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Doing Research and Development @ EDF R&D

Figure 1: Key figures 2022-2023 for EDF R&D – part 1 (Source: EDF). 2
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Doing Research and Development @ EDF R&D

Figure 2: Key figures 2022-2023 for EDF R&D – part 2 (Source: EDF).
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Doing Research and Development @ EDF R&D

u Our (local) research environment

o Lab: EDF Lab Chatou
(Western Paris, Island of
Impressionists)

o Department: “Performance,
Industrial Risk, Monitoring for
Maintenance and Operating”
(≈ 130 people)

o Group: “Asset Management,
Uncertainty Quantification and
Statistical Learning”
(≈ 20 permanent researchers,
≈ 4 to 8 PhD/MSc students)
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Introduction



Industrial context and motivations

u Beyond the electricity bill…

o EDF is a leading international energy supplier î the ambition to
produce zero carbon electricity in complete safety

o EDF operates a large panel of industrial assets

å nuclear power plants, dams and penstocks, wind turbines, etc.

o Electricity production facilities î highly-safe complex industrial
systems

ò risk-sensitive industrial applications

ò performance and safety are subject to several sources of
uncertainty
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Industrial context and motivations

u A road trip through uncertainties!

Figure 3: Dealing with uncertainties in an industrial process (©EDF).

+ More about UQ in industrial practice: [DRDT08, DR12]
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Industrial context and motivations

u Why do we need UQ of computer models in our industry?

o Computational modeling and simulation at EDF
ä Needed to model, design & predict the behavior of complex

engineering systems (e.g., using digital twins)
ä Simulators î substitute to / complementary to (costly or unfeasible)

experiments (e.g., rare/extreme/undesired/risky configurations)
o Our simulators can be:

ä Static / time-dependent / spatiotemporal
ä Deterministic / stochastic
ä Low / high-fidelity ⇒ cheap / costly-to-evaluate
ä Run on HPC / cannot!
ä Scalar-valued / vector-valued / mapping between functional inputs and

functional outputs
ä Involve several codes (computational chain)

o !4 Boths inputs and models are tainted with uncertainties
o !4 Uncertainties play a key role at several stages (design, operation

& maintenance, risk and safety assessment, production, …)
7



Industrial context and motivations

u Sources of uncertainty ( !4 from Engineers’ point of view)

o Natural variability / randomness / stochasticity

ä intrinsic heterogeneity between individuals
ä w.r.t. time or/and space

å soil mechanical properties, part manufacturing process, etc.

o Modeling errors

ä modeling errors / model form inadequacy
å numerical approximation, simplified equations, scenarios, etc.

ä input modeling uncertainties
å statistical uncertainty, measurement uncertainty, etc.
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Industrial context and motivations

u Aleatoric vs. epistemic: does it (really) matter?

o Etymology
ä Aleatory î alea (Latin) ≡ “rolling of a dice”
ä Epistemic î ϵπιστηµη (Greek) ≡ “knowledge”

o Aleatory uncertainty
ä Can be seen as “irreducible” within a specific context
ä Seems to be rather “objective”

o Epistemic uncertainty
ä Can be seen as a lack-of-knowledge, thus potentially “reducible” within

a specific context
ä Seems to be rather “subjective”
ä How? î By adding more information (higher-order modeling, more

data, more expert knowledge, etc.)
o Any consensus to decide whether sth is aleatoric or epistemic?

ä No scientific consensus! But… + [DKD09]
ä … a pragmatic approach is possible î it depends on the context!
ä This distinction is debated not only in UQ, but also, recently, in ML

+ [HW21] 9



Main objectives of the talk

u The goals of this talk are …

4 To briefly introduce the UQ framework and a few links with ML

4 To provide an overview of a few motivating real-world applications

4 To give a highlight of related works we did in order to tackle them!

4 To make some advertisement for our tools and software!

u This talk will not …

8 Present a rigorous lecture about UQ

8 Present use cases that can be easily reproduced
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2. A few reminders about UQ and
ML



Uncertainty Quantification in a nutshell

u Verification, Validation & Uncertainty Quantification (VV&UQ)

o Numerous scientific societies defined common engineering practices
for VV&UQ (e.g., AIAA, ASME)

+ https://www.asme.org/codes-standards/publications-
information/verification-validation-uncertainty

o Verification î to determine if the computational model fits the
mathematical description

o Validation î to determine if the model accurately represents the real
world application

o Uncertainty Quantification î to determine how variations in the
numerical and physical parameters affect simulation outcomes

+ To go further: [OR10]
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Uncertainty Quantification in a nutshell

u Verification, Validation & Uncertainty Quantification

Figure 4: VV&UQ framework (©EDF).

+ [Smi13, Sul15]
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Uncertainty Quantification in a nutshell

u Step A – Problem specification

o Phenomenon of interest: physical, chemical phenomenon, etc.

o Computational modeling: M : X −→ Y
o Input (physical) variables: x = (x1, . . . , xd)

o Output variable of interest (VoI): y = M(x)

(+ a first hint in order to drive the next UQ steps)

o Quantity of Interest (QoI): QoI(Y)

ä Central tendency analysis:
å QoI(Y) := E [Y] or QoI(Y) := Var (Y)

ä Tail (risk/reliability) analysis:
å QoI(Y) := qα(Y) (e.g., α = 0.90/0.95/0.99) or
QoI(Y) := P (Y > yth)
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Uncertainty Quantification in a nutshell

u Step B – Quantification of uncertainty sources

o Assume you have:
ä Data (measurements, experiments, monitoring data, etc.)
ä Expertise (prior knowledge, bounds/constraints, distributions,

feasible/unfeasible values, etc.)
ä Standards (recommendations, common engineering practice, etc.)

o Uncertain input (physical) variables: X = (X1, . . . ,Xd) ∼ PX

ä If the variables are independent î PX :=
∏d

j=1 PXj

ä If they are dependent î to learn d marginal probability distributions
and the copula + [Nel06, Leb13]

o How to construct this joint probability distribution?
ä Using parametric statistics (inference and tests)
ä Using nonparametric statistics (kernel smoothing, n.p. copula fitting)
ä Using Bayesian statistics
ä Using expert elicitation in order to derive bounds and supports
ä …

15



Uncertainty Quantification in a nutshell

u Step C – Propagation of uncertainties

o Black-box model (with scalar output):

M :

∣∣∣∣∣ X ⊆ Rd −→ Y ⊆ R
X 7−→ Y = M(X)

(1)

!4 “Black-box” here ≡ nonintrusive w.r.t. the code M
o Depending on the nature of the QoI(Y):

ä Central tendency estimation
å analytical formulas, Monte Carlo simulations, … + [RK08]

ä Rare event estimation
å approximation-based methods, variance reduction techniques
(e.g., Quasi-Monte Carlo, Importance sampling), splitting techniques,
etc. + [MB15, DK22]

o !4 If M is costly-to-evaluate î surrogate models M̃
å Gaussian processes, polynomial chaos expansions, support vector
machines, …
+ [LGMS17, Bou18] 16



Uncertainty Quantification in a nutshell

u Step C’ – (Global) Sensitivity Analysis

o SA settings “revisited” = Goal of the study + [DGIP21]

1. Model exploration
2. Factor fixing (≡ Qualitative screening)
3. Factor priotization (≡ Quantitative ranking)
4. Robustness analysis (w.r.t. input distributions)

o A zoology of methods î How to choose?

ä Dependence structure in PX

ä Linearity / nonlinearity of M
ä Input dimension and output dimension
ä The nature of the QoI(Y) (target and conditional analyses)
ä Computational constraints (limited simulation budget)
ä (If you already have a surrogate model M̃ or not)
ä …

+ [SRA+08, IL15, RJS+21, DGIP21]
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Uncertainty Quantification in a nutshell

u Step C’ – (Global) Sensitivity Analysis

Figure 5: SA methods (Source: adapted from [IL15] by [Mar21]). 18



Supervised Machine Learning vs. UQ?

u Supervised Machine Learning …
(not that much different from UQ)

Figure 6: Supervised ML framework (©EDF).
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Supervised Machine Learning vs. UQ?

u A few recent links between supervised ML and UQ

o Several analogies between VV&UQ and (supervised) ML:

ä Validation techniques of statistical learning (surrogate / ML) models
î using kernel-based methods such as Kernel Herding + [FIM+22a]

ä UQ for for robust prediction in ML
î Conformal Prediction framework + [JBB+23]

ä Global SA (given-data) as a tool for ML Interpretability /
Explainability
î Regression-based importance measures + [ICT22, CIC+nt]
î Kernel-based indices (HSIC) + [GBSS05, DV15]
î Importance measures derived from Random Forests + [B2́1]

ä …
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3. Two challenging industrial use
cases & related works



Two challenging industrial use cases & related works

u Overview of the overview

o Two use cases (UC) are presented for the main electricity production
assets

o They arise from real-world engineering-related questions and
challenges, focusing on various goals:

ä Safety analysis, risk and reliability assessment
ä Operating (statistical lifetime analysis, prognostics & health monitoring,

maintenance optimization)
ä Robust design (under uncertainty) of new components and assets
ä Predictive analysis and new electricity usage
ä …
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UC#1 – Safety analysis of accidental transients

Figure 7: A typical French pressurized water reactor (source: IRSN).

P The 3 safety barriers.
î (#1) cladding, (#2) primary circuit, (#3) reactor building

22



UC#1 – Safety analysis of accidental transients

u Context of UC#1

o Scenario: Intermediate-Break Loss-Of-Coolant Accident (IBLOCA)

o Computer model: the CATHARE2 code (1 call ≈ 1 hour)

Figure 8: IBLOCA in a PWR (©CEA) / PCT trajectories from CATHARE2 (©EDF).
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UC#1 – Safety analysis of accidental transients

u Context of UC#1

o Scenario: Intermediate-Break Loss-Of-Coolant Accident (IBLOCA)
o Computer model: the CATHARE2 code (1 call ≈ 1 hour)
o Inputs:

ä Type #1: Initial/boundary conditions í probabilistic (U , trunc. N )
ä Type #2: Physical parameters í probabilistic (U , LU , trunc. N , LN )
ä Type #3: Scenario parameters í not probabilistic (lower/upper

bounds)
o Output QoI: Second peak of cladding temperature (PCT) î scalar QoI

P Main scientific/technical objectives.

o (O1) How to find the most penalizing values of Type #3 parameters?

o (O2) How to derive robustness indicators of risk-estimates w.r.t. input
probabilistic modeling?

o (O3) How to detect functional outliers in transient simulations?
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UC#1 – Safety analysis of accidental transients

u Context of UC#1

Figure 9: Nuclear fuel schematic (Source: US DoE and this website).
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UC#1 – Safety analysis of accidental transients

↪→ (O1) How to find the most penalizing values of Type #3
parameters?

!4 Main challenges:
ä d ≈ 100 input variables, computational cost & nonlinearity
ä Single input-output MC sample available (“given-data” framework)

+ Proposed approach: ICSCREAM methodology [MIC22]

Main ingredients
o QoI î q̂0.90(Y)

o Use of global and target SA using
the Hilbert-Schmidt Independence
Criterion (HSIC) [DV15, MC21]

o Gaussian process (GP) regression

o Optimization under uncertainty

o Tracking nonmonotonic relationships

Figure 10: HSIC and GP regression.
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UC#1 – Safety analysis of accidental transients

↪→ (O1) How to find the most penalizing values of Type #3
parameters?

Figure 11: Illustration on 1D and 2D cases (Source: [MIC22]).
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UC#1 – Safety analysis of accidental transients

↪→ (O2) How to derive robustness indicators of risk-estimates w.r.t.
input probabilistic modeling?

!4 Main challenges: (same as before, plus…)

ä QoI î a risk measure (e.g., failure probability / high-order quantile / a
super-quantile)

ä Several sources of epistemic uncertainties
(e.g., input distributions, model uncertainties)

+ Proposed approaches:

(A.) Using perturbation-based robustness measures
[Lem14, LSA+15, SID17, IVL22, GSSI22]

(B.) Using the Optimal Uncertainty Quantification (OUQ) framework
[Ste20, SGKI20, SGK21]

(C.) Using the Info-Gap (IG) framework and extra-probabilistic
modeling [Aje22, AAC+22, AAC+23]
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UC#1 – Safety analysis of accidental transients

↪→ (O2) How to derive robustness indicators of risk-estimates w.r.t.
input probabilistic modeling?

(A.) Using perturbation-based robustness measures
[Lem14, LSA+15, SID17, IVL22, GSSI22]

Main ingredients
o Perturbed-law based (PLI) indices:

Sj,δ =
QoI(fδj )−QoI(fj)

QoI(fj)

o MC and IS-based estimators for
several QoIs with asymptotic
guarantees

o Extensions to several QoIs and
multivariate perturbations

o Generalization through Information
Geometry and the Fisher-Rao
distance (Optimal Fisher-based PLI) Figure 12: PLI and OF-PLI

([IVL22, GSSI22]).
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UC#1 – Safety analysis of accidental transients

↪→ (O2) How to derive robustness indicators of risk-estimates w.r.t.
input probabilistic modeling?

(B.) Using the Optimal Uncertainty Quantification (OUQ)
framework [Ste20, SGKI20, SGK21]

Main ingredients
o OUQ principles [OSS+13] î

Evaluation of a maximum risk measure
over a class of admissible measures

inf
µ∈A∆

P(G(X) ≤ h)

o Relies on the Reduction Theorem î

optimal solution of QoI optimization is
a product of discrete measures

o Set of input measures reparameterized
using Canonical Moments î

facilitates the optimization problem
Figure 13: OUQ and canonical
moments ([Ste20, SGKI20]).
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UC#1 – Safety analysis of accidental transients

↪→ (O2) How to derive robustness indicators of risk-estimates w.r.t.
input probabilistic modeling?

(C.) Using the Info-Gap (IG) framework and extra-probabilistic
modeling [Aje22, AAC+22, AAC+23]

Main ingredients
o IG [BH06] î decision-theoretic

framework under severe uncertainty

o Relies on the concepts of horizon of
uncertainty and robustness curve

o Coupled with random sets [Mol17] î

generic framework for hybrid
reliability assessment

o Proposition of efficient strategies
based on advanced sampling and
surrogate modeling
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UC#1 – Safety analysis of accidental transients

↪→ (O3) How to detect functional outliers in transient simulations?

!4 Main challenges: (same as before, plus…)
ä No off-the-shelf method for expensive-to-evaluate computer simulations

+ Proposed approach: Functional Outlier Detection (FOD)
methodology adapted to strongly nonlinear nuclear transients
[RDP21, RDPCI+21]

Main ingredients
o To measure the outlyingness

both in the magnitude and
shape senses
[RDP21, RDPCI+21]

o Various features used (h-mode
depth or DTW)

o Using HSIC indices in order to
better interpret outliers Figure 15: FOD on transients ([RDP21]).
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UC#2 – Probabilistic fatigue assessment for offshore wind tur-
bines

u Context of UC#2

o Scenario: reliability analysis of an offshore
wind turbine (OWT)

o Computer model: complex computational
chain

Figure 16:
Monopile OWT
diagram [FCMI23].

Figure 17: Computational chain [FCMI23].
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UC#2 – Probabilistic fatigue assessment for offshore wind tur-
bines

u Context of UC#2

o Scenario: reliability analysis of an offshore wind turbine (OWT)
o Computer model: complex computational chain

(TurbSim - DIEGO - Damage)
o Inputs:

ä Environmental variables X
o Output QoI: mean fatigue damage in the structure w.r.t. the

environmental conditions

P Main scientific/technical objectives.

o (O1) How to build an input probabilistic model when inputs have a
complex dependence structure?

o (O2) How to efficiently propagate uncertainties in a
costly-to-evaluate computational chain?
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UC#2 – Probabilistic fatigue assessment for offshore wind tur-
bines

↪→ (O1) & (O2) Learning complex dependence structure + Efficient
uncertainty propagation?

!4 Main challenges:
ä Large dataset of environmental conditions (given-data)
ä Complex dependence structures among inputs

+ Proposed approach: Using the empirical Bernstein copula and
Kernel Herding [FCMI23]

Main ingredients
o Nonparametric copula fitting î

empirical Bernstein copula
[Las22, FCMI23]

o Use of Kernel Herding [CWS10] î

subsampling and efficient propagation
of uncertainties [FIM+22b, FCMI23]

Figure 18: Copulogram. 35



UC#2 – Probabilistic fatigue assessment for offshore wind tur-
bines

↪→ (O1) & (O2) Learning complex dependence structure + Efficient
uncertainty propagation?

Figure 19: Kernel Herding applied to a 2D and OWT cases (Source: [FCMI23]).
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4. Open source tools and
software for UQ



OpenTURNS: an open-source library for UQ

o OpenTURNS in a few words:
ä An Open source initiative for the Treatment of

Uncertainties, Risks’N Statistics + [BDIP17]
ä Started in 2004…
ä Last version: 1.21 (summer 2023, 2 releases / year)
ä Developed (LGPL License) by

Airbus - EDF - IMACS - ONERA - Phimeca
ä core & API

î conda/pip install openturns

o More information?
ä Website: https://openturns.github.io/www/
ä Github: https://github.com/openturns/openturns
ä Discourse: https://openturns.discourse.group/
ä Gitter: chatting for short questions and problems
ä Stack Overflow: tag ‘openturns’
ä OT modules: several specific modules (packages) on this page
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OpenTURNS: an open-source library for UQ

Figure 20: OpenTURNS’ webpage.
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OpenTURNS: an open-source library for UQ

Figure 21: OpenTURNS’ Discourse forum.
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Persalys: an open-source GUI for UQ and data analysis

o Persalys in a few words:
ä GUI based on OpenTURNS
ä Interface available in French or in English
ä Open source software, developed by a

partnership between Phimeca & EDF
(and a collaboration with the OpenTURNS
consortium)

o More information?
ä Website: https://persalys.fr/index.php

+ Just fill in the form (Level 1) and download it for free!
ä Github: https://github.com/persalys/persalys
ä Discourse: https://persalys.discourse.group/
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‘sensitivity’: global sensitivity analysis and ML interpretability

o ‘sensitivity’ in a few words:
ä package for the sensitivity analysis

of model outputs
ä Now contains a few methods for ML

interpretability + [ICT22]
ä Last version: 1.29.0 (Published: 2023-08-31)
ä Many contributors (academic / industrial /

students)
ä Maintainer: Bertrand Iooss (EDF R&D)
ä Companion book + [DGIP21]

o More information?
ä CRAN webpage: https://persalys.fr/index.php
ä Reference manual:

https://cran.r-project.org/web/packages/sensitivity/sensitivity.pdf
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Conclusion



Conclusion

u A few (positive) take-home messages…

4 UQ is now a mature field in several industrial fields (energy,
aerospace, automotive, etc.)

4 UQ benefits from a (very) high-level of academic research (in
probability, statistics, optimization, machine learning, signal
processing, geometry, topology, …)

4 Many open source tools and software are available!
!4 Be careful about “blind/naive use” of these methods and tools!

4 Safety authorities and regulators recognize this field as being of
major interest

u … and a few (personal) disappointments

8 UQ is still underrepresented in some fields

8 UQ suffers (sometimes) from a lack of attractiveness compared to ML
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Conclusion

u A few open questions and/or perspectives

o Going deeper into the links between UQ and ML:

ä Several connections about the way uncertainties are taken into account
ä On-going works about kernel methods
ä The use of conformal prediction for doing UQ in ML models
ä Strong links between eXplainable AI and global sensitivity analysis
ä Anomaly detection vs. rare event estimation, any links?

o Hybridation between UQ and ML

ä Robustess of “Physics-informed” strategies (complex simulation models)
ä Hybridation using other methods than neural networks

o Challenges for industrial UQ:

ä UQ for input/output fields
ä UQ and the “transposition” problem (≈ transfer learning)
ä UQ based on images/videos
ä UQ for complex models (environmental, biological, etc.)
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Scientific dissemination & the French UQ community?

u Main organizations and networks

o GdR MASCOT-NUM î a French Research Group dealing with
stochastic methods for the analysis of numerical codes

o GIS LARTISSTE î a French Scientific Consortium about UQ @
Paris-Saclay

o SINCLAIR AI Lab. î the Saclay INdustrial Collaborative Laboratory
for Artificial Intelligence Research (SINCLAIR), gathering researchers
from EDF, Thales and TotalEnergies

o frENBIS î the French local network of the European Network for
Business and Industrial Statistics (ENBIS)

u Main seminars and scientific events

o UQSay seminars î series of online seminars on the broad area of
UQ, ML and related topics

o ETICS Annual Research Schools î Thematic Research School on
Uncertainty in Scientific Computing
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Thank your for your attention!
Any question?
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