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I) Example spacial patterns of trees
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especially when the interest is in understanding the spatial
dependence itself  (Diggle 2003).

Analysis of spatial patterns is a subject of current statistical
research (Cressie 1991; Stoyan & Stoyan 1994; Stoyan 

 

et al

 

.
1995; van Lieshout 2000; Møller & Waagepetersen 2004;
Diggle 2003; Illian 

 

et al

 

. 2008), driven by the need to make
rigorous inferences about objects in continuous and discrete
spaces, and about objects represented as points and finite
areas. However, the literature is large and technical, and
there is relatively little exchange between the mathematicians
developing the theory and the ecologists working on spatial
patterns. The purpose of this essay review is to show some
ways in which ecologists can apply summary statistics from
current spatial statistical theory to draw more information
from spatial patterns of plants.

We focus on just one part of  the statistical literature,
statistics of spatial point processes in continuous space, on the
grounds that point pattern data are more and more frequently
collected in plant communities. This applies especially to
plots in tropical rainforest communities, from which there is
now spatial information on about three million tropical trees
of  about 6000 species (approximately 10% of  the known
tropical tree flora) (www.ctfs.si.edu). A large amount of
ecological information can potentially be extracted from such
data sets if  appropriate statistical tools are used.

The kinds of ecological insights that can be gained from
point process theory are best seen in the context of specific
ecological issues. We therefore illustrate the use of  spatial
statistics in the context of three ecological questions, taking
data on spatial patterns of  trees in two forests. The first
question is, how plants sense the community in which they are
embedded, sometimes referred to as the ‘plant’s-eye’ view
(Turkington & Harper 1979; Mahdi & Law 1987; Law 

 

et al

 

.
2001). Are neighbours close to the spatial average of  the
density? If  not, how do the neighbourhoods depart from
randomness? Statistics for answering the first question have
already received some attention in the ecological literature,
but provide the foundation for subsequent work, and are
therefore reviewed briefly.

The second question is, to what extent the spatial pattern of
biomass is uncoupled from the spatial locations of  plants.

In answering this, it is possible to see the extent to which
area-based ecosystem processes, such as productivity, can be
separated from the spatial birth–death processes of population
and community ecology.

The third question is, how inhomogeneities in the external
environment can be detected and allowed for. This question is
motivated by the common occurrence of clustering in spatial
patterns (e.g. Condit 

 

et al

 

. 2000; Gunatilleke 

 

et al

 

. 2006;
Wiegand 

 

et al

 

. 2007a), which could be due to either local
dispersal, or habitat specialization, or both. When, if  at all,
can different causes of clustering be distinguished?

 

Data sets

 

We consider the questions above in the context of two data
sets that contrast in their environmental heterogeneity. The
first is a 1-ha plot of mixed beech-spruce forest in Rothwald,
Austria, in which trees with diameter at breast height
(d.b.h.) 

 

≥

 

 1 cm were censused in 2001 (Splechtna 

 

et al

 

. 2005;
G. Gratzer 

 

et al

 

., unpublished data). Rothwald is ecologically
interesting because, unlike most European forests, it has not
been managed for timber production, and its spatial structure
is largely an outcome of natural processes of birth, growth and
death. Most trees in the 1-ha plot studied were either beech
(

 

Fagus sylvatica

 

) or Norway spruce (

 

Picea abies

 

); a small
number of stems of silver fir (

 

Abies alba

 

) were also present.
The locations of trees of these species are shown in Fig. 1.

The second data set is taken from a 25-ha forest plot at the
Sinharaja World Heritage site in Sri Lanka (Gunatilleke 

 

et al

 

.
2004), an evergreen lowland rainforest dominated by the
Dipterocarpaceae. The plot is centred on a steep sided valley
encompassing a range in elevation of approximately 150 m
(Fig. 2). All trees in the plot with d.b.h. 

 

≥

 

 1 cm have been
mapped, amounting to 205 373 stems of 205 species when
censused from 1994 to 1996. The data shown in Fig. 2 are the
locations of trees of just one species, 

 

Shorea affinis

 

 (Diptero-
carpaceae), including the locations of some large individuals
emergent from the canopy (Gunatilleke 

 

et al

 

. 2006). Previous
spatial analyses at this site include a detailed analysis of 

 

Shorea
congestiflora

 

 (Wiegand 

 

et al

 

. 2007b), and an analysis of the
multispecies spatial pattern of the trees (Wiegand 

 

et al

 

. 2007a).

Fig. 1. Spatial patterns of (a) beech (Fagus sylvatica), (b) Norway spruce (Picea abies) and (c) silver fir (Abies alba) in a 1-ha plot at Rothwald,
Austria. Diameters of circles are proportional to d.b.h.
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I (a) beech (b) Norway spruce (c) silver fir in a 1-ha plot at
Rothwald, Austria (circles ∼ d.b.h.)
from [R. Law et al., J. Ecology 97 (2009) 616–628]

I quantify influence of environment (nutrition, terrain, etc.),
population density, interaction of species



Example spacial patterns of nests of birds of prey

Left: nests of Buzzard in 2020 (data: Oliver Krüger’s group)

Right: include Goshawks and Eagle Owl



Example spacial patterns of nests of birds of prey

Left: nests of Buzzard in 2020 (data: Oliver Krüger’s group)

Right: include Goshawks and Eagle Owl



Interaction of species

I Buzzard, Goshawk and Eagle Owl [wikipedia]

I can we quantify their interaction (repulsion) based on the
annual distribution of nests?



II) Math description: Independent points = Poisson

I 1D vs. 2D Poisson: independent points in interval / disc

I nearest neighbour spacing distribution

I P2D(S) = 1
2πS e−πS2/4 vs. P1D(S) = e−S

2D repulsion ∼ S from area measure vs. 1D no repulsion



Random matrix eigenvalues: Ginibre ensembles

I P(J) ∼ exp
[
− Tr JJ∗

]
for Jij ∈ R/C/H [Ginibre ’65]

I complex eigenvalues: determinantal / Pfaffian process

I in bulk \R all local eigenvalue correlations equal GinUE:
GinOE [Borodin, Sinclair ’08], GinSE [A, Kieburg, Mielke, Prosen ’19]

I PGin(s) = − ∂
∂s

∏∞
j=1

Γ(j+1,s2)
Γ(j+1) ∼ s2+1 [Grobe, Haake, Sommers ’88]



Bulk spacing: 3 Ginibre Ensembles vs. GO/U/SE

I 2D: numerical simulations of 3 Ginibre ensembles β = 2
(left)

I 1D: Wigner surmise for GOE, GUE, GSE β = 1,2,4 (right)
with ∼ Sβ



Interpolating Poisson to correlated points

∗ Proposal 1: (e.g. [Møller et al. 2018])

- assume point process is determinantal, kernel KN(z,u):

Rk (z1, . . . , zk ) = detk×k [KN(zi , zj)] for all k -th marginals:

e.g. R1(z) = KN(z, z) density
- fit kernel KN(z1, z2) from data via connected R2(z1, z2)

I Poisson: → diagonal Kernel KN(zi , zj) ∼ δi,j f (zi):
⇒ Rk (z1, . . . , zk ) =

∏k
i=1 KN(zi , zi)

∗ Proposal 2:
- assume point process is 2D Coulomb gas at β > 0
- fit β from data

I Poisson: β → 0
I successfully applied in non-Hermitian Quantum chaos→

integrable transition [A, Kieburg, Mielke, Prosen ’19]



2D Coulomb gas picture for complex eigenvalues

PN(z1, . . . , zN) =
1

ZN(β)
exp

[
β

N∑
j>k

ln |zj − zk | −
N∑

i=1

|zi |2
]

=
1

ZN(β)

N∏
j>k

|zj − zk |βe−
∑N

i=1 |zi |2

I joint complex eigenvalue density:
complex Ginibre = static 2D Coulomb gas at β = 2

I unknown: Selberg integral in the complex plane

ZN(β) =
∫
CN d2z1 · · · d2zN

∏N
j>k |zj − zk |βe−

∑N
i=1 |zi |2

ZN=2(β) = (2β)!22β;ZN=3(β) =
(6β)!
22β

∑2β
k=0 32k (

2β
k )

2

(6β
2k)

, β ∈ N
[Di Francesco, Gaudin, Itzykson, Lesage, ’94]

I at β ≈ 142 condensation (!) to Abrikosov lattice
[Choquard, Clérouin ’83; Cardoso, Stéphan, Abanov ’20]



Known local correlations in 2D Coulomb at β > 0

I β = 0: vicinity of zero β ∼ κ/N: local statistics Poisson,
universal [Lambert ’21]

I β = 2: Ginibre = integrable, determinantal point process
[Ginibre ’65, Haake et al. ’88], universal

I 0 < β < 2: numerical simulation: nearest and
next-to-nearest neighbour

or approximate: 2D "surmise" [A., Mielke, Päßler ’22]

Pβ(s) = 2α1+β/2

Γ(1+β/2) sβ+1e−αs2
, α = Γ((3+β)/2)2

Γ(1+β/2)2

heuristics matches
I 2D good approximation for β small

(6= 1D Wigner surmise, for β large)

◦ global statistics: loop equations [Zabrodin, Wiegmann ’06, Chekhov,

Eynard, Marchal ’11]



Numerical 2D Coulomb spacing distribution at β ≥ 0

I Examples for nearest neighbour spacing distribution,
do fits in steps 0.1
[A, Kieburg, Mielke, Prosen ’19]



III) Buzzard nest distribution: Poisson or Ginibre?

I Left: Top half eigenvalues of Ginibre ensemble vs.
bottom half 2D Poisson

I Right: Buzzard nest distribution 2020



Buzzard Nests 6= Poisson nor Ginibre

2019

−→ single parameter fit to β in 2D Coulomb gas



Time moving average: 1y, 5y, 20 y for Buzzards

2019 alone 2015-2019 all years
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I fit more years: β changes



Time dependent repulsion vs. population size

I β for NN and NNN (left) vs. population (right), both 5 y ave

I linear increase in both repulsion and population size

I unfolding: trivial decrease of spacing through increased
density (population per area) is removed

I above population threshold: βNN ≈ βNNN comparable



Comparison and interaction among 3 species

I fit repulsion within each species and compare
I fit repulsion between each two species



3 Species: 1y vs. 10 y vs 20 y Nearest neighbours
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Buzzards β ≈ 0.6 (3377 spacings), Goshawks β ≈ 0.8 (423),
Eagle Owls β ≈ 0.5 (174)



Time dependent repulsion vs. population: 10 y ave
β-fit Goshawks β-fit Eagle Owls (F)

Goshawk population Eagle Owl (F) population



Repulsion between different species: all y average

E
ag

le
O

w
ls

(P
)

E
ag

le
O

w
ls

(F
)

vs. Buzzards vs. Goshawks

G
os

ha
w

ks

vs. Buzzards

- repulsion with Eagle Owls (F): 174 spacings β = 0.1− 0.15
- repulsion with Eagle Owls (P): 40 spacings β = 0− 0.1
- repulsion Goshawk to Buzzard: 423 spacings "β < 0"



Influence of forested terrain

I fit dimension D of Poisson process on forested area

PD(S) = aDSD−1e−bDSD

I uncorrelated points in forest "to the left" of Poisson in 2D



IV) Discussion

I fit of spacing between nests from 2D Coulomb gas

I β NOT a biological parameter, allows to

- quantify relative repulsion within / between species

- assess time / population dependence

- range of interaction (qualitative):
βNN > (<) βNNN weaker (stronger) than 2D Coulomb

I influence of terrain: Poisson at Deff ≈ 1.66

◦ other interaction (Yukawa), independence of points,
spacing ratios

◦ find model from biology ≈ 2D Coulomb???

◦ development in next 10 y?



Bon Anniversaire Philippe !


