SFB 1283
 TRUST
 VP1-2023-007
 Random point processes in the plane and applications to birds of prey

LEVERHULME

Gernot Akemann

(University of Bristol \& Bielefeld University)

Philippe 60, 26.06.2024
with M. Baake, N. Chakarov, O. Krüger, A. Mielke,
M. Ottensmann, P. Päßler, R. Werdehausen
[J. Th. Biol. 509 (2021) 110475; J. Stat. Mech. (2024) 053501]

Outline

I) Examples for point processes from ecology
II) Mathematical description: Poisson, Ginibre, interpolation
III) Application to birds of prey in the Teutoburger Wald
IV) Discussion

I) Example spacial patterns of trees

(b)

- (a) beech (b) Norway spruce (c) silver fir in a 1-ha plot at Rothwald, Austria (circles ~ d.b.h.) from [R. Law et al., J. Ecology 97 (2009) 616-628]
- quantify influence of environment (nutrition, terrain, etc.), population density, interaction of species

Example spacial patterns of nests of birds of prey

Left: nests of Buzzard in 2020 (data: Oliver Krüger's group)

Example spacial patterns of nests of birds of prey

Left: nests of Buzzard in 2020 (data: Oliver Krüger's group)

Right: include Goshawks and Eagle Owl

Interaction of species

- Buzzard, Goshawk and Eagle Owl [wikipedia]
- can we quantify their interaction (repulsion) based on the annual distribution of nests?
II) Math description: Independent points = Poisson
- 1D vs. 2D Poisson: independent points in interval / disc
- nearest neighbour spacing distribution

- $P_{2 D}(S)=\frac{1}{2} \pi S e^{-\pi S^{2} / 4}$ vs. $P_{1 D}(S)=e^{-S}$

2D repulsion $\sim S$ from area measure vs. 1D no repulsion

Random matrix eigenvalues: Ginibre ensembles

- $P(J) \sim \exp \left[-\operatorname{Tr} J J^{*}\right]$ for $J_{i j} \in \mathbb{R} / \mathbb{C} / \mathbb{H}$ [Ginibre '65]

- complex eigenvalues: determinantal / Pfaffian process
- in bulk $\backslash \mathbb{R}$ all local eigenvalue correlations equal GinUE: GinOE [Borodin, Sinclair '08], GinSE [A, Kieburg, Mielke, Prosen '19]
- $P_{\text {Gin }}(s)=-\frac{\partial}{\partial s} \prod_{j=1}^{\infty} \frac{\Gamma\left(j+1, s^{2}\right)}{\Gamma(j+1)} \sim s^{2+1}$ [Grobe, Haake, Sommers '88]

Bulk spacing: 3 Ginibre Ensembles vs. GO/U/SE

- 2D: numerical simulations of 3 Ginibre ensembles $\beta=2$ (left)
- 1D: Wigner surmise for GOE, GUE, GSE $\beta=1,2,4$ (right) with $\sim S^{\beta}$

Interpolating Poisson to correlated points

* Proposal 1: (e.g. [Møller et al. 2018])
- assume point process is determinantal, kernel $K_{N}(z, u)$:
$R_{k}\left(z_{1}, \ldots, z_{k}\right)=\operatorname{det}_{k \times k}\left[K_{N}\left(z_{i}, z_{j}\right)\right]$ for all k-th marginals:
e.g. $R_{1}(z)=K_{N}(z, z)$ density
- fit kernel $K_{N}\left(z_{1}, z_{2}\right)$ from data via connected $R_{2}\left(z_{1}, z_{2}\right)$
- Poisson: \rightarrow diagonal Kernel $K_{N}\left(z_{i}, z_{j}\right) \sim \delta_{i, j} f\left(z_{i}\right)$:
$\Rightarrow R_{k}\left(z_{1}, \ldots, z_{k}\right)=\prod_{i=1}^{k} K_{N}\left(z_{i}, z_{i}\right)$
- Proposal 2:
- assume point process is 2D Coulomb gas at $\beta>0$
- fit β from data
- Poisson: $\beta \rightarrow 0$
- successfully applied in non-Hermitian Quantum chaos \rightarrow integrable transition [A, Kieburg, Mielke, Prosen '19]

2D Coulomb gas picture for complex eigenvalues

$$
\begin{aligned}
P_{N}\left(z_{1}, \ldots, z_{N}\right) & =\frac{1}{z_{N}(\beta)} \exp \left[\beta \sum_{j>k}^{N} \ln \left|z_{j}-z_{k}\right|-\sum_{i=1}^{N}\left|z_{i}\right|^{2}\right] \\
& =\frac{1}{z_{N}(\beta)} \prod_{j>k}^{N}\left|z_{j}-z_{k}\right|^{\beta} e^{-\sum_{i=1}^{N}\left|z_{i}\right|^{2}}
\end{aligned}
$$

- joint complex eigenvalue density: complex Ginibre = static 2D Coulomb gas at $\beta=\mathbf{2}$
- unknown: Selberg integral in the complex plane

$$
Z_{N}(\beta)=\int_{\mathbb{C}^{N}} d^{2} z_{1} \cdots d^{2} z_{N} \prod_{j>k}^{N}\left|z_{j}-z_{k}\right|^{\beta} e^{-\sum_{i=1}^{N}\left|z_{i}\right|^{2}}
$$

$Z_{N=2}(\beta)=(2 \beta)!2^{2 \beta} ; Z_{N=3}(\beta)=\frac{(6 \beta)!}{2^{2 \beta}} \sum_{k=0}^{2 \beta} 3^{2 k} \frac{\binom{2 \beta}{k}^{2}}{\binom{6 \beta}{2 k}}, \beta \in \mathbb{N}$
[Di Francesco, Gaudin, Itzykson, Lesage, '94]

- at $\beta \approx 142$ condensation (!) to Abrikosov lattice

Known local correlations in 2D Coulomb at $\beta>0$

- $\beta=0$: vicinity of zero $\beta \sim \kappa / N$: local statistics Poisson, universal [Lambert '21]
- $\beta=2$: Ginibre = integrable, determinantal point process [Ginibre '65, Haake et al. '88], universal
- $0<\beta<2$: numerical simulation: nearest and next-to-nearest neighbour or approximate: 2D "surmise" [A., Mielke, Päßler '22] $P_{\beta}(s)=\frac{2 \alpha^{1+\beta / 2}}{\Gamma(1+\beta / 2)} s^{\beta+1} e^{-\alpha s^{2}}, \alpha=\frac{\Gamma((3+\beta) / 2)^{2}}{\Gamma(1+\beta / 2)^{2}}$ heuristics matches
- 2D good approximation for β small ($\neq 1 \mathrm{D}$ Wigner surmise, for β large)
- global statistics: loop equations [Zabrodin, Wiegmann '06, Chekhov, Eynard, Marchal '11]

Numerical 2D Coulomb spacing distribution at $\beta \geq 0$

- Examples for nearest neighbour spacing distribution, do fits in steps 0.1
[A, Kieburg, Mielke, Prosen '19]

III) Buzzard nest distribution: Poisson or Ginibre?

- Left: Top half eigenvalues of Ginibre ensemble vs. bottom half 2D Poisson
- Right: Buzzard nest distribution 2020

Buzzard Nests \neq Poisson nor Ginibre

\longrightarrow single parameter fit to β in 2D Coulomb gas

Time moving average: 1y, 5y, 20 y for Buzzards

- fit more years: β changes

Time dependent repulsion vs. population size

- β for NN and NNN (left) vs. population (right), both 5 y ave
- linear increase in both repulsion and population size
- unfolding: trivial decrease of spacing through increased density (population per area) is removed
- above population threshold: $\beta_{N N} \approx \beta_{N N N}$ comparable

Comparison and interaction among 3 species

- fit repulsion within each species and compare
- fit repulsion between each two species

3 Species: 1 y vs. 10 y vs 20 y Nearest neighbours

Buzzards $\beta \approx 0.6$ (3377 spacings), Goshawks $\beta \approx 0.8$ (423), Eagle Owls $\beta \approx 0.5$ (174)

Time dependent repulsion vs. population: 10 y ave

β-fit Eagle Owls (F)

Goshawk population

Eagle Owl (F) population

Repulsion between different species: all y average

- repulsion with Eagle Owls (F): 174 spacings $\beta=0.1-0.15$
- repulsion with Eagle Owls (P): 40 spacings $\beta=0-0.1$
- repulsion Goshawk to Buzzard: 423 spacings " $\beta<0$ "

Influence of forested terrain

- fit dimension D of Poisson process on forested area

$$
P_{D}(S)=a_{D} S^{D-1} e^{-b_{D} S^{D}}
$$

- uncorrelated points in forest "to the left" of Poisson in 2D

IV) Discussion

- fit of spacing between nests from 2D Coulomb gas
- β NOT a biological parameter, allows to
- quantify relative repulsion within / between species
- assess time / population dependence
- range of interaction (qualitative):
$\beta_{N N}>(<) \beta_{N N N}$ weaker (stronger) than 2D Coulomb
- influence of terrain: Poisson at $D_{\text {eff }} \approx 1.66$
- other interaction (Yukawa), independence of points, spacing ratios
- find model from biology $\approx 2 \mathrm{D}$ Coulomb???
- development in next 10 y ?

Bon Anniversaire Philippe!

