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Planar maps

Def. A connected planar (multi)graph, given with an embedding in
the plane, taken up to continuous deformation.

Components:
- vertices
- edges

- faces

Rooted map: a distinguished corner in the outer face

Triangulation: all faces have degree 3

Quadrangulation: all faces have degree 4



Exchange faces and vertices

® : ® bu

Quadrangulation Quartic (or: 4-valent) map



Proper colourings of maps

Def. Vertices are coloured in g colours, and two neighbour vertices
get different colours.

a=3
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Enumeration of maps: a typical result

Let m(n) be the number of (planar) maps with N edges. Then:

B 2-3" n N n.. —5/2
m(n)_(n+1)(n+2)(n> k127

[Tutte 63]
[BDG 02]



Enumeration of maps: a typical result

Let m(n) be the number of (planar) maps with N edges. Then:

B 2.-3" n N n.. —5/2
m(n)_(n+1)(n+2)(n> k127

The associated generating function,

o (1=120)3/2 -1 418t
M = Zm(n)t — a2
n>0

[Tutte 63]
[BDG 02]



Enumeration of maps: a typical result

Let m(n) be the number of (planar) maps with N edges. Then:

B 2-3" n N n.. —5/2
m(n)_(n+1)(n+2)(n> k127

The associated generating function,

o (1=120)3/2 -1 418t
M = Zm(n)t — )
n>0

is algebraic of degree 2,
16t — 1+ (1—=18t) M + 27t°M? = 0

[Tutte 63]
[BDG 02]



Enumeration of maps: a typical result

Let m(n) be the number of (planar) maps with N edges. Then:

B 2-3" n N n.. —5/2
m(n)_(n+1)(n+2)(n> k127

The associated generating function,

o (1=120)3/2 -1 418t
M = Zm(n)t — )
n>0

is algebraic of degree 2,
16t — 1+ (1—=18t) M + 27t°M? = 0

with a rational parametrisation: if

A
t = ie. A =3t(1+A)?
301 A2 ° 3t +A)

then [Tutte 637

L L 3
M=A—tA% [BDG 02]




Enumeration of maps: a typical result

* The generating function M of maps (counted by edges) is

It has a rational parametrisation:

A
t = M= A —tA>.
3(1+A)2°

* Asymptotics:

m(n) ~ k12" n=>/2,

[Tutte 63]
[RDG 02]



Triangulations

* The generating function T of triangulations (counted by vertices) is

It has a rational parametrisation:
A(l+A) A(l—A)

2(1+2A)3° 2(1+2A)

* Asymptotics: n
t(n) ~ K (12\@) n /2,

[Mullin, Nemeth & Schellenberg 10]



Two-coloured maps v E

* The generating function M, of bicoloured maps (counted by edges) is

It has a rational parametrisation:
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It has a rational parametrisation:

t=A(1—2A), t*M, =A?*(1-3A+A?).

* Asymptotics:
my(n) ~ k8" n /2.
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* The generating function M, of bicoloured maps (counted by edges) is

It has a rational parametrisation:

t=A(1—2A), t*M, =A?*(1-3A+A?).

* Asymptotics: (1) ~ K87 572 All faces
2 ' have even
fove degree
R \)\Y.\ﬂg
CO\O o0 \
P

[Tutte 63]
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Three-coloured triangulations

* The generating function Ta of 3-coloured triangulations (counted by
vertices) is
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* The generating function Ta of 3-coloured triangulations (counted by
vertices) is

It has a rational parametrisation:

t=A(1—2A), t’T3; = A?(1—3A+A?).
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Three-coloured triangulations

* The generating function Ta of 3-coloured triangulations (counted by
vertices) is

It has a rational parametrisation:
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A 4 A

Three-coloured triangulations

* The generating function Ta of 3-coloured triangulations (counted by
vertices) is

It has a rational parametrisation:

t=A(1—2A), t’T3; = A?(1—3A+A?).

* Asymptotics: All vertices
N n..—5/2
t3(n) ~k8%m e, have even
fove degree
c(;\\ok“mg L
p{o\o\em ~ bicoloured
maps
[Tutte 63]

[DF, Eynard, Guitter 98, BDG 02 ]
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Three-coloured maps bAL -
-

* The generating function Mz of 3-coloured maps (counted by edges)
IS

It has a rational parametrisation:

t_A(1—2A3) (1 +2A)(1-2A%—4A° —4A%)
(14 2A)¥ > (1—2A3)? '
e Asymptotics: n
P 22+ 86 5,2
mz(n) ~ K 3 n :
p\’w\le
c,O\O\“m9 A mysterious
@vob\em :

\ result
Bijection with
some trees?

[Bernardi-mbm 1]
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Three-coloured quadrangulations

* The generating function Q3 of 3-coloured quadrangulations (counted
by faces) is

It has a D-FINITE parametrisation:
B 1 2n\ (3 o t=-A
t_ZnJr](n)(n)A ’ Qs = 3t2 I

n>0

* Asymptotics: n
qs(n) ~ x (4\@7[) (n log n)_z.
- Explicit 21
order DE
(degree 3)

[mbm & Elvey Price 20]
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Three-coloured quadrangulations as a height model

Enforce variations of + 1 along edges: a height model

+/—1 mod 3

O O

Only works for
quadrangulations!

[EP & Guttmann 18 + Welsh]
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The many faces of height labelled quadrangulations
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Bicoloured Alternating
g faces vertices

auality

Labelled quadrangulation < “» Quartic Eulerian orientation
AmbjornEBudd 13 (6 vertex model)
auality
Weakly labelled map < >  Partial Eulerian orien’(a’(ion
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Two more statistics

Bicoloured Alternating
- faces vertices
Local Clockwise
minima faces

. auality . . . ,
Labelled quadrangulation < “» Quartic Eulerian orientation
AmbjornEBudd 13 (6 vertex model)
auality
Weakly labelled map < > Partial Eulerian orientation

(U L Mono- Unoriented '
(0) chromatic edges J
edges
S ed
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The generating function of labelled quadrangulations

Convention: root edge labelled from O to |

Generating function:
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The generating function of labelled quadrangulations

Convention: root edge labelled from O to |

Generating function:

o= ¥

labelled quad.

ok

ok

O

O—O
O—O
O—©—
O—©—

@

tfaces wbic. faces Vlocal min. _ t(wvz + v + (U\)) + O(tz).

Bicoloured
faces

l_ocal
minima

weight




Earlier work

W v

 Kostov 00: the 6-vertex model, analytic approach W 1

- MBM & Elvey Price 20: orientations on quartic ) ’

maps and general maps, algebraic approach 0 l

« Elvey Price & 2inn-Justin (P.) 23: the 6-vertex w ]
model, a la Kostov

« MBM & Elvey Price 24: arbitrary v and w W v

And also...
[Bonichon et al. 11, Elvey Price & Guttmann 18]



Results: two (very) different forms

The casev=w = [MBM & Elvey Price 20]
Let A be the unique series in 1 such that:
. Z L(Zn) (3n>A“+1.
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Then the generating function of quartic Eulerian orientations is

t—A
Q= 3t2

— At + 35t + 402t + - - - .

— 1



Results: two (very) different forms

The case v=] (6 vertex model) [Kostov 00, EP & Zinn-Justin 20]

Jacobi theta function:

0(q,2) =0(z) ;= ) (—1)"q""*1/ Zgin(2n + 1)z

n>0



Results: two (very) different forms

The case v=] (6 vertex model) [Kostov 00, EP & Zinn-Justin 20]

Jacobi theta function:
0(q,2) =0(z) ;= ) (—1)"q""*1/ Zgin(2n + 1)z
n>0

Write w = —2cos(2«a) . Let g be the only series in t such that:
. _Cosa (6”(04) 6(@)6(3)(00)

- 6dsinda a

0'(x) 0 (oc)?



Results: two (very) different forms

The case v=] (6 vertex model) [Kostov 00, EP & Zinn-Justin 20]

Jacobi theta function:

0(q,2) =0(z) ;= ) (—1)"q""*1/ Zgin(2n + 1)z

n>0

Write w = —2cos(2«a) . Let g be the only series in t such that:
. _ _Cosa (6”(04) B 6(@)6(3)(00)

64sin’ o \ 0/(x) 0/(x)? .

Moreover, define

A =

cos? x  O(x)? (9(3)(0) 9(3)(00)

96sinta 0/(x)2 \ 0/(0)  0'(«x



Results: two (very) different forms

The case v=] (6 vertex model) [Kostov 00, EP & Zinn-Justin 20]

Jacobi theta function:

0(q,2) =0(z) ;= ) (—1)"q""*1/ Zgin(2n + 1)z

n>0

Write w = —2cos(2«a) . Let g be the only series in t such that:
. _ _Cosa (6”(@) B 6(@)9(3)(00)

64sin’ o \ 0/(x) 0/(x)? .

Moreover, define

A =

cos?ax  O(x)2 [/003)(0) B 003) ()
96sin*a 0/()2 \ 0/(0) 0'(at) )
Then the generating function of quartic Eulerian orientations, with
weight w per alternating vertex, is
t—A
Q=

— 1.
(w + 2)t2




Results: two (very) different forms

The casev=w = [MBM & Elvey Price 20]
Let A be the unique series in 1 such that:
. Z L(Zn) (3n>A“+1.
o nt I\ n n

Then the generating function of quartic Eulerian orientations is

t—A
Q= 3t2

— At + 35t + 402t + - - - .

— 1
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Map functional equations: some features

« Introduce more general maps...
The outer face has any degree

. ... and the corresponding “catalytic” variables:
y for the outer degree

« Operators that extract from a series monomials with positive powers

Example: Uncoloured quadrangulations with any outer degree

E finite faces , 2outer deeree

near—quadr.

Uy) = t%° +  yUv)?®  + tly” (%)
/

—~ 09 @)
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Approaches

Matrix
integrals

Combinatorial
decompositions

S~—

KOS?LOV

e
%

MBM-EP 2

Functional
equations

2
\LO
A
o ke
C(@SS

Characterisation

with 1 catalytic
variable x

Analytic
approach

(v=1)

Algebraic
approach
(v=w=l)
(v=l, w=0)

Algebraic approach

guess

v =]

or W =1
or w=0
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An interesting class of labelled maps (a la Dobrushin)

/ d digons
Map with boundary

0-10-10..010..10 Boundary: 0101..10

)y
Quter

degree >2d

[x*°] B()/x) P(x)

Boundaru: 0 -10-)..-10
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A characterisation of the series Q [MBM & EP 24-]

There exists a unique series in t, with coefficients that are Laurent
series in x (and polynomials in w and v), denoted M(x), such that:

« Initial condition 1 M(x) is a multiple of t
e Initial condition 2 [x'] M(x) = tv
e Involution M(M(x)) = x

« Behaviour at x=0: the following series in t has coefficients that
have no pole at x=0:

(xM(x) —t(v—1))(1 —wx — M(x)).

M(x)—<v+ 1 >t+<\’+w"+12+ w)3>t2+(’)(t3)

x 1—x X2 (1—-x)"  (1—x

« Then M(x) has a combinatorial description in terms of labelled
maps, and the series counting labelled quadrangulations is

Q= [x*] M(x)/t* - v.
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A characterisation of the series Q: the case w =1

There exists a unique series in t, with coefficients that are Laurent
series in x (and polynomials in v), denoted M(x), such that:

e Initial condition 1 M(x) is a multiple of t
e Initial condition 2 [x'] M(x) = tv
e Involution M(M(x)) = x

« Behaviour at x=0: the following series in t has coefficients that
have no pole at x=0:

(xM(x)—t(v—T1))(1 —x —M(x)) = A.

o In fact the above expression does not depend on x...
and A is then determined by Condition 2.



A new result

The case w = [MBM & Elvey Price 24]

Let A be the unique series in 1 such that:

B T [(2n)\ (2n+ k) /[3n + 2K\ K ATt
Zn—|—1(n>< K ><n+k>t(v NEAT

Then the generating function of labelled quadrangulations, counted
by faces and local minima, is
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n,k>0, nt+k>0

—v(v+3)t+vV+6)(2v+3)tE+v(v+1) (5v2+61v+135)t3+~-
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+ similar expression for the case w = 0 : Eulerian orientations of
general maps, counted by edges and vertices



More results

« Direct combinatorial proof of the l-variable characterisation when
w = 0 and v=] = random generation

« For w=0 and w=], a family of trees with the same GF — bijections 7
e Simpler solution when w = 2 cos(km/m) and v=I

« Some ingredients of the solution for general vand w.

o Limit behaviour of the height of a random vertex (log n) [Elvey
Price]

« Record the number of vertices of each height j (and more) [EP]



What's the bijection?

Labelled quadrangulations Unary-binary trees of charge
n faces No subtree of charge O
m local minima N+2 leaves
(M local maxima 7) m left leaves

(Mright leaves 7)

Charge = # binary vertices -
# unary vertices
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