

The joy of integrable combinatorics

The joy of integrable combinatorics

Combinatorics of

3-coloured

quadrangulations

Mireille Bousquet-Mélou CNRS, Université de Bordeaux, France

Andrew Elvey Price
CNRS, Université de Tours, France

Planar maps

Def. A connected planar (multi)graph, given with an embedding in the plane, taken up to continuous deformation.

Components:

- vertices
- edges
- faces

Planar maps

Def. A connected planar (multi)graph, given with an embedding in the plane, taken up to continuous deformation.

Components:

- vertices
- edges
- faces

Planar maps

Def. A connected planar (multi)graph, given with an embedding in the plane, taken up to continuous deformation.

Components:

- vertices
- edges
- faces

Planar maps

Def. A connected planar (multi)graph, given with an embedding in the plane, taken up to continuous deformation.

Components:

- vertices
- edges
- faces

Rooted map: a distinguished corner in the outer face

Planar maps

Def. A connected planar (multi)graph, given with an embedding in the plane, taken up to continuous deformation.

Components:

- vertices
- edges
- faces

Rooted map: a distinguished corner in the outer face

Planar maps

Def. A connected planar (multi)graph, given with an embedding in the plane, taken up to continuous deformation.

Components:

- vertices
- edges
- faces

Rooted map: a distinguished corner in the outer face

Triangulation: all faces have degree 3

Planar maps

Def. A connected planar (multi)graph, given with an embedding in the plane, taken up to continuous deformation.

Components:

- vertices
- edges
- faces

Rooted map: a distinguished corner in the outer face

Triangulation: all faces have degree 3
Quadrangulation: all faces have degree 4

Duality

Exchange faces and vertices

Quadrangulation

Quartic (or: 4-valent) map

Proper colourings of maps

Def. Vertices are coloured in a colours, and two neighbour vertices get different colours.

$q=3$

I. Map enumeration

Enumeration of maps: a typical result

Let $m(n)$ be the number of (planar) maps with n edges. Then:

$$
m(n)=\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n} \sim k 12^{n} n^{-5 / 2}
$$

Enumeration of maps: a typical result

Let $m(n)$ be the number of (planar) maps with n edges. Then:

$$
m(n)=\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n} \sim k 12^{n} n^{-5 / 2}
$$

The associated generating function,

$$
M=\sum_{n \geq 0} m(n) t^{n}=\frac{(1-12 t)^{3 / 2}-1+18 t}{54 t^{2}}
$$

Enumeration of maps: a typical result

Let $m(n)$ be the number of (planar) maps with n edges. Then:

$$
m(n)=\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n} \sim k 12^{n} n^{-5 / 2}
$$

The associated generating function,

$$
M=\sum_{n \geq 0} m(n) t^{n}=\frac{(1-12 t)^{3 / 2}-1+18 t}{54 t^{2}}
$$

is algebraic of degree 2 ,

$$
16 t-1+(1-18 t) M+27 t^{2} M^{2}=0
$$

Enumeration of maps: a typical result

Let $m(n)$ be the number of (planar) maps with n edges. Then:

$$
m(n)=\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n} \sim \kappa 12^{n} n^{-5 / 2}
$$

The associated generating function,

$$
M=\sum_{n \geq 0} m(n) t^{n}=\frac{(1-12 t)^{3 / 2}-1+18 t}{54 t^{2}}
$$

is algebraic of degree 2 ,

$$
16 t-1+(1-18 t) M+27 t^{2} M^{2}=0
$$

with a rational parametrisation: if

$$
t=\frac{A}{3(1+A)^{2}}, \quad \text { i.e. } \quad A=3 t(1+A)^{2}
$$

then

$$
M=A-t A^{3}
$$

Enumeration of maps: a typical result

- The generating function M of maps (counted by edges) is algebraic of degree 2.

It has a rational parametrisation:

$$
t=\frac{A}{3(1+A)^{2}}, \quad M=A-t A^{3}
$$

- Asymptotics:

$$
m(n) \sim k 12^{n} n^{-5 / 2}
$$

[Tutte 63]

Triangulations

- The generating function T of triangulations (counted by vertices) is algebraic of degree 3.

It has a rational parametrisation:

$$
t=\frac{A(1+A)}{2(1+2 A)^{3}}, \quad T=\frac{A(1-A)}{2(1+2 A)} .
$$

- Asymptotics:

$$
t(n) \sim k(12 \sqrt{3})^{n} n^{-5 / 2}
$$

[Mullin, Nemeth \& Schellenberg 70]

Two-coloured maps

- The generating function M_{2} of bicoloured maps (counted by edges) is algebraic of degree 2.

It has a rational parametrisation:

$$
t=A(1-2 A), \quad t^{2} M_{2}=A^{2}\left(1-3 A+A^{2}\right)
$$

- Asymptotics:

$$
m_{2}(n) \sim \kappa 8^{n} n^{-5 / 2}
$$

Two-coloured maps

- The generating function M_{2} of bicoloured maps (counted by edges) is algebraic of degree 2 .

It has a rational parametrisation:

$$
t=A(1-2 A), \quad t^{2} M_{2}=A^{2}\left(1-3 A+A^{2}\right)
$$

- Asymptotics:

$$
m_{2}(n) \sim k 8^{n} n^{-5 / 2}
$$

Two-coloured maps

- The generating function M_{2} of bicoloured maps (counted by edges) is algebraic of degree 2 .

It has a rational parametrisation:

$$
t=A(1-2 A), \quad t^{2} M_{2}=A^{2}\left(1-3 A+A^{2}\right)
$$

- Asymptotics:

$$
m_{2}(n) \sim k 8^{n} n^{-5 / 2}
$$

All faces have even degree
[Tutte 63]

Three-coloured triangulations

- The generating function T_{3} of 3-coloured triangulations (counted by vertices) is algebraic of degree 2.

It has a rational parametrisation:

$$
t=A(1-2 A), \quad t^{2} T_{3}=A^{2}\left(1-3 A+A^{2}\right)
$$

- Asymptotics:

$$
t_{3}(n) \sim k 8^{n} n^{-5 / 2} .
$$

[Tutte 63]
[DF, Eynard, Guitter 98, BDG 02]

Three-coloured triangulations

- The generating function T_{3} of 3-coloured triangulations (counted by vertices) is algebraic of degree 2.

It has a rational parametrisation:

$$
t=A(1-2 A), \quad t^{2} T_{3}=A^{2}\left(1-3 A+A^{2}\right)
$$

- Asymptotics:

$$
t_{3}(n) \sim k 8^{n} n^{-5 / 2} .
$$

A fake
colouring problem

[Tutte 63]
[DF, Eynard, Guitter 98, BDG 02]

Three-coloured triangulations

- The generating function T_{3} of 3-coloured triangulations (counted by vertices) is algebraic of degree 2.

It has a rational parametrisation:

$$
t=A(1-2 A), \quad t^{2} T_{3}=A^{2}\left(1-3 A+A^{2}\right)
$$

- Asymptotics:

$$
t_{3}(n) \sim k 8^{n} n^{-5 / 2} .
$$

All vertices have even degree
[Tutte 63]
[DF, Eynard, Guitter 98, BDG 02]

Three-coloured triangulations

- The generating function T_{3} of 3-coloured triangulations (counted by vertices) is algebraic of degree 2.

It has a rational parametrisation:

$$
t=A(1-2 A), \quad t^{2} T_{3}=A^{2}\left(1-3 A+A^{2}\right)
$$

- Asymptotics:

$$
t_{3}(n) \sim k 8^{n} n^{-5 / 2} .
$$

A fake
colouring problem

All vertices

 have even degree~ bicoloured maps
[Tutte 63]
[DF, Eynard, Guitter 98, BDG 02]

Three-coloured maps

- The generating function M_{3} of 3 -coloured maps (counted by edges) is algebraic of degree 4.

It has a rational parametrisation:

$$
t=A \frac{\left(1-2 A^{3}\right)}{(1+2 A)^{3}}, \quad M_{3}=\frac{(1+2 A)\left(1-2 A^{2}-4 A^{3}-4 A^{4}\right)}{\left(1-2 A^{3}\right)^{2}}
$$

- Asymptotics:

$$
m_{3}(n) \sim k\left(\frac{22+8 \sqrt{6}}{3}\right)^{n} n^{-5 / 2}
$$

Three-coloured maps

- The generating function M_{3} of 3 -coloured maps (counted by edges) is algebraic of degree 4.

It has a rational parametrisation:

$$
t=A \frac{\left(1-2 A^{3}\right)}{(1+2 A)^{3}}, \quad M_{3}=\frac{(1+2 A)\left(1-2 A^{2}-4 A^{3}-4 A^{4}\right)}{\left(1-2 A^{3}\right)^{2}}
$$

- Asymptotics:

$$
m_{3}(n) \sim k\left(\frac{22+8 \sqrt{6}}{3}\right)^{n} n^{-5 / 2}
$$

[Bernardi-mbm [וו]

Three-coloured quadrangulations

Three-coloured quadrangulations

- The generating function Q_{3} of 3-coloured quadrangulations (counted by faces) is NOT ALGEBRAIC.

Explicit $2^{\text {nd }}$ order DE (degree 3)

Three-coloured quadrangulations

- The generating function Q_{3} of 3-coloured quadrangulations (counted by faces) is NOT ALGEBRAIC.

It has a D-FINITE parametrisation:

$$
t=\sum_{n \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{3 n}{n} A^{n+1}, \quad Q_{3}=\frac{t-A}{3 t^{2}}-1 .
$$

Explicit $2^{\text {nd }}$ order DE (degree 3)
[mbm \& Elvey Price 20]

Three-coloured quadrangulations

- The generating function Q_{3} of 3-coloured quadrangulations (counted by faces) is NOT ALGEBRAIC.

It has a D-FINITE parametrisation:

$$
t=\sum_{n \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{3 n}{n} A^{n+1}, \quad Q_{3}=\frac{t-A}{3 t^{2}}-1
$$

- Asymptotics:

$$
q_{3}(n) \sim k(4 \sqrt{3} \pi)^{n}(n \log n)^{-2}
$$

Explicit $2^{\text {nd }}$ order DE (degree 3)

II. Three-coloured quadrangulations: a rich model

Three bijections

[EP \& Guttmann 18 + Welsh]

Three-coloured quadrangulations as a height model

Enforce variations of \pm I along edges: a height model

[EP \& Guttmann 18 + Welsh]

Three-coloured quadrangulations as a height model

Enforce variations of ± 1 along edges: a height model

[EP \& Guttmann 18 + Welsh]

Three-coloured quadrangulations as a height model

Enforce variations of ± 1 along edges: a height model

Only works for quadrangulations!
[EP \& Guttmann 18 + Welsh]

The many faces of height labelled quadrangulations

Labelled quadrangulation

The many faces of height labelled quadrangulations

Labelled quadrangulation

duality

The many faces of height labelled quadrangulations

Labelled quadrangulation

- Quartic Eulerian orientation (6 vertex model)

The many faces of height labelled quadrangulations

Labelled quadrangulation Ambjorn-Budd 13

- Quartic Eulerian orientation (6 vertex model)

The many faces of height labelled quadrangulations

Labelled quadrangulation Ambjornt-Budd 13

- Quartic Eulerian orientation (6 vertex model)

Weakly labelled map

The many faces of height labelled quadrangulations

Labelled quadrangulation Ambjornt-Budd 13 duality Quartic Eulerian orientation (6 vertex model) Weakly labelled map

The many faces of height labelled quadrangulations

Labelled quadrangulation Ambjorn--Budd 13
duality

- Quartic Eulerian orientation (6 vertex model)

Weakly labelled map

The many faces of height labelled quadrangulations

Labelled quadrangulation Ambjorn-Budd 13

Weakly labelled map

duality - Quartic Eulerian orientation (6 vertex model)
duality
$\xrightarrow[\longrightarrow]{\longrightarrow}$ Partial Eulerian orientation

The many faces of height labelled quadrangulations

Labelled quadrangulation Ambjorn-Budd 13

Weakly labelled map

duality - Quartic Eulerian orientation (6 vertex model)
duality
\rightarrow Partial Eulerian orientation

Two more statistics

Labelled quadrangulation Ambjorn-Budd 13

Weakly labelled map

Alternating vertices
duality
\rightarrow Quartic Eulerian orientation (6 vertex model)
duality
$\xrightarrow{\text { duality }}$

Two more statistics

Labelled quadrangulation duality Quartic Eulerian orientation Ambjorn-Budd 13 Weakly labelled map
duality (6 vertex model)
\rightarrow Partial Eulerian orientation

Mono-
chromatic edges

Unoriented edges

Two more statistics

Labelled quadrangulation duality Quartic Eulerian orientation Ambjorn-Budd 13 (6 vertex model)

Weakly labelled map
duality
\rightarrow Partial Eulerian orientation

> Monochromatic edges

Unoriented edges

Two more statistics

Labelled quadrangulation Ambjorn-Budd 13

Weakly labelled map

duality
$\rightarrow \xrightarrow{4}$
Partial Eulerian orientation

Unoriented edges

Vertices

The generating function of labelled quadrangulations

Convention: root edge labelled from 0 to 1
Generating function:

$$
Q=\sum_{\text {labelled quad. }} t^{\text {faces }} \omega^{\text {bic. faces }} v^{\text {local min. }}
$$

The generating function of labelled quadrangulations

Convention: root edge labelled from 0 to 1
Generating function:
$Q=\sum_{\text {labelled quad. }} t^{\text {faces }} \omega^{\text {bic. faces }} v^{\text {local min. }}$

The generating function of labelled quadrangulations

Convention: root edge labelled from 0 to 1
Generating function:

$Q=\sum_{\text {labelled quad. }} t^{\text {faces }} \omega^{\text {bic. faces }} v^{\text {local min. }}$

The generating function of labelled quadrangulations

Convention: root edge labelled from 0 to 1
Generating function:

$$
Q=\sum_{\text {labelled quad. }} \mathrm{t}^{\text {faces }} \omega^{\text {bic. faces }} v^{\text {local min. }}=\mathrm{t}\left(\omega v^{2}+2 v+\omega v\right)+\mathcal{O}\left(\mathrm{t}^{2}\right)
$$

Bicoloured Local weight
faces minima w
(0)

Earlier work

	ω	v
- Kostov 00: the 6-vertex model, analytic approach	ω	1
- MBM \& Elvey Price 20: orientations on quartic	1	1
maps and general maps, algebraic approach	0	1
- Elvey Price \& Zinn-Justin (P.) 23: the 6-vertex model, à la Kostov	ω	।
- MBM \& Elvey Price 24: arbitrary v and ω	ω	v

And also...
[Bonichon et al. 17, Elvey Price \& Guttmann 18]

Results: two (very) different forms

The case $v=\omega=1$
 [MBM \& Elvey Price 20]

Let A be the unique series in t such that:

$$
t=\sum_{n \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{3 n}{n} A^{n+1}
$$

Then the generating function of quartic Eulerian orientations is

$$
\begin{aligned}
Q & =\frac{t-A}{3 t^{2}}-1 \\
& =4 t+35 t^{2}+402 t^{3}+\cdots
\end{aligned}
$$

Results: two (very) different forms

The case $v=1$ (6 vertex model) [Kostov 00, EP \& Zinn-Justin 20]
Jacobi theta function:

$$
\theta(q, z) \equiv \theta(z):=\sum_{n \geq 0}(-1)^{n} q^{n(n+1) / 2} \sin (2 n+1) z .
$$

Results: two (very) different forms

The case $v=1$ (6 vertex model) [Kostov 00, EP \& Zinn-Justin 20]
Jacobi theta function:

$$
\theta(q, z) \equiv \theta(z):=\sum_{n \geq 0}(-1)^{n} q^{n(n+1) / 2} \sin (2 n+1) z .
$$

Write $\omega=-2 \cos (2 \alpha)$. Let q be the only series in t such that:

$$
t=\frac{\cos \alpha}{64 \sin ^{3} \alpha}\left(\frac{\theta^{\prime \prime}(\alpha)}{\theta^{\prime}(\alpha)}-\frac{\theta(\alpha) \theta^{(3)}(\alpha)}{\theta^{\prime}(\alpha)^{2}}\right)
$$

Results: two (very) different forms

The case $v=1$ (6 vertex model)
[Kostov 00, EP \& Zinn-Justin 20]
Jacobi theta function:

$$
\theta(q, z) \equiv \theta(z):=\sum_{n \geq 0}(-1)^{n} q^{n(n+1) / 2} \sin (2 n+1) z .
$$

Write $\omega=-2 \cos (2 \alpha)$. Let q be the only series in t such that:

$$
t=\frac{\cos \alpha}{64 \sin ^{3} \alpha}\left(\frac{\theta^{\prime \prime}(\alpha)}{\theta^{\prime}(\alpha)}-\frac{\theta(\alpha) \theta^{(3)}(\alpha)}{\theta^{\prime}(\alpha)^{2}}\right)
$$

Moreover, define

$$
A=\frac{\cos ^{2} \alpha}{96 \sin ^{4} \alpha} \frac{\theta(\alpha)^{2}}{\theta^{\prime}(\alpha)^{2}}\left(\frac{\theta^{(3)}(0)}{\theta^{\prime}(0)}-\frac{\theta^{(3)}(\alpha)}{\theta^{\prime}(\alpha)}\right)
$$

Results: two (very) different forms

The case $\mathrm{v}=1$ (6 vertex model)
[Kostov 00, EP \& Zinn-Justin 20]
Jacobi theta function:

$$
\theta(q, z) \equiv \theta(z):=\sum_{n \geq 0}(-1)^{n} q^{n(n+1) / 2} \sin (2 n+1) z .
$$

Write $\omega=-2 \cos (2 \alpha)$. Let q be the only series in t such that:

$$
t=\frac{\cos \alpha}{64 \sin ^{3} \alpha}\left(\frac{\theta^{\prime \prime}(\alpha)}{\theta^{\prime}(\alpha)}-\frac{\theta(\alpha) \theta^{(3)}(\alpha)}{\theta^{\prime}(\alpha)^{2}}\right)
$$

Moreover, define

$$
A=\frac{\cos ^{2} \alpha}{96 \sin ^{4} \alpha} \frac{\theta(\alpha)^{2}}{\theta^{\prime}(\alpha)^{2}}\left(\frac{\theta^{(3)}(0)}{\theta^{\prime}(0)}-\frac{\theta^{(3)}(\alpha)}{\theta^{\prime}(\alpha)}\right)
$$

Then the generating function of quartic Eulerian orientations, with weight ω per alternating vertex, is

$$
\mathrm{Q}=\frac{\mathrm{t}-A}{(\omega+2) \mathrm{t}^{2}}-1
$$

Results: two (very) different forms

The case $v=\omega=1$
 [MBM \& Elvey Price 20]

Let A be the unique series in t such that:

$$
t=\sum_{n \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{3 n}{n} A^{n+1}
$$

Then the generating function of quartic Eulerian orientations is

$$
\begin{aligned}
Q & =\frac{t-A}{3 t^{2}}-1 \\
& =4 t+35 t^{2}+402 t^{3}+\cdots
\end{aligned}
$$

III. Some ingredients, some results

Approaches

Map functional equations: some features

- Introduce more general maps...

The outer face has any degree

- ... and the corresponding "catalytic" variables:
y for the outer degree

Map functional equations: some features

- Introduce more general maps...

The outer face has any degree

- ... and the corresponding "catalytic" variables:
y for the outer degree

Example: Uncoloured quadrangulations with any outer degree

$$
\mathrm{U}(\mathrm{y})=\sum_{\text {near-quadr. }} \mathrm{t}^{\text {finite faces }} y^{\frac{\text { outer degree }}{2}-1}
$$

Map functional equations: some features

- Introduce more general maps...

The outer face has any degree

- ... and the corresponding "catalytic" variables:
y for the outer degree
- Operators that extract from a series monomials with positive powers

Example: Uncoloured quadrangulations with any outer degree

$$
\mathrm{U}(\mathrm{y})=\sum_{\text {near-quadr. }} \mathrm{t}^{\text {finite faces }} y^{\frac{\text { outer degree }}{2}-1}
$$

Map functional equations: some features

- Introduce more general maps...

The outer face has any degree

- ... and the corresponding "catalytic" variables:
y for the outer degree
- Operators that extract from a series monomials with positive powers

Example: Uncoloured quadrangulations with any outer degree

$$
\begin{aligned}
\mathrm{U}(\mathrm{y})= & \sum_{\text {near-quadr. }} \mathrm{t}^{\text {finite faces }} y^{\frac{\text { outer degree }}{2}-1} \\
\mathrm{U}(\mathrm{y})=\mathrm{t}^{0} \mathrm{y}^{\mathrm{o}} & \left.+\mathrm{yU}^{2}(\mathrm{y})^{2}+\mathrm{t}^{2} \geq 0\right]\left(\frac{\mathrm{U}(\mathrm{y})}{\mathrm{y}}\right)
\end{aligned}
$$

Labelled quadrangulations: approaches

Labelled quadrangulations: approaches

Characterisation with I catalytic variable x

Algebraic approach

$$
v=1
$$

$$
\text { or } \omega=1
$$

$$
\operatorname{or} \omega=0
$$

Approaches

Characterisation with I catalytic variable x

Algebraic approach $v=1$
or $\omega=1$
or $\omega=0$

An interesting class of labelled maps (d la Dobrushin)

Boundary: $0-10-10 \ldots-10101 \ldots 1$

An interesting class of labelled maps (d la Dobrushin)

Boundary: $0-10-10 \ldots-10101$... 1
Non-positive submap attached at the root

An interesting class of labelled maps (d la Dobrushin)

Boundary: $0-10-10 \ldots-10101 \ldots 1$
Non-positive submap attached at the root

An interesting class of labelled maps (a la Dobrushin)

Boundary: 0-1 0

An interesting class of labelled maps (a la Dobrushin)

Boundary: $0-10-10 \ldots-10101$... 1
Non-positive submap attached at the root

Boundary: 0101 ... 10

Boundary: 0 - ו- .. ו- 0

An interesting class of labelled maps (à la Dobrushin)

Boundary: 0101 ... 10

Outer
degree $\geqslant 2 d$

Boundary: 0-10 - ... - 0

An interesting class of labelled maps (à la Dobrushin)

Map with boundary 0 - 0 - 0 - 0 ... 010 ... 10

Boundary: 0101 ... 10

Boundary: 0-1 0

Approaches

A characterisation of the series $Q \quad[M B M$ \& EP 24]

There exists a unique series in t, with coefficients that are Laurent series in x (and polynomials in ω and v), denoted $\mathcal{M}(x)$, such that:

- Initial condition $1 \quad \mathcal{M}(x)$ is a multiple of t

A characterisation of the series $Q \quad[M B M$ \& EP 24]

There exists a unique series in t, with coefficients that are Laurent series in x (and polynomials in ω and v), denoted $\mathcal{M}(x)$, such that:

- Initial condition I $\mathcal{M}(x)$ is a multiple of t
$M(x)=t ?$

A characterisation of the series $Q \quad[M B M$ \& EP 24]

There exists a unique series in t, with coefficients that are Laurent series in x (and polynomials in ω and v), denoted $\mathcal{M}(x)$, such that:

- Initial condition I $\mathcal{M}(x)$ is a multiple of t
- Initial condition $2 \quad\left[x^{-1}\right] \mathcal{M}(x)=$ tv
$M(x)=t$?

A characterisation of the series $Q \quad[M B M$ \& EP 24]

There exists a unique series in t, with coefficients that are Laurent series in x (and polynomials in ω and v), denoted $\mathcal{M}(x)$, such that:

- Initial condition $1 \quad \mathcal{M}(x)$ is a multiple of t
- Initial condition $2 \quad\left[x^{-1}\right] \mathcal{M}(x)=$ tv

$$
M(x)=+v / x ?
$$

A characterisation of the series $Q \quad[M B M$ \& EP 24]
There exists a unique series in t, with coefficients that are Laurent series in x (and polynomials in ω and v), denoted $\mathcal{M}(x)$, such that:

- Initial condition I $\mathcal{M}(x)$ is a multiple of t
- Initial condition $2 \quad\left[x^{-1}\right] \mathcal{M}(x)=t v$
- Involution

$$
\mathcal{M}(\mathcal{M}(x))=x
$$

$$
\mathcal{M}(x)=\operatorname{tv} / x ?
$$

A characterisation of the series Q [MBM \& EP 24]

There exists a unique series in t, with coefficients that are Laurent series in x (and polynomials in ω and v), denoted $\mathcal{M}(x)$, such that:

- Initial condition I $\mathcal{M}(x)$ is a multiple of t
- Initial condition $2 \quad\left[x^{-1}\right] \mathcal{M}(x)=$ tv
- Involution

$$
\mathcal{M}(\mathcal{M}(x))=x
$$

$$
M(x)=+v / x ?
$$

- Behaviour at $x=0$: the following series in thas coefficients that have no pole at $x=0$:

$$
(x \mathcal{M}(x)-t(v-1))(1-\omega x-\mathcal{M}(x)) .
$$

A characterisation of the series $Q \quad[M B M$ \& EP 24]

There exists a unique series in t, with coefficients that are Laurent series in x (and polynomials in ω and v), denoted $\mathcal{M}(x)$, such that:

- Initial condition I $\mathcal{M}(x)$ is a multiple of t
- Initial condition $2 \quad\left[x^{-1}\right] \mathcal{M}(x)=$ tv
- Involution

$$
\mathcal{M}(\mathcal{M}(x))=x
$$

- Behaviour at $x=0$: the following series in thas coefficients that have no pole at $x=0$:

$$
\begin{gathered}
(x \mathcal{M}(x)-t(v-1))(1-\omega x-\mathcal{M}(x)) \\
\mathcal{M}(x)=\left(\frac{v}{x}+\frac{1}{1-x}\right) t+\left(\frac{v}{x^{2}}+\frac{\omega v+1}{(1-x)^{2}}+\frac{\omega}{(1-x)^{3}}\right) t^{2}+\mathcal{O}\left(t^{3}\right)
\end{gathered}
$$

A characterisation of the series $Q \quad[M B M$ \& EP 24]

There exists a unique series in t, with coefficients that are Laurent series in x (and polynomials in ω and v), denoted $\mathcal{M}(x)$, such that:

- Initial condition $1 \quad \mathcal{M}(x)$ is a multiple of t
- Initial condition $2 \quad\left[x^{-1}\right] \mathcal{M}(x)=$ tv
- Involution

$$
\mathcal{M}(\mathcal{M}(x))=x
$$

- Behaviour at $x=0$: the following series in thas coefficients that have no pole at $x=0$:

$$
\begin{gathered}
(x \mathcal{M}(x)-t(v-1))(1-\omega x-\mathcal{M}(x)) \\
\mathcal{M}(x)=\left(\frac{v}{x}+\frac{1}{1-x}\right) t+\left(\frac{v}{x^{2}}+\frac{\omega v+1}{(1-x)^{2}}+\frac{\omega}{(1-x)^{3}}\right) t^{2}+\mathcal{O}\left(t^{3}\right)
\end{gathered}
$$

- Then $\mathcal{M}(x)$ has a combinatorial description in terms of labelled maps, and the series counting labelled quadrangulations is

$$
Q=\left[x^{-2}\right] \mathcal{M}(x) / t^{2}-v .
$$

Approaches

Characterisation with I catalytic variable x

Algebraic approach

$$
v=1
$$

$$
\text { or } \omega=1
$$

$$
\text { or } \omega=0
$$

A characterisation of the series Q: the case $\omega=1$

There exists a unique series in t, with coefficients that are Laurent series in x (and polynomials in v), denoted $\mathcal{M}(x)$, such that:

- Initial condition $1 \quad \mathcal{M}(x)$ is a multiple of t
- Initial condition $2 \quad\left[x^{-1}\right] \mathcal{M}(x)=$ tv
- Involution

$$
\mathcal{M}(\mathcal{M}(x))=x
$$

- Behaviour at $x=0$: the following series in thas coefficients that have no pole at $x=0$:

$$
(x \mathcal{M}(x)-t(v-1))(1-x-\mathcal{M}(x))
$$

A characterisation of the series Q: the case $\omega=1$

There exists a unique series in t, with coefficients that are Laurent series in x (and polynomials in v), denoted $\mathcal{M}(x)$, such that:

- Initial condition $1 \quad \mathcal{M}(x)$ is a multiple of t
- Initial condition $2 \quad\left[x^{-1}\right] \mathcal{M}(x)=\mathrm{tv}$
- Involution

$$
\mathcal{M}(\mathcal{M}(x))=x
$$

- Behaviour at $x=0$: the following series in thas coefficients that have no pole at $x=0$:

$$
(x \mathcal{M}(x)-t(v-1))(1-x-\mathcal{M}(x))=A .
$$

- In fact the above expression does not depend on X...

A characterisation of the series Q: the case $\omega=1$

There exists a unique series in t, with coefficients that are Laurent series in x (and polynomials in v), denoted $\mathcal{M}(x)$, such that:

- Initial condition $1 \quad \mathcal{M}(x)$ is a multiple of t
- Initial condition $2 \quad\left[x^{-1}\right] \mathcal{M}(x)=$ tv
- Involution

$$
\mathcal{M}(\mathcal{M}(x))=x
$$

- Behaviour at $x=0$: the following series in thas coefficients that have no pole at $x=0$:

$$
(x \mathcal{M}(x)-t(v-1))(1-x-\mathcal{M}(x))=A .
$$

- In fact the above expression does not depend on x... and A is then determined by Condition 2.

A new result

The case $\omega=1$
 [MBM \& Elvey Price 24]

Let A be the unique series in t such that:

$$
t=\sum_{n, k \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{3 n+2 k}{n+k} t^{k}(v-1)^{k} A^{n+1}
$$

Then the generating function of labelled quadrangulations, counted by faces and local minima, is

$$
\begin{aligned}
Q & =-v+\frac{1}{t^{2}} \sum_{n, k \geq 0, n+k>0} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{3 n+2 k-1}{2 n+k} t^{k}(v-1)^{k} A^{n+1} \\
& =v(v+3) t+v(v+6)(2 v+3) t^{2}+v(v+1)\left(5 v^{2}+61 v+135\right) t^{3}+\cdots .
\end{aligned}
$$

A new result

The case $\omega=1 \quad$ [MBM \& Elvey Price 24]

Let A be the unique series in t such that:

$$
t=\sum_{n, k \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{3 n+2 k}{n+k} t^{k}(v-1)^{k} A^{n+1}
$$

Then the generating function of labelled quadrangulations, counted by faces and local minima, is

$$
\begin{aligned}
Q & =-v+\frac{1}{t^{2}} \sum_{n, k \geq 0, n+k>0} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{3 n+2 k-1}{2 n+k} t^{k}(v-1)^{k} A^{n+1} \\
& =v(v+3) t+v(v+6)(2 v+3) t^{2}+v(v+1)\left(5 v^{2}+61 v+135\right) t^{3}+\cdots .
\end{aligned}
$$

+ similar expression for the case $\omega=0$: Eulerian orientations of general maps, counted by edges and vertices

More results

- Direct combinatorial proof of the l-variable characterisation when $\omega=0$ and $v=1 \rightarrow$ random generation
- For $\omega=0$ and $\omega=1$, a family of trees with the same GF \rightarrow bijections ?
- Simpler solution when $\omega=2 \cos (k \pi / m)$ and $v=1$
- Some ingredients of the solution for general v and ω.
- Limit behaviour of the height of a random vertex (log n) [Elvey Price]
- Record the number of vertices of each height j (and more) [EP]

What's the bijection?

Labelled quadrangulations
n faces
m local minima
(M local maxima ?)

Unary-binary trees of charge 1
No subtree of charge 0
$n+2$ leaves
mleftleaves
(M right leaves ?)

Charge = \# binary vertices \# unary vertices

What's the bijection?

Labelled quadrangulations
n faces
m local minima
(M local maxima ?)

Unary-binary trees of charge 1
No subtree of charge 0
$n+2$ leaves
mleft leaves
(M right leaves ?)
Merci !

Charge = \# binary vertices \# unary vertices

