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Def. A connected planar (multi)graph, given with an embedding in 
the plane, taken up to continuous deformation.

Components:
  - vertices
  - edges
  - faces

Rooted map: a distinguished corner in the outer face

Planar maps

root edge
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Planar maps

Def. A connected planar (multi)graph, given with an embedding in 
the plane, taken up to continuous deformation.

Components:
  - vertices
  - edges
  - faces

Rooted map: a distinguished corner in the outer face

Triangulation: all faces have  degree 3 
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Planar maps

Def. A connected planar (multi)graph, given with an embedding in 
the plane, taken up to continuous deformation.

Components:
  - vertices
  - edges
  - faces

Rooted map: a distinguished corner in the outer face

Triangulation: all faces have  degree 3 
Quadrangulation: all faces have  degree 4 
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Duality

Exchange faces and vertices

Quadrangulation Quartic (or: 4-valent) map
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Proper colourings of maps

Def. Vertices are coloured in q colours, and two neighbour vertices 
get different colours. 

q=3



I. Map enumeration
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Let m(n) be the number of (planar) maps with n edges. Then:

[Tutte 63]
[BDG 02]

Enumeration of maps: a typical result
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Let m(n) be the number of (planar) maps with n edges. Then:

The associated generating function,

is algebraic of degree 2,

with a rational parametrisation:  if

then [Tutte 63]
[BDG 02]

Enumeration of maps: a typical result
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Enumeration of maps: a typical result

• The generating function M of maps (counted by edges) is algebraic 
of degree 2.
It has a rational parametrisation:

• Asymptotics:

[Tutte 63]
[BDG 02]
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Triangulations

• The generating function T of triangulations (counted by vertices) is 
algebraic of degree 3.
It has a rational parametrisation:

• Asymptotics:

[Mullin, Nemeth & Schellenberg 70]
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Two-coloured maps

• The generating function M2 of bicoloured maps (counted by edges) is 
algebraic of degree 2.
It has a rational parametrisation:

• Asymptotics:

[Tutte 63]
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Two-coloured maps

• The generating function M2 of bicoloured maps (counted by edges) is 
algebraic of degree 2.
It has a rational parametrisation:

• Asymptotics:

[Tutte 63]

A fake 
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problem
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Two-coloured maps

• The generating function M2 of bicoloured maps (counted by edges) is 
algebraic of degree 2.
It has a rational parametrisation:

• Asymptotics:

[Tutte 63]

All faces 
have even 

degreeA fake 

colouring 

problem
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Three-coloured triangulations

• The generating function T3 of 3-coloured triangulations (counted by 
vertices) is algebraic of degree 2.
It has a rational parametrisation:

• Asymptotics:

[Tutte 63]
[DF, Eynard, Guitter 98, BDG 02]
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Three-coloured triangulations

• The generating function T3 of 3-coloured triangulations (counted by 
vertices) is algebraic of degree 2.
It has a rational parametrisation:

• Asymptotics:

[Tutte 63]

~ bicoloured 
maps

[DF, Eynard, Guitter 98, BDG 02]

A fake 

colouring 

problem

All vertices 
have even 

degree
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Three-coloured maps

• The generating function M3 of 3-coloured maps (counted by edges) 
is algebraic of degree 4.
It has a rational parametrisation:

• Asymptotics:

[Bernardi-mbm 11]

A true 

colouring 

problem
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Three-coloured maps

• The generating function M3 of 3-coloured maps (counted by edges) 
is algebraic of degree 4.
It has a rational parametrisation:

• Asymptotics:

[Bernardi-mbm 11]

A mysterious 
result

Bijection with 
some trees?

A true 

colouring 

problem
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Three-coloured quadrangulations
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Three-coloured quadrangulations

• The generating function Q3 of 3-coloured quadrangulations (counted 
by faces) is NOT ALGEBRAIC.

Explicit 2nd 
 order DE 
(degree 3)
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Three-coloured quadrangulations

• The generating function Q3 of 3-coloured quadrangulations (counted 
by faces) is NOT ALGEBRAIC.
It has a D-FINITE parametrisation:

[mbm & Elvey Price 20]

Explicit 2nd 
 order DE 
(degree 3)
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Three-coloured quadrangulations

• The generating function Q3 of 3-coloured quadrangulations (counted 
by faces) is NOT ALGEBRAIC.
It has a D-FINITE parametrisation:

• Asymptotics:

[mbm & Elvey Price 20]

Explicit 2nd 
 order DE 
(degree 3)



II. Three-coloured 
quadrangulations:

a rich model

Three bijections
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Three-coloured quadrangulations as a height model

[EP & Guttmann 18 + Welsh]
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Three-coloured quadrangulations as a height model

Enforce variations of ± 1 along edges: a height model

[EP & Guttmann 18 + Welsh]

0

0

0

2

1

1

2

1

2

+/−1 mod 3



37

Three-coloured quadrangulations as a height model

Enforce variations of ± 1 along edges: a height model
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Three-coloured quadrangulations as a height model

Enforce variations of ± 1 along edges: a height model

Only works for 
quadrangulations!
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The many faces of height labelled quadrangulations

Labelled quadrangulation
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The many faces of height labelled quadrangulations

Labelled quadrangulation Quartic Eulerian orientation
(6 vertex model)
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The many faces of height labelled quadrangulations

Labelled quadrangulation Quartic Eulerian orientation
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The many faces of height labelled quadrangulations

Labelled quadrangulation Quartic Eulerian orientation
(6 vertex model)

Weakly labelled map
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The many faces of height labelled quadrangulations

Labelled quadrangulation Quartic Eulerian orientation
(6 vertex model)

Weakly labelled map Partial  Eulerian orientation
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The many faces of height labelled quadrangulations

Labelled quadrangulation Quartic Eulerian orientation
(6 vertex model)

Weakly labelled map Partial  Eulerian orientation

0

-10

-1

1

0

0

1

duality

Ambjorn-Budd 13
duality



47

The many faces of height labelled quadrangulations

Labelled quadrangulation Quartic Eulerian orientation
(6 vertex model)

Weakly labelled map Partial  Eulerian orientation
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Two more statistics

Labelled quadrangulation Quartic Eulerian orientation
(6 vertex model)

Weakly labelled map Partial  Eulerian orientation

0

-10

-1

1

0

0

1

duality

Ambjorn-Budd 13 
duality

Alternating 
vertices

faces
vertices

edges edges



49

Two more statistics

Labelled quadrangulation Quartic Eulerian orientation
(6 vertex model)
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Two more statistics

Labelled quadrangulation Quartic Eulerian orientation
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Two more statistics

Labelled quadrangulation Quartic Eulerian orientation
(6 vertex model)

Weakly labelled map Partial  Eulerian orientation
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Generating function:
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The generating function of labelled quadrangulations
Convention: root edge labelled from 0 to 1
Generating function:
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The generating function of labelled quadrangulations
Convention: root edge labelled from 0 to 1
Generating function:

1 00

01 1
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Earlier work

And also…
[Bonichon et al. 17, Elvey Price & Guttmann 18]

ω v
● Kostov 00: the 6-vertex model, analytic approach ω 1

● MBM & Elvey Price 20: orientations on quartic 
maps and general maps, algebraic approach

1
0

1
1

● Elvey Price & Zinn-Justin (P.) 23: the 6-vertex 
model, à la Kostov ω 1

● MBM & Elvey Price 24: arbitrary v and ω ω v
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The case v = ω = 1              [MBM & Elvey Price 20] 
Let A be the unique series in t such that:

Then the generating function of quartic Eulerian orientations is

Results: two (very) different forms
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The case v=1  (6 vertex model)            [Kostov 00, EP & Zinn-Justin 20]
Jacobi theta function:

Results: two (very) different forms
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The case v=1  (6 vertex model)            [Kostov 00, EP & Zinn-Justin 20]
Jacobi theta function:

Write                           .        Let q be the only series in t such that:

Moreover, define

Results: two (very) different forms
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The case v=1  (6 vertex model)            [Kostov 00, EP & Zinn-Justin 20]
Jacobi theta function:

Write                           .        Let q be the only series in t such that:

Moreover, define

Then the generating function of quartic Eulerian orientations, with 
weight ω per alternating vertex, is

Results: two (very) different forms
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The case v = ω = 1              [MBM & Elvey Price 20] 
Let A be the unique series in t such that:

Then the generating function of quartic Eulerian orientations is

Results: two (very) different forms



III. Some ingredients,
some results
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Approaches

Matrix 
integrals

Functional 
equations

Analytic 
approach

(v=1)

Algebraic 
approach 

(v=ω =1
or v=1, ω = 0)

MBM-EP 1

Kostov

EP-ZJ

EP-ZJ

MBM-EP 1

Kostov

Combinatorial 
decompositions

guess
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Map functional equations: some features
● Introduce more general maps…
     The outer face has any degree

● … and the corresponding “catalytic” variables: 
     y for the outer degree



66

Map functional equations: some features
● Introduce more general maps…
     The outer face has any degree

● … and the corresponding “catalytic” variables: 
     y for the outer degree

Example:  Uncoloured quadrangulations with any outer degree



67
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Map functional equations: some features
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Example:  Uncoloured quadrangulations with any outer degree
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Labelled quadrangulations: approaches

Matrix 
integrals

Combinatorial 
decompositions

Functional 
equations

with 2 
catalytic 

variables x, y

Analytic 
approach

(v=1)

Algebraic 
approach 

(v=ω=1)
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An interesting class of labelled maps (à la Dobrushin)
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Boundary: 0 -1 0 -1 0 …  -1 0 1 0 1 … 1
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An interesting class of labelled maps (à la Dobrushin)
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An interesting class of labelled maps (à la Dobrushin)
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Boundary: 0 1 0 1 … 1 0
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d digons 
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Map with boundary 
0 -1 0 -1 0 … 0 1 0 … 1 0

[x≽0] B(1/x) P(x)
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Approaches
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A characterisation of the series Q     [MBM & EP 24]
There exists a unique series in t, with coefficients that are Laurent 
series in x (and polynomials in ω and v), denoted ℳ(x), such that:
● Initial condition 1       ℳ(x) is a multiple of t
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A characterisation of the series Q     [MBM & EP 24]
There exists a unique series in t, with coefficients that are Laurent 
series in x (and polynomials in ω and v), denoted ℳ(x), such that:
● Initial condition 1       ℳ(x) is a multiple of t
● Initial condition 2      [x-1] ℳ(x) = tv
● Involution                 ℳ(ℳ(x)) = x
● Behaviour at x=0: the following series in t has coefficients that 
have no pole at x=0:

● Then ℳ(x) has a combinatorial description in terms of labelled 
maps, and the series counting labelled quadrangulations is                   
                                        Q= [x-2] ℳ(x)/t2 - v.
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A characterisation of the series Q: the case ω = 1
There exists a unique series in t, with coefficients that are Laurent 
series in x (and polynomials in v), denoted ℳ(x), such that:
● Initial condition 1       ℳ(x) is a multiple of t
● Initial condition 2      [x-1] ℳ(x) = tv
● Involution                 ℳ(ℳ(x)) = x
● Behaviour at x=0: the following series in t has coefficients that 
have no pole at x=0:
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A characterisation of the series Q: the case ω = 1
There exists a unique series in t, with coefficients that are Laurent 
series in x (and polynomials in v), denoted ℳ(x), such that:
● Initial condition 1       ℳ(x) is a multiple of t
● Initial condition 2      [x-1] ℳ(x) = tv
● Involution                 ℳ(ℳ(x)) = x
● Behaviour at x=0: the following series in t has coefficients that 
have no pole at x=0:

● In fact the above expression does not depend on x…  
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A characterisation of the series Q: the case ω = 1
There exists a unique series in t, with coefficients that are Laurent 
series in x (and polynomials in v), denoted ℳ(x), such that:
● Initial condition 1       ℳ(x) is a multiple of t
● Initial condition 2      [x-1] ℳ(x) = tv
● Involution                 ℳ(ℳ(x)) = x
● Behaviour at x=0: the following series in t has coefficients that 
have no pole at x=0:

● In fact the above expression does not depend on x…  
and A is then determined by Condition 2.
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The case ω = 1              [MBM & Elvey Price 24] 
Let A be the unique series in t such that:

Then the generating function of labelled quadrangulations, counted 
by faces and local minima, is

A new result
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The case ω = 1              [MBM & Elvey Price 24] 
Let A be the unique series in t such that:

Then the generating function of labelled quadrangulations, counted 
by faces and local minima, is

A new result

+ similar expression for the case ω = 0 : Eulerian orientations of 
general maps, counted by edges and vertices
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More results
● Direct combinatorial proof of the 1-variable characterisation when 

 ω = 0 and v=1  random generation→
● For ω=0 and ω=1, a family of trees with the same GF  → bijections ?
● Simpler solution when ω = 2 cos(k𝜋/m) and v=1
● Some ingredients of the solution for general v and ω.

● Limit behaviour of the height of a random vertex (log n) [Elvey 
Price]
● Record the number of vertices of each height j (and more) [EP]
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What’s the bijection?

Labelled quadrangulations
  n faces
  m local minima
  (M local maxima ?)

Unary-binary trees of charge 1 
No subtree of charge 0
  n+2 leaves
  m left leaves
  (M right leaves ?)

Charge = # binary vertices – 
               # unary vertices 

0

−10

−1

1

1

2

2

1

−1 −1

−2

−2

−1
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What’s the bijection?

Labelled quadrangulations
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  m local minima
  (M local maxima ?)

Unary-binary trees of charge 1 
No subtree of charge 0
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  m left leaves
  (M right leaves ?)

Charge = # binary vertices – 
               # unary vertices 

0

−10

−1

1

1

2

2

1

−1 −1

−2

−2

−1

Merci !


