

VP1-2023-007

Random point processes in the plane and applications to birds of prey

Gernot Akemann (University of Bristol & Bielefeld University)

Philippe 60, 26.06.2024

with M. Baake, N. Chakarov, O. Krüger, A. Mielke, M. Ottensmann, P. Päßler, R. Werdehausen J. Th. Biol. **509** (2021) 110475; J. Stat. Mech. (2024) 053501]

Outline

- I) Examples for point processes from ecology
- II) Mathematical description: Poisson, Ginibre, interpolation
- III) Application to birds of prey in the Teutoburger Wald
- IV) Discussion

I) Example spacial patterns of trees

 (a) beech (b) Norway spruce (c) silver fir in a 1-ha plot at Rothwald, Austria (circles ~ d.b.h.)

from [R. Law et al., J. Ecology 97 (2009) 616–628]

quantify influence of environment (nutrition, terrain, etc.), population density, interaction of species

Example spacial patterns of nests of birds of prey

Left: nests of Buzzard in 2020 (data: Oliver Krüger's group)

Example spacial patterns of nests of birds of prey

Right: include Goshawks and Eagle Owl

Interaction of species

- Buzzard, Goshawk and Eagle Owl [wikipedia]
- can we quantify their interaction (repulsion) based on the annual distribution of nests?

II) Math description: Independent points = Poisson

- 1D vs. 2D Poisson: independent points in interval / disc
- nearest neighbour spacing distribution

2D repulsion $\sim S$ from area measure vs. 1D no repulsion

Random matrix eigenvalues: Ginibre ensembles

•
$$\left| m{P}(J) \sim \exp\left[- \operatorname{Tr} J J^*
ight]
ight|$$
 for $J_{ij} \in \mathbb{R}/\mathbb{C}/\mathbb{H}$ [Ginibre '65]

- complex eigenvalues: determinantal / Pfaffian process
- ▶ in bulk \R all local eigenvalue correlations equal GinUE: GinOE [Borodin, Sinclair '08], GinSE [A, Kieburg, Mielke, Prosen '19]

 $\blacktriangleright \left| P_{\text{Gin}}(s) = -\frac{\partial}{\partial s} \prod_{j=1}^{\infty} \frac{\Gamma(j+1,s^2)}{\Gamma(j+1)} \right| \sim s^{2+1} \text{ [Grobe, Haake, Sommers '88]}$

Bulk spacing: 3 Ginibre Ensembles vs. GO/U/SE

- ► 2D: numerical simulations of 3 Ginibre ensembles $\beta = 2$ (left)
- 1D: Wigner surmise for GOE, GUE, GSE β = 1, 2, 4 (right) with ~ S^β

Interpolating Poisson to correlated points

- * Proposal 1: (e.g. [Møller et al. 2018])
 - assume point process is determinantal, kernel $K_N(z, u)$:

 $R_k(z_1,\ldots,z_k) = \det_{k \times k}[K_N(z_i,z_j)]$ for all *k*-th marginals:

e.g. $R_1(z) = K_N(z, z)$ density - fit kernel $K_N(z_1, z_2)$ from data via connected $R_2(z_1, z_2)$

- ► **Poisson:** \rightarrow diagonal Kernel $K_N(z_i, z_j) \sim \delta_{i,j} f(z_i)$: $\Rightarrow R_k(z_1, ..., z_k) = \prod_{i=1}^k K_N(z_i, z_i)$
- * Proposal 2:
 - **assume** point process is **2D Coulomb gas** at $\beta > 0$
 - fit β from data
- **Poisson:** $\beta \rightarrow 0$
- ► successfully applied in non-Hermitian Quantum chaos → integrable transition [A, Kieburg, Mielke, Prosen '19]

2D Coulomb gas picture for complex eigenvalues

$$P_N(z_1,...,z_N) = \frac{1}{Z_N(\beta)} \exp\left[\beta \sum_{j>k}^N \ln|z_j - z_k| - \sum_{i=1}^N |z_i|^2\right]$$
$$= \frac{1}{Z_N(\beta)} \prod_{j>k}^N |z_j - z_k|^\beta e^{-\sum_{i=1}^N |z_i|^2}$$

joint complex eigenvalue density: complex Ginibre = static **2D Coulomb** gas at β = **2**

unknown: Selberg integral in the complex plane

$$Z_N(\beta) = \int_{\mathbb{C}^N} d^2 z_1 \cdots d^2 z_N \prod_{j>k}^N |z_j - z_k|^\beta e^{-\sum_{i=1}^N |z_i|^2}$$

$$Z_{N=2}(\beta) = (2\beta)! 2^{2\beta}; Z_{N=3}(\beta) = \frac{(6\beta)!}{2^{2\beta}} \sum_{k=0}^{2\beta} 3^{2k} \frac{\binom{2\beta}{k}^2}{\binom{6\beta}{2k}}, \beta \in \mathbb{N}$$

I TAILESCO, GAUGIII, ILZYNSOII, LESAGE,

• at $\beta \approx 142$ condensation (!) to Abrikosov lattice [Choquard, Clérouin '83; Cardoso, Stéphan, Abanov '20]

Known local correlations in 2D Coulomb at $\beta > 0$

- ▶ $\beta = 0$: vicinity of zero $\beta \sim \kappa/N$: local statistics Poisson, universal [Lambert '21]
- $\beta = 2$: Ginibre = integrable, determinantal point process [Ginibre '65, Haake et al. '88], universal
- $0 < \beta < 2$: **numerical simulation**: nearest and next-to-nearest neighbour

or approximate: 2D "surmise" [A., Mielke, Päßler '22]

$$P_{\beta}(s) = \frac{2\alpha^{1+\beta/2}}{\Gamma(1+\beta/2)} s^{\beta+1} e^{-\alpha s^2}, \alpha = \frac{\Gamma((3+\beta)/2)^2}{\Gamma(1+\beta/2)^2}$$

heuristics matches

- 2D good approximation for β small
 (≠ 1D Wigner surmise, for β large)
- global statistics: loop equations [Zabrodin, Wiegmann '06, Chekhov, Eynard, Marchal '11]

Numerical 2D Coulomb spacing distribution at $\beta \ge 0$

 Examples for nearest neighbour spacing distribution, do fits in steps 0.1

[A, Kieburg, Mielke, Prosen '19]

III) Buzzard nest distribution: Poisson or Ginibre?

- Left: Top half eigenvalues of Ginibre ensemble vs. bottom half 2D Poisson
- Right: Buzzard nest distribution 2020

Buzzard Nests \neq Poisson nor Ginibre

 \rightarrow single parameter fit to β in 2D Coulomb gas

Time moving average: 1y, 5y, 20 y for Buzzards

Time dependent repulsion vs. population size

- \triangleright β for NN and NNN (left) vs. population (right), both 5 y ave
- linear increase in both repulsion and population size
- unfolding: trivial decrease of spacing through increased density (population per area) is removed
- ► above population threshold: $\beta_{NN} \approx \beta_{NNN}$ comparable

Comparison and interaction among 3 species

fit repulsion within each species and compare

fit repulsion between each two species

3 Species: 1y vs. 10 y vs 20 y Nearest neighbours

Buzzards $\beta \approx 0.6$ (3377 spacings), Goshawks $\beta \approx 0.8$ (423), Eagle Owls $\beta \approx 0.5$ (174)

Time dependent repulsion vs. population: 10 y ave

Eagle Owl (F) population

Repulsion between different species: all y average

- repulsion with Eagle Owls (F): 174 spacings $\beta = 0.1 0.15$
- repulsion with Eagle Owls (P): 40 spacings $\beta = 0 0.1$
- repulsion Goshawk to Buzzard: 423 spacings " $\beta < 0$ "

Influence of forested terrain

fit dimension D of Poisson process on forested area

$$P_D(S) = a_D S^{D-1} e^{-b_D S^D}$$

uncorrelated points in forest "to the left" of Poisson in 2D

IV) Discussion

- fit of spacing between nests from 2D Coulomb gas
- β NOT a biological parameter, allows to
 - quantify relative repulsion within / between species
 - assess time / population dependence

- range of interaction (qualitative): $\beta_{NN} > (<) \beta_{NNN}$ weaker (stronger) than 2D Coulomb

- influence of terrain: Poisson at $D_{\rm eff} \approx 1.66$
- other interaction (Yukawa), independence of points, spacing ratios
- $\circ\,$ find model from biology \approx 2D Coulomb???
- development in next 10 y?

Bon Anniversaire Philippe !

