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Connection probabilities in double-dimers (2-multiwebs)
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Take two dimer covers of a rectangle, one of which misses the four corners. What
is the probability that, in the union, the corner connection goes top-to-bottom?

Thm [K-Wilson ’06]: In the scaling limit, for any domain with four boundary
points a, b, ¢, d (with appropriate boundary conditions), the probability is the
cross ratio of the four image points when the domain is conformally mapped to
the upper half plane.
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Tensor networks and multiwebs

G = (V,FE) is a (planar) (bipartite) graph

n:V — N vertex multiplicities Z‘L j i?
I 3 ®

Assign to vertex v a vector space Y, of dimension n,.

A quiver representation is a collection ® = {ppw }pwer Where ¢y, 1 Yy — Y.
(connection)
(4
2 /73 3

o O R

When n = n and ¢, € GL,,, we have a GL,,-local system. Or G L,,-connection.



Multiwebs

An[n-multiweb|m in G is a function m : £ — Z>o summing to n, at each vertex
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(), is the set of n-multiwebs.

(We need ) cow Mw = D _pep M in order for Q, to be nonempty.)

\ and some inequalities

Ex: For n =1, ; = {dimer covers}

We define a trace function Tr : Q, — R (later)

Thm:[Douglas, K, Shi ’23], [K, Ovenhouse 23] We have

det K(®) =+ »  Tr(m).

me,




Vertex models
Six vertex model/ Square ice model
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The “tree fermionic” points of these models are

Put n, =2 and ny =1
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determinantal tensor networks.




Dimers and Kasteleyn theory

Let G be a planar, bipartite graph.

Let K be the Kasteleyn matrix: K :CPZ —C%W “Adjacency matrix with
Kasteleyn connection”
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0 else.
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where a face of length [ has monodromy (—1)/2+1.
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Kasteleyn, Temperley/Fisher (1963) proved

Thm: |det K| = #{dimer covers}



For multiwebs:

Thm:[Douglas, K, Shi ’23], [K, Ovenhouse 23] We have

det K(®) =+ » = Tr(m).

me,

We define a Kasteleyn matrix K(®) on G-

(

TPy w~b “tensor ¢ with the
K(wv b) = < L
0 else. Kasteleyn connection.
Ex.
X o—C & A D
K(®) = (B C )
D B
O——0, /CL1 az —di —d2\

= b1 b2 cnn C12
K((I)) ba1 b2a  cC21 C22

\b31 b3z a1 32/




Trace of an n-multiweb 29 *

O——s
First assume m, = 0 or 1 for all edges | l I=ﬂ;
= Oy

N\, 1 V; =2 R™ with basis e, ..., ¢,

Define v, € V1 ® --- ® V,, by Vp = Z (—1)06(1;(1) & eZ(n)
oc€eS,

the “codeterminant”

invariant under

.. . SL,-base change
Similarly define v,, using (R™»)*.

Then define  Tr(m) = < ® vw| ® ¢wb‘ ®vb>

weW e=wb beB



We need a|linear order| of the edges out of each vertex: use the circular order,
plus a starting edge, at black vertices, and the anticircular order, plus starting
edge, at white vertices.

2 cilium

The sign of the trace will depend on this choice of linear order.



If edges have multiplicity > 1:

Tr<>~ e :é) — Tr<>@(~

me |



A
Trace example
n=3 3 3 V basis ey, es, €3

1 N :
< V* basis f17f27f3
Vp = €1 ReEraXReg3 —e1X®ez3Rer+ - —e3Rey e
A11B22C33 —A11B23C3

Uy =J1® L R[B3—[1Q [+ =30 [N

Tr(m) = A11B22C33 + - - - + A33B22C11

[V __
—

36 terms

Tr(m) =Tr(AB YTr(CB™') = Tr(AB~'CB™1) if A,B,C € SLs

= |xyz|det(xA + yB + 2C) for general A, B, C



Ex 2. square ice model
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Tr = det 4 d,

Note: all traces > 0 iff
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Ex 3. Triangular ice

Tr = det a9

all traces positive if

ai2
ai3

= [194
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Non-bipartite graphs

Thm [K’, Wu(244)] Let G be a (not-necessarily bipartite) planar graph. Let
n = 2n and let ® be an Sp(2n) local system.

Pfj:]::: Z T’r(m).

mGQQn

Sp(2n) is the group of 2n x 2n matrices M such that M*JM = J where
O'n In
= (%5

Here H,, = JOuy-
Note Huyy = JOuy = J(b;z} = Gpud = —(Jvu)" = —(Huou)".

We can tensor with the Sp(2n)-Kasteleyn-connection to count webs “positively”.

N

(monodromy J'=2 around faces of degree )




Application 2-multiwebs with SLy connection

Cr—

Cr—

For a 2-multiweb m € ()5, we have

When & = I we define

Tr(m)

11

Tr(oy)

loops v of m

\ monodromy of the

connection around 7y




Now puncture some faces:
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(). What is the probability that a 2-multiweb has a given isotopy class?



Let ® = {¢.} be a flat SLo-connection on G.

trivial monodromy around contractible cycles

For a 2-multiweb m € ()5, we have

Trm) = [] Triey) =2#e [ 7o)

loops v of m noncontractible
loops v

The trace “detects” the homotopy type of the loops



+det K(®) = »  Tr(m)= ) CTr())

where )\ runs over isotopy classes of simple closed curve systems.

—— = Pr(m has isotopy class ).

det K (I)

Thm:|Fock-Goncharov ’13]: Traces of simple closed curve systems A € A, form
a basis for regular functions on the SLy-character variety.

Cor: C), is determined by K(®).

Open question: How to extract C)7



Example: annulus

with appropriate boundary conditions,
in limit of mesh — 0,

the distribution only depends

on the conformal modulus.

— conformal modulus
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internal structure?



Idea: a colored 3-multiweb has a spine: a reduced web “inside” it.
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The spine is not canonical, but its topological type ¢s canonical.



S L3 application: n = 3

from 3-multiwebs to 3-webs

multiweb web

A 3-multiweb or web is reduced ( nonelliptic) if there are no contractible faces
of degree < 6.

Thm|[Sikora-Westbury| Traces of reduced (i.e. nonelliptic) webs form a basis
for regular functions on the SLs-character variety.



Web reductions (skein relations) n = 3:

[
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Lemma: For a 3-multiweb m on a graph on a surface with a flat .S L3-connection
Tr(m) = Z CrmTr(A)
AEAs

where the sum is over (isotopy classes of) reduced webs .

Consequently

Thm: det(K(®)) = Z C\Tr()\) where the Cy are functions of det K (®).
AEA3

AN

isotopy classes of reduced webs



Example. On an annnulus, every reduced 3-multiweb is a union of noncon-
tractible “oriented” loops.

det K(A) = Y Ca\Tr(A\) = Y  C;;(TrA) (TrA™"Y.

AEA3 1,7>0

Prop: In the scaling limit on the annulus, ¢ =e"""
Z C; ju'v? = (' H(l +uq’ +vq7 + ¢ (1 +vg +ug® + ¢*7)
%,J 20 g=1

uw="Tr(A),v=Tr(A™")



On a planar graph with boundary, one can compute probabilities of various
reduced webs:

Z\fl Z9 Z\fli Z4 Z\é Z6 %

In scaling limit,

2(22 — Zl)(Zg — 22)(24 — 23)(25 — 24)(2’6 — 25)(26 — Zl)
(23 — 21)(2a — 22)(25 — 23)(26 — 24)(25 — 21)(26 — 22)

Pr =



Happy birthday Philippe!
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THANK YOU

uniform random reduced 3-web with 1200 bdy vertices, and Tutte embedding



Appetizer: 4-color theorem (SL3)

Is every planar triangulation 4-colorable?

Thm: Choose for each edge a random unit vector « in R3.

(Number of 4-colorings) = (—1)¥/23% IE[H det (w1, usz, us)l.
F




