Elliptic Calogero-Moser and Gauge Theory

Antoine Bourget

IPhT, CEA Saclay, June 25, 2024.

At the crossroads of physics and mathematics The joy of integrable combinatorics

Based on work with Jan Troost [1501.05074], [1702.02102] and ongoing work with
Romain Vandepopeliere, Valdo Tatitscheff, Riccardo Argurio...

Quivers?

Particles on a torus

Consider N particles on a torus T^{2} with a pairwise interaction. What are the stable configurations?

What kind of interaction on a torus?

Particles on a torus

Consider the torus as $\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$. The particles are

$$
z_{i} \in \mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z}), \quad i=1, \ldots, N
$$

We need the potential to be doubly periodic: use

$$
V\left(z_{1}, \ldots, z_{N}\right)=\sum_{i<j} \wp\left(z_{i}-z_{j} \mid \tau\right) .
$$

Translation invariance : one can assume $z_{N}=0$.

Particles on a torus

Hamiltonian:

$$
H=\sum_{i} \frac{p_{i}^{2}}{2}+V\left(z_{1}, \ldots, z_{N}\right)
$$

Equilibrium positions:

$$
p_{i}=0, \quad \frac{\partial}{\partial z_{i}} V\left(z_{1}, \ldots, z_{N}\right)=0 .
$$

Example: $N=2$. Then $V(z)=\wp(z \mid \tau)$.
Equilibrium positions

$$
\wp^{\prime}(z \mid \tau)=0 \quad \Longrightarrow \quad z=\frac{1}{2}, \frac{\tau}{2}, \frac{\tau+1}{2} .
$$

Particles on a torus : $N=3$

$$
V\left(z_{1}, z_{2}\right)=\wp\left(z_{1} \mid \tau\right)+\wp\left(z_{2} \mid \tau\right)+\wp\left(z_{1}-z_{2} \mid \tau\right) .
$$

Equilibrium positions

$$
\wp^{\prime}\left(z_{1} \mid \tau\right)=-\wp^{\prime}\left(z_{1}-z_{2} \mid \tau\right)=\wp^{\prime}\left(z_{2} \mid \tau\right)
$$

Two types:

- Isolated equilibrium: $J>0$.
- Non-isolated equilibrium: $J=0$.
with

$$
J=\left|\frac{\partial^{2} V}{\partial z_{1}^{2}} \frac{\partial^{2} V}{\partial z_{2}^{2}}-\left(\frac{\partial^{2} V}{\partial z_{1} \partial z_{2}}\right)^{2}\right|
$$

From now on, we focus on the isolated ones.

Particles on a torus : $N=4$

Elliptic Calogero-Moser Potential

Let \mathfrak{g} be a simple complex Lie algebra of type ADE.

$$
V(\mathbf{z} \mid \tau)=\sum_{\alpha \in \operatorname{Roots}^{+}(\mathfrak{g})} \wp(\alpha \cdot \mathbf{z} \mid \tau) .
$$

Isolated equilibria : $\mathbf{z}^{\mathrm{a}}(\tau), a \in \mathcal{A}$. Value of the potential at each isolated equilibrium:

$$
V^{a}(\tau):=V\left(\mathbf{z}^{a}(\tau) \mid \tau\right)
$$

Recall that

$$
\forall\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z}), \quad \wp\left(\frac{z}{c \tau+d} \left\lvert\, \frac{a \tau+b}{c \tau+d}\right.\right)=(c \tau+d)^{2} \wp(z, \mid \tau)
$$

Questions:

- How many isolated equilibria?
- How do they evolve as τ is modified?

Elliptic Calogero-Moser Potential

Expectations:

(1) There exist permutations $T, S: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
V^{a}(\tau+1)=V^{\top(a)}(\tau), \quad V^{a}(-1 / \tau)=\tau^{2} V^{S(a)}(\tau)
$$

(2) The vector

$$
\left(\begin{array}{c}
V^{1}(\tau) \\
\vdots \\
V^{|\mathcal{A}|}(\tau)
\end{array}\right)
$$

is a vector-valued modular form of weight 2.
(0) The permutations S and T define a permutation representation of $\operatorname{PSL}(2, \mathbb{Z})$.

Elliptic Calogero-Moser Potential

Solution for $\mathfrak{g}=A_{N-1}$:
\mathbf{z} is an isolated equilibrium iff it lies on a sublattice of order N of $\frac{1}{N} \mathbb{Z}+\frac{\tau}{N} \mathbb{Z}$.
These are parametrized by pairs (d, k) where $d \mid N$ and $0 \leq k<d$. So

$$
|\mathcal{A}|=\sum_{d \mid N} d
$$

Actually,

$$
\mathcal{A} \cong \operatorname{SL}(2, \mathbb{Z}) / \Gamma^{0}(N)
$$

and

$$
V^{(d, k)}(\tau)=E_{2}(\tau)-\frac{N}{d^{2}} E_{2}\left(\frac{N \tau+k d}{d^{2}}\right) .
$$

What about $\mathfrak{g}=D_{N}$?

The $\mathcal{N}=1^{*}$ gauge theories

Consider $\mathcal{N}=4$ SYM with gauge algebra \mathfrak{g}, and break supersymmetry to $\mathcal{N}=1^{*}$ by giving a mass m to all three chiral multiplets.

The Calogero-Moser system arises as the complex integrable system associated to the theory on $\mathbb{R}^{1,2} \times S^{1}$. (This can be deduced from the class S realization).

The Calogero-Moser potential is the non-perturbative superpotential of the gauge theory. So there is a one-to-one correspondence between
(1) Isolated extrema of the Calogero-Moser Hamiltonian (counted with appropriate multiplicity)
(2) Massive (gapped) vacua of the $\mathcal{N}=1^{*}$ gauge theories

Using the correspondence and nilpotent orbit theory, one can get their number.

The $\mathcal{N}=1^{*}$ gauge theories

Semiclassical analysis:

$$
\mathcal{W} \sim \operatorname{Tr}\left(\Phi_{1}\left[\Phi_{2}, \Phi_{3}\right]\right)
$$

Vacua correspond to embeddings

$$
\mathfrak{s l}(2) \rightarrow \mathfrak{g} .
$$

These correspond to nilpotent orbits in \mathfrak{g}.

If $\mathfrak{g}=\mathfrak{s l}(N)$ these are classified by partitions of N. The residual gauge group is non-abelian only for rectangular partitions $\left[(N / d)^{d}\right]$. One deduces

$$
|\mathcal{A}|=\sum_{d \mid N} d
$$

Type D_{4} Calogero-Moser

$$
\text { Turn to } \mathfrak{g}=\mathfrak{s o}(8) \text {. }
$$

(1) There exist permutations $T, S: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
V^{a}(\tau+1)=V^{\top(a)}(\tau), \quad V^{a}(-1 / \tau)=\tau^{2} V^{S(a)}(\tau)
$$

(2) The vector

$$
\left(\begin{array}{c}
V^{1}(\tau) \\
\vdots \\
V^{|\mathcal{A}|}(\tau)
\end{array}\right)
$$

is NOT a vector-valued modular form of weight 2.
(3) The permutations S and T DO NOT define a permutation representation of $\operatorname{PSL}(2, \mathbb{Z})$.

Type D_{4} Calogero-Moser

Strategy:
(1) Find approximate extrema numerically.
(2) Exploit the fact that

$$
\sum_{a \in \mathcal{A}}\left(V^{a}(\tau)\right)^{k} \in \mathcal{M}_{2 k}(\mathrm{SL}(2, \mathbb{Z})) \quad \text { and } \quad \operatorname{dim} \mathcal{M}_{2 k}(\mathrm{SL}(2, \mathbb{Z})) \leq 1+\frac{k}{6}
$$

to find the exact polynomial

$$
P(v \mid \tau)=\prod_{a \in \mathcal{A}}\left(v-V^{a}(\tau)\right) \in \mathbb{Z}\left[E_{4}(\tau), E_{6}(\tau)\right][v]
$$

(3) Study how the roots of P are permuted as τ moves in the complement of the discriminant locus Δ :

$$
\pi_{1}(\mathcal{H} \backslash \Delta) \rightarrow \operatorname{Bij}(\mathcal{A})
$$

Type D_{4} Calogero-Moser

Type D_{4} Calogero-Moser

Type D_{4} Calogero-Moser

Phase transition at critical value

$$
\tau_{M}=i \frac{{ }_{2} F_{1}\left(\frac{1}{6}, \frac{5}{6} ; 1 ; \frac{1}{2}+\frac{2761}{992 \sqrt{31}}\right)}{{ }_{2} F_{1}\left(\frac{1}{6}, \frac{5}{6} ; 1 ; \frac{1}{2}-\frac{2761}{992 \sqrt{31}}\right)} \approx 2.4155769875 \ldots i .
$$

such that

$$
j\left(\tau_{M}\right)=\frac{488095744}{125}
$$

This messes up with everything:

- Now $(S T)^{3} \neq 1$, but instead $(S T M)^{3}=1$. New kind of modularity.
- The q-expansions have finite radius of convergence $\exp \left(2 \pi i \tau_{M}\right)<1$.

Conclusion

Many open questions for a problem which should be elementary!

- What happens for other \mathfrak{g} ?
- What is the explicit correspondence between extrema and massive vacua?
- What happens in the gauge theory at critical couplings?
- What about non-simply laced algebras?

Thank you for your attention! And Happy Birthday Philippe!

