
Simulation-Based Inference: Where Classical Statistics
Meets Machine Learning

Mikael Kuusela
Department of Statistics and Data Science,

Carnegie Mellon University

AISSAI AI Uncertainty Workshop,
Paris, France

November 28, 2023

Joint work with: Julia Walchessen (CMU), Amanda Lenzi (Edinburgh),

Luca Masserano (CMU), Tommaso Dorigo (INFN), Rafael Izbicki (São

Carlos), and Ann B. Lee (CMU)

Mikael Kuusela (CMU) November 28, 2023 1 / 40

Motivation: Simulation-based inference

In most of statistical inference, we assume that our data y is generated
from probability distribution Fθ parameterized by a parameter of interest θ:

y ∼ Fθ

We might then be interested in:

Point estimates of θ
Hypothesis tests about θ
Confidence sets for θ
...

These are well-understood problems when we can write down and evaluate
a closed-form expression for Fθ

However, there are many situations where Fθ is implicitly defined through a
generative process that allows simulating y for given θ but does not easily
admit a tractable expression for Fθ
⇒ Simulation-based inference (SBI)

Mikael Kuusela (CMU) November 28, 2023 2 / 40

Motivation: Simulated electromagnetic shower

Simulated electomagnetic shower for 24 GeV electron in iron
(Figure source: https://www.mpp.mpg.de/~menke/elss/)

Mikael Kuusela (CMU) November 28, 2023 3 / 40

https://www.mpp.mpg.de/~menke/elss/

Motivation: Intractable spatial processes

Max-stable processes are a popular class of models for spatial extremes

Used to model extreme weather phenomena, such as extreme
precipitation and heat waves

These processes are easy to simulate from but the number of terms in the
likelihood function grows faster than exponentially in the number of spatial
locations

Exact likelihood computations become intractable even with HPC for & 10
locations (Castruccio et al., 2016)

Figure: Two realizations of a Brown–Resnick spatial extremes process
Mikael Kuusela (CMU) November 28, 2023 4 / 40

Simulation-based inference

Ingredients:

Sample of parameters: θ1, . . . ,θn ∼ p(θ)

Corresponding simulations from the model: yi ∼ Fθi , i = 1, . . . , n

Observed data: yobs

Task: Infer θ that generated yobs

Specifically, for uncertainty quantification, we want to obtain a frequentist
confidence set C (y) satisfying1

P(θ ∈ C (y)|θ) = 1− α, ∀θ

Note: In most of these problems, y is high-dimensional

1This is sometimes called conditional coverage, as opposed to marginal coverage
P(θ ∈ C(y)) = 1− α.

Mikael Kuusela (CMU) November 28, 2023 5 / 40

Neural prediction for SBI

Given the simulated pairs {yi ,θi}ni=1, an immediate
idea is to train a neural network h that takes y as input
and gives the corresponding parameter θ as output

This neural prediction approach has been used for

Particle reconstruction (e.g., Kieseler et al., 2022)

Estimating galaxy masses (Ho et al., 2019)

Estimating parameters of spatial models (Gerber
and Nychka, 2021; Lenzi et al., 2023;
Sainsbury-Dale et al., 2023)

...

Data y

NN

Parameter Point
Estimator θ̂

Mikael Kuusela (CMU) November 28, 2023 6 / 40

Neural prediction for SBI

The network is typically trained to minimize the mean
squared error loss function:

L =
1

n

n∑
i=1

(θi − h(yi))2 n→∞−→ E((θ − h(y))2)

For large samples, the minimizer is the conditional
expectation: h(y) = E(θ|y)

The neural predictor θ̂ is therefore a regularized
finite-sample estimator of E(θ|y)

Data y

NN

Parameter Point
Estimator θ̂

Mikael Kuusela (CMU) November 28, 2023 6 / 40

Neural prediction for SBI

Some limitations of neural prediction:

1 Prior dependence:

the distribution p(θ) used to sample the training parameters serves as a prior
E(θ|y) depends on this prior since the expectation is with respect to
p(θ|y) ∝ p(y |θ)p(θ)
the estimates θ̂ are biased toward the prior mean

2 Uncertainty quantification:

Could train another network to estimate V(θ|y) and use this to quantify
uncertainty
This should be understood as Bayesian UQ
May not have good frequentist properties

3 Multiple realizations:

Depending on the method used, inference for multiple i.i.d. realizations may
require retraining the network

What else could be done using the sample {yi ,θi}ni=1?

In the following, I’ll describe our work Walchessen et al. (2023) where we learn the
likelihood function of intractable spatial processes using this same sample

Mikael Kuusela (CMU) November 28, 2023 7 / 40

Neural likelihood

We will train a probabilistic neural network classifier h(y ,θ) whose odds
transform is proportional to the likelihood:

L(θ | y) ∝ odds(h(y ,θ)) =
h(y ,θ)

1− h(y ,θ)

So we can evaluate the classifier h(y ,θ) for given data y over a grid of θ
to trace out the likelihood surface corresponding to y (up to a
multiplicative constant depending on y but not on θ)

Benefits of this approach:
1 Point estimation using maximum likelihood
2 Likelihood-based confidence sets for uncertainty quantification
3 Much faster to evaluate than exact likelihood or traditional likelihood

approximations (once trained, the neural network is amortized)
4 Does not depend on a prior
5 Handling multiple replications is straightforward

Mikael Kuusela (CMU) November 28, 2023 8 / 40

Neural prediction vs. neural likelihood

Left: neural prediction; right: neural likelihood

Mikael Kuusela (CMU) November 28, 2023 9 / 40

Neural likelihood: training data

Generate parameters θi from some distribution p(θ) over a bounded
parameter space Θ

For each θi , simulate fi ∼ SpatialProcess(θi); then evaluate fi on a
regular grid S to obtain a simulated spatial observation yi = fi (S)

This gives us paired training data C1 = {yi ,θi}ni=1; this is our class 1

For class 2, we permute the pairing of yi and θi : C2 = {yi ,θπ(i)}ni=1,
where i 7→ π(i) is a random permutation of the index set [n]

Due to the permutation, y and θ are independent in class 2 with the same
marginal distributions as in class 1

Then we train a probabilistic classifier h(y ,θ) to separate C1 from C2

(In practice, we found that it is better to sample multiple y for each θ but the core idea

remains the same.)

Mikael Kuusela (CMU) November 28, 2023 10 / 40

Connection between classifier and likelihood

If we train the classifier to minimize the binary cross-entropy loss, then it
will (asymptotically) learn the class probability: h(y ,θ) = P(C1|(y ,θ))

This class probability can be re-expressed as follows:

h(y ,θ) = P
(
C1 | (y ,θ)

)
=

p
(
(y ,θ) | C1

)
P(C1)

p
(
(y ,θ) | C1

)
P(C1) + p

(
(y ,θ) | C2

)
P(C2)

=

p((y ,θ)|C1)
p((y ,θ)|C2)

p((y ,θ)|C1)
p((y ,θ)|C2) + 1

=

p(y ,θ)
p(y)p(θ)

p(y ,θ)
p(y)p(θ) + 1

=

p(y |θ)p(θ)
p(y)p(θ)

p(y |θ)p(θ)
p(y)p(θ) + 1

=

p(y |θ)
p(y)

p(y |θ)
p(y) + 1

=

L(θ|y)
p(y)

L(θ|y)
p(y) + 1

Solving this for ψ(y ,θ) = L(θ|y)
p(y) gives

ψ(y ,θ) =
h(y ,θ)

1− h(y ,θ)

and hence

L(θ | y) = p(y)ψ(y ,θ) ∝ h(y ,θ)

1− h(y ,θ)

Mikael Kuusela (CMU) November 28, 2023 11 / 40

Classifiers and Density Ratios

The previous result is a special case of a more general result. Let:

C1 : z1
1 , z

1
2 , . . . , z

1
n

iid∼ p1

C2 : z2
1 , z

2
2 , . . . , z

2
n

iid∼ p2

Train a classifier h(z) to separate C1 from C2 by minimizing the binary
cross-entropy loss; then the classifier will asymptotically give:

h(z) = P
(
C1 | z

)
=

p
(
z | C1

)
P(C1)

p
(
z | C1

)
P(C1) + p

(
z | C2

)
P(C2)

=

p(z|C1)
p(z|C2)

p(z|C1)
p(z|C2) + 1

=

p1(z)
p2(z)

p1(z)
p2(z) + 1

Solving this for ψ(z) = p1(z)
p2(z) gives ψ(z) = p1(z)

p2(z) = h(z)
1−h(z) = odds(h(z))

The classifier h(z) is learning the density ratio p1(z)/p2(z)!

When h(z) is a (deep) neural network, this works amazingly well for
high-dimensional z
This can be used to learn likelihood ratios (Cranmer et al., 2015), to
perform two-sample testing (Chakravarti et al., 2023), for transfer learning
(Manole et al., 2022) and many other tasks in high-dimensional spaces

Mikael Kuusela (CMU) November 28, 2023 12 / 40

Calibration with Platt scaling

Learning the likelihood accurately depends on the accuracy of learning the
class probability P(C1|(y ,θ))

But large-scale neural networks are known to produce biased estimates of
P(C1|(y ,θ)) for finite samples (Guo et al., 2017)

A standard solution to this is to apply post-hoc calibration on the network

We do this using Platt scaling (Platt, 1999) which simply means fitting a
logistic regression to the training class labels using the neural network
output as a covariate:

log

(
π(p)

1− π(p)

)
= β0 + β1 log

(
p

1− p

)
,

where p is the output of the uncalibrated neural network and π(p) is the
calibrated class probability

Mikael Kuusela (CMU) November 28, 2023 13 / 40

Calibration with Platt scaling

Figure: Reliability diagrams (empirical probability vs. predicted probability) before
calibration (left) and after calibration (right) for a Gaussian process.

Mikael Kuusela (CMU) November 28, 2023 14 / 40

Using the neural likelihood

We can extract the following information from the trained and calibrated
classifier h(y ,θ):

1 Log-likelihood surface: For fixed y , perform a vectorized evaluation of

logψ(y ,θ) = log
(

h(y ,θ)
1−h(y ,θ)

)
for θ ∈ ΘL, where ΘL is a fine grid on

the parameter space Θ
2 Point estimator: Find

θ̂ = arg max
θ∈ΘL

logL(θ | y) = arg max
θ∈ΘL

log(p(y)ψ(y ,θ)) = arg max
θ∈ΘL

logψ(y ,θ)

using the above grid evaluations
3 Approximate confidence region: Find

{θ ∈ ΘL | 2
(

logL(θ̂ | y)− logL(θ | y)
)
≤ χ2

k,1−α}

= {θ ∈ ΘL | 2
(

logψ(y , θ̂)− logψ(y ,θ)
)
≤ χ2

k,1−α},

using the above grid evaluations

Notice that in 2 and 3 , the unknown constant p(y) cancels out
Mikael Kuusela (CMU) November 28, 2023 15 / 40

Case study 1: Gaussian process

We first test our method on learning the likelihood function of a Gaussian
process

Here the exact likelihood is known so we can compare the neural
likelihood to the exact likelihood

We consider a zero-mean spatial Gaussian process with exponential

covariance k(s1, s2) = v · exp
(
− ‖s1−s2‖

`

)
, so the unknown parameter is

θ = (`, v)

The realizations y are generated on a 25× 25 grid on the domain
D = [−10, 10]× [−10, 10]

The parameter space Θ is set to be the bounded domain (0, 2)× (0, 2)
(expanded to (0, 2.5)× (0, 2.5) when training the neural network)

Training data: 3000 parameters θ sampled using Latin hypercube
sampling; 500 field realizations y for each θ

Mikael Kuusela (CMU) November 28, 2023 16 / 40

Gaussian Process Neural Likelihood Surfaces

Figure: Exact log-likelihood (left) and log-neural likelihood before (middle) and
after calibration (right) for ` = 0.8 and v = 0.8

Mikael Kuusela (CMU) November 28, 2023 17 / 40

Gaussian Process Neural Likelihood Surfaces

Figure: Exact log-likelihood (left) and log-neural likelihood before (middle) and
after calibration (right) for ` = 0.4 and v = 1.6

Mikael Kuusela (CMU) November 28, 2023 18 / 40

Gaussian Process Neural Likelihood Surfaces

Figure: Exact log-likelihood (left) and log-neural likelihood before (middle) and
after calibration (right) for ` = 1.6 and v = 0.4

Mikael Kuusela (CMU) November 28, 2023 19 / 40

Gaussian Process Approximate Confidence Regions

Figure: Exact log-likelihood (left) and log-neural likelihood before (middle) and
after calibration (right) for ` = 0.8 and v = 0.8 along with 95% approximate
confidence regions

Mikael Kuusela (CMU) November 28, 2023 20 / 40

Empirical Coverage for Gaussian Process

Figure: Empirical coverage

Figure: Confidence region area

Mikael Kuusela (CMU) November 28, 2023 21 / 40

Timing Study for Gaussian Process

Table: Time to produce neural and exact likelihood surfaces on a 40× 40 grid
over Θ for 50 realizations of a Gaussian process observed on a 25× 25 grid.

Type of surface and method average (sec) std. dev. (sec)
exact likelihood 71.67 1.02
unvectorized neural likelihood 13.46 0.26
vectorized neural likelihood 2.26 0.34

Mikael Kuusela (CMU) November 28, 2023 22 / 40

Case study 2: Brown–Resnick Process

We now apply our method to estimating the likelihood function of a
Brown–Resnick process

In this case, the exact likelihood is intractable (and hence unknown) so we
compare our results to those obtained using pairwise likelihood

logLpw

(
θ | y

)
=

n∑
j1=1

∑
j2>j1

wj1,j2

(
log
(
V1(yj1 , yj2)V2(yj1 , yj2)− V12(yj1 , yj2)

)
− V (yj1 , yj2)

)
The weights are taken to be:

wj1,j2 =

{
1, if ‖sj1 − sj2‖ ≤ δ,
0, otherwise.

Results for pairwise likelihood depend on
the distance cutoff δ

cutoff

Mikael Kuusela (CMU) November 28, 2023 23 / 40

Brown–Resnick details

For Brown–Resnick, the parameter is θ = (λ, ν), where λ is a range
parameter and ν is a smoothness parameter

We set the parameter space Θ to be the bounded set (0, 2)× (0, 2)

Similar to the previous case study, the realizations y are generated on a
25× 25 grid on the domain D = [−10, 10]× [−10, 10]

Training data sample sizes are the same as for Gaussian process

Mikael Kuusela (CMU) November 28, 2023 24 / 40

Brown–Resnick Neural Likelihood Surfaces

Figure: Pairwise log-likelihood (left) and log-neural likelihood before (middle) and
after calibration (right) for range λ = 0.8 and smoothness ν = 0.8 with distance
cut-off δ = 1

Mikael Kuusela (CMU) November 28, 2023 25 / 40

Brown–Resnick Neural Likelihood Surfaces

Figure: Pairwise log-likelihood (left) and log-neural likelihood before (middle) and
after calibration (right) for range λ = 0.8 and smoothness ν = 0.8 with distance
cut-off δ = 2

Mikael Kuusela (CMU) November 28, 2023 26 / 40

Brown–Resnick Approximate Confidence Regions

Figure: Unadjusted pairwise log-likelihood (top left), adjusted pairwise log-likelihood
(top right), log-neural likelihood before (bottom left) and after calibration (bottom
right) for range λ = 0.8 and smoothness ν = 0.8 with distance cut-off δ = 2 along with
the corresponding 95% approximate confidence regions

Mikael Kuusela (CMU) November 28, 2023 27 / 40

Empirical Coverage for Brown–Resnick

Figure: Empirical coverage

Figure: Confidence region area

Mikael Kuusela (CMU) November 28, 2023 28 / 40

Timing study for Brown–Resnick

Table: Time to produce neural and pairwise likelihood surfaces on a 40× 40 grid
over Θ for 50 realizations of a Brown–Resnick process on a 25× 25 grid on
spatial domain [−10, 10]× [−10, 10].

Type of surface and method average (sec) std. dev. (sec)

pairwise likelihood (δ = 1) 5.05 0.34
pairwise likelihood (δ = 2) 5.38 0.27
pairwise likelihood (δ = 5) 5.86 0.28
pairwise likelihood (δ = 10) 7.33 0.16
vectorized neural likelihood 2.24 0.13
unvectorized neural likelihood 14.39 0.03

Mikael Kuusela (CMU) November 28, 2023 29 / 40

From neural prediction to frequentist confidence sets

Let’s assume we have trained an algorithm that gives us access to the
conditional mean E[θ|D] and the conditional (co)variance V[θ|D]

For example:

Deep neural network trained to predict θ and (θ − E[θ|D])2 for
squared error loss

Neural posterior of θ

...

A wide range of existing works in SBI either produce these quantities or
can be easily adapted to produce these quantitites

Can we leverage these outputs to perform frequentist uncertainty
quantification for θ?

Mikael Kuusela (CMU) November 28, 2023 30 / 40

Waldo

Schematic of Waldo (Masserano et al., 2023): We use the outputs of neural
prediction to form a test statistic which is inverted to obtain a frequentist
confidence set

This framework is a special case of LF2I (Likelihood-Free Frequentist Inference;
Dalmasso et al. (2023)) developed by Ann Lee and her group at CMU

Mikael Kuusela (CMU) November 28, 2023 31 / 40

Waldo: test statistic

We want to perform the test

H0 : θ = θ0 vs. H1 : θ 6= θ0

using E[θ|D] and V[θ|D]

Proposed test statistic:

τWaldo(D;θ0) = (E[θ|D]− θ0)TV[θ|D]−1(E[θ|D]− θ0)

This is analogous to the classical Wald test statistic

τWald(D; θ0) =
(θ̂MLE − θ0)2

V(θ̂MLE)
,

hence the name Waldo

Mikael Kuusela (CMU) November 28, 2023 32 / 40

Waldo: critical values

To be able to invert the previous test, we need to know the null
distribution of τWaldo for all θ0

More specifically, to obtain a 1− α confidence set for θ, we need to know
the 1− α quantiles of the null distributions

This is a quantile regression problem and can be solved by simulating data
D under θ0 for a sample of θ0’s, computing the corresponding τWaldo and
then regressing the quantiles of τWaldo on θ0

⇒ Estimated critical values Ĉθ0,α for all θ0

Mikael Kuusela (CMU) November 28, 2023 33 / 40

Waldo: Neyman inversion

The 1− α confidence set R(D) contains all those parameter values that
are not rejected at level α:

R(D) = {θ0 ∈ Θ : τWaldo(D;θ0) ≤ Ĉθ0,α}

This gives guaranteed finite-sample coverage as long as the quantiles Ĉθ0,α

are estimated accurately enough

This holds true no matter how well the original neural estimators
E[θ|D] and V[θ|D] were trained

This also holds true no matter what prior was used for θ (but good
priors can lead to smaller confidence sets)

Mikael Kuusela (CMU) November 28, 2023 34 / 40

Waldo vs. neural posterior

Waldo applied to the neural posterior of θ in the model
D|θ ∼ 1

2N (θ, I) + 1
2N (θ, 0.01 · I) with prior θ ∼ N (0, 2 · I)

Mikael Kuusela (CMU) November 28, 2023 35 / 40

Waldo: Calorimetric muon energy reconstruction

We apply Waldo to reconstructing muon energy from calorimetric energy
deposits

The problem setting, data and CNN come from Kieseler et al. (2022);
Dorigo et al. (2022) who used predictive inference for this problem

Here:

θ = energy of the incoming muon

D = calorimetric measurements (energy sum; 28 hand-chosen features; or raw
calorimeter readout in 51200 dimensions)

Mikael Kuusela (CMU) November 28, 2023 36 / 40

Future directions: Model discrepancy

Current SBI methods assume access to a reliable simulator to
generate y ∼ Fθ

But more often than not, the simulator is only approximately correct

This raises many questions:

Are neural estimators / confidence sets robust against
misspecification of Fθ?

How do the networks behave if evaluted for y outside the support of
the training data?
Classical estimators (e.g., MLE) have known robustness properties
against model misspecification; do any of these carry over to neural
inference?

How to perform SBI with misspecified simulators?

Parameterize the model discrepancy using nuisance parameters?
Model the discrepancy statistically?
Learn corrections from sidebands / control channels?

Mikael Kuusela (CMU) November 28, 2023 37 / 40

Future directions: High-dimensional parameter spaces

In principle, the parameter θ ∈ Θ ⊂ Rp could be arbitrarily
high-dimensional in the previous methods

But, in practice, as the dimension p of θ grows, at some point it becomes
impossible to sample the parameter space and learn the θ dependence
accurately enough

It is not well-known up to which p does each SBI method provide realiable
inferences

Mikael Kuusela (CMU) November 28, 2023 38 / 40

Future directions: High-dimensional parameter spaces

Even if a given method worked for large p, this would give us a very
high-dimensional confidence set

What would we do with such a set?

It’s very difficult for humans to understand and process
high-dimensional sets

And any lower-dimensional projection of the high-dimensional
confidence set would be an extremely conservative confidence set for
the lower-dimensional parameter

Potential answer (Batlle et al., 2023): One could aim to invert for µ in
tests of the form

H0 : θ ∈ Φµ ∩Θ versus H1 : θ ∈ Θ \ Φµ,

where
Φµ := {θ : ϕ(θ) = µ} ⊆ Rp

and ϕ is a quantity of interest (e.g., a given element of θ)
Mikael Kuusela (CMU) November 28, 2023 39 / 40

Conclusions and outlook

SBI enables classical statistical inference in situations where the likelihood is
either unavailable, intractable or computationally intensive
A key tool is to use machine learning to handle the curse of dimensionality
Many methods have been developed for learning likelihood functions,
posteriors, likelihood ratios, confidence sets, etc., in the SBI setting
A key feature of many of these is that they are amortized: there is an overhead
cost from the training, but once the model is trained, it can be evaluated for
an arbitrary number of new observations without retraining
Many open problems remain, especially with regards to misspecified simulators
and high-dimensional parameter spaces
Papers covered in this talk:

J. Walchessen, A. Lenzi, and M. Kuusela, Neural likelihood surfaces for spatial
processes with computationally intensive or intractable likelihoods, arXiv:2305.04634
[stat.ME], 2023
L. Masserano, T. Dorigo, R. Izbicki, M. Kuusela, and A. Lee. Simulator-based
inference with Waldo: Confidence regions by leveraging prediction algorithms and
posterior estimators for inverse problems. Proceedings of The 26th International
Conference on Artificial Intelligence and Statistics, PMLR, 2023

Code for Waldo (and LF2I more generally) available on GitHub

Mikael Kuusela (CMU) November 28, 2023 40 / 40

https://github.com/lee-group-cmu/lf2i

References I

P. Batlle, P. Patil, M. Stanley, H. Owhadi, and M. Kuusela, Optimization-based
frequentist confidence intervals for functionals in constrained inverse problems:
Resolving the Burrus conjecture, arXiv:2310.02461 [math.ST], 2023.

S. Castruccio, R. Huser, and M. G. Genton, High-Order Composite Likelihood Inference
for Max-Stable Distributions and Processes, Journal of Computational and Graphical
Statistics, 25(4):1212–1229, 2016.

P. Chakravarti, M. Kuusela, J. Lei, and L. Wasserman, Model-independent detection of
new physics signals using interpretable semi-supervised classifier tests, The Annals of
Applied Statistics, 2023. To appear, preprint arXiv:2102.07679 [stat.AP].

K. Cranmer, J. Pavez, and G. Louppe, Approximating likelihood ratios with calibrated
discriminative classifiers, 2015, preprint arXiv:1506.02169 [stat.AP].

N. Dalmasso, L. Masserano, D. Zhao, R. Izbicki, and A. B. Lee, Likelihood-free
frequentist inference: Bridging classical statistics and machine learning for reliable
simulator-based inference, arXiv:2107.03920 [stat.ML], 2023.

T. Dorigo, S. Guglielmini, J. Kieseler, L. Layer, and G. C. Strong, Deep regression of
muon energy with a k-nearest neighbor algorithm, arXiv preprint arXiv:2203.02841,
2022.

Mikael Kuusela (CMU) November 28, 2023 41 / 40

References II

F. Gerber and D. Nychka, Fast Covariance Parameter Estimation of Spatial Gaussian
Process Models using Neural Networks, Stat, 10(1):e382, 2021. doi:
https://doi.org/10.1002/sta4.382. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.382.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On Calibration of Modern Neural
Networks. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, page 1321–1330. JMLR.org, 2017.

M. Ho, M. M. Rau, M. Ntampaka, A. Farahi, H. Trac, and B. Póczos, A robust and
efficient deep learning method for dynamical mass measurements of galaxy clusters,
The Astrophysical Journal, 887(1):25, 2019.

J. Kieseler, G. C. Strong, F. Chiandotto, T. Dorigo, and L. Layer, Calorimetric
measurement of multi-TeV muons via deep regression, The European Physical
Journal C, 82(1):1–26, 2022.

M. Kuusela and M. L. Stein, Locally stationary spatio-temporal interpolation of Argo
profiling float data, Proceedings of the Royal Society A, 474:20180400, 2018.

A. Lenzi, J. Bessac, J. Rudi, and M. L. Stein, Neural Networks for Parameter Estimation
in Intractable Models, Computational Statistics & Data Analysis, 185:107762, 2023.
doi: https://doi.org/10.1016/j.csda.2023.107762.

Mikael Kuusela (CMU) November 28, 2023 42 / 40

https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.382

References III

T. Manole, P. Bryant, J. Alison, M. Kuusela, and L. Wasserman, Background modeling
for double Higgs boson production: Density ratios and optimal transport, 2022,
preprint arXiv:2208.02807 [stat.AP].

L. Masserano, T. Dorigo, R. Izbicki, M. Kuusela, and A. Lee. Simulator-based inference
with WALDO: Confidence regions by leveraging prediction algorithms and posterior
estimators for inverse problems. In F. Ruiz, J. Dy, and J.-W. van de Meent, editors,
Proceedings of The 26th International Conference on Artificial Intelligence and
Statistics, volume 206 of Proceedings of Machine Learning Research, pages
2960–2974. PMLR, 25–27 Apr 2023.

J. Platt, Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods, Advances in Large Margin Classifiers, 10(3):61–74,
1999.

M. Sainsbury-Dale, A. Zammit-Mangion, and R. Huser, Neural Point Estimation for
Fast Optimal Likelihood-Free Inference, arXiv:2208.12942, 2023.

J. Walchessen, A. Lenzi, and M. Kuusela, Neural likelihood surfaces for spatial processes
with computationally intensive or intractable likelihoods, arXiv:2305.04634 [stat.ME],
2023.

Mikael Kuusela (CMU) November 28, 2023 43 / 40

Backup

Mikael Kuusela (CMU) November 28, 2023 44 / 40

Mikael Kuusela (CMU) November 28, 2023 45 / 40

Mikael Kuusela (CMU) November 28, 2023 46 / 40

Mikael Kuusela (CMU) November 28, 2023 47 / 40

Mikael Kuusela (CMU) November 28, 2023 48 / 40

Motivation: Large and complex spatial data

Likelihood-based parameter inference for large and complex spatial data
tends to be computationally intensive or wholly intractable

Likelihood computations for Gaussian processes scale as O(n3)
⇒ slow for large n

Many non-Gaussian spatial processes have intractable likelihood functions:

GP + Student-t nugget

GP + spatial ARCH

Max-stable processes

...

Lots of past research on approximate likelihoods for situations like these
(low-rank approximations, covariance tapering, Vecchia approximation,
Laplace approximation, composite likelihood,...)

Mikael Kuusela (CMU) November 28, 2023 49 / 40

Motivation: Large and complex spatial data

Estimated variance at 300 m depth based on fitting locally stationary
Gaussian processes (Kuusela and Stein, 2018)

This figure contains ∼30 000 numerically computed MLEs

Takes several hours to compute even after parallelization on HPC

Mikael Kuusela (CMU) November 28, 2023 50 / 40

Classifier architecture

spatial field
y ∈ Rs×s

parameter
θ ∈ Rk

CNN
CNN output
CNN(y) ∈ R`

concatenated vector
(CNN(y),θ) ∈ R`+k NN

final output
h(y,θ) ∈ R

ψ ∝ L(θ | y)

Figure: The basic structure of our neural network. The convolutional neural
network (CNN) part is similar to the CNN used in Lenzi et al. (2023).

Mikael Kuusela (CMU) November 28, 2023 51 / 40

Adjusted pairwise likelihood

Using
{θ ∈ ΘL | 2

(
logL(θ̂ | y)− logL(θ | y)

)
≤ χ2

k,1−α}

as an approximate confidence region is justified as long as

2
(

logL(θ̂ | y)− logL(θ∗ | y)
) a∼ χ2

k ,

where θ∗ the true value of θ

This is in most cases true for the exact likelihood and the exact MLE, but
not for the pairwise likelihood

To recover the approximate χ2
k distribution, it is necessary to adjust the

pairwise log-likelihood function `pw(θ) = logLpw
(
θ | y

)
as follows:

`apw(θ) = `pw(θ̂pw + C (θ − θ̂pw)),

where C is a matrix involving the Hessian of `pw and the asymptotic
covariance matrix of θ̂pw

Mikael Kuusela (CMU) November 28, 2023 52 / 40

Training data via permutation

 (y1,1,θ1) . . . (y1,n,θ1)
...

. . .
...

(ym,1,θm) . . . (ym,n,θm)


First Class  (y1,1,θπ1(1)) . . . (y1,n,θπn(1))

...
. . .

...
(ym,1,θπ1(m)) . . . (ym,n,θπn(m))


Second Class

Mikael Kuusela (CMU) November 28, 2023 53 / 40

Calibration with Platt scaling

Figure: Reliability diagrams (empirical probability vs. predicted probability) before
calibration (left) and after calibration (right) for a Brown–Resnick process.

Mikael Kuusela (CMU) November 28, 2023 54 / 40

	References
	Appendix

