal{A}).$$

1

Type D_4 Calogero-Moser



Type *D*₄ Calogero-Moser



Type D₄ Calogero-Moser

Phase transition at critical value

$$\tau_{M} = i \frac{{}_{2}F_{1}\left(\frac{1}{6}, \frac{5}{6}; 1; \frac{1}{2} + \frac{2761}{992\sqrt{31}}\right)}{{}_{2}F_{1}\left(\frac{1}{6}, \frac{5}{6}; 1; \frac{1}{2} - \frac{2761}{992\sqrt{31}}\right)} \approx 2.4155769875...i$$

such that

$$j(\tau_M) = \frac{488095744}{125}$$

This messes up with everything:

- Now $(ST)^3 \neq 1$, but instead $(STM)^3 = 1$. New kind of modularity.
- The q-expansions have finite radius of convergence $\exp(2\pi i \tau_M) < 1$.

Many open questions for a problem which should be elementary!

- What happens for other g?
- What is the explicit correspondence between extrema and massive vacua?
- What happens in the gauge theory at critical couplings?
- What about non-simply laced algebras?

Thank you for your attention! And Happy Birthday Philippe!