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Particle physics data analysis in a nutshell

L- 5P

. + (ED +he 0
[ ’ L3

T h Yy P
W ReVe

Simulation
E——
Theory Detector Data
(“Standard Model") Model (“Events”)

« Simulation is ‘easy’ (but imperfect)
* Inference is ‘hard’ as observable space is huge

» Lots of opportunity here for Al/ML - but beware the imperfections of the simulation



Particle physics data analysis in a nutshell

| ‘Summary
‘Monte Carlo sampling’ observables’

b — f(x|y,0) — {x}—{vy}

Simulation

L(y|p,6) - {y}

u -

Inference



Overview

1. Source of uncertainty in the particle physics simulation chain
2. Anatomy of a typical LHC analysis — minimizing depedence on uncertainties
3. Statistical treatment of uncertainties - Frequentist concepts
4. Modeling of simulation uncertainties in the likelihood — general approach
5. Common issues with modeling of specific uncertainties

6. Summary & conclusion

Wouter Verkerke, NIKHEF



Why are simulation predictions uncertain?

However, ability to calculate SM prediction precisely

Standard Model some intrinsic uncertainty
varies very much depending on the regime evaluated

(through its 17 parameters) but these
are almost always irrelevant in practice

W

1"' —%} F;v i

BN
S . * UEDY +he 2
T4 .'5())('595’4\( W*
W RA-Ve 7 : q v
Each process calculable as infinite sum of amplitude
contributions

Tractable because contributions are a priori orderable,
pertubation series in powers of a (agy, = 1/137)




Why are simulation predictions uncertain?

Standard Model some intrinsic uncertainty
(through its 17 parameters) but these
are almost always irrelevant in practice
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However, ability to calculate SM prediction precisely
varies very much depending on the regime evaluated
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W RA-VE

$ T

Each process calculable as infinite sum of
amplitude contributions

Not tractable when a not small,
e.g. for strong interaction a, depends on energy scale

E:91Ge\/: : E=1GeV
a,=0.12 a,=0.5
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The (simplified) particle physics simulation chain

S
o

Simulation of a pp collision
at the LHC involves processes
at many energy scales

Different regimes require
separate calculation approaches
- Impemented as chain of
separate simulation packages



The (simplified) particle physics simulation chain

Proton Matrix Element calculation Parton showers Hadronization/Fragmentation
structure : R
8 q
H a &
......... l )-
W R
g v \ T(

E(s 1 GeV) E(~1 TeV) E(100 GeV ~1 TeV) E(s 1 GeV)
Non-perturbative Perturbative Perturbative Non-perturbative
('not calculable’) calculations calculations, ('not calculable’)

LO, NLO, NNLO, with factorization
sometimes NGSLO assumptions

Also important, but not shown here: simulation of

- Underlying Event (proton parts not involved in hard collision)
- Color Reconnection events

- Addition collisions in the same bunch crossing (“pile up”)



The (simplified) particle physics simulation chain

7z
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W - e y EE
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Q

Estimation procedure
Uncalculable from theory.

All estimates based
on large-scale
fits to experimental data

Example uncertainties
Fit method and
statistical uncertainties




The (simplified) particle physics simulation chain

7z
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Estimation procedure
Theory calculations
(Monte Carlo simulation,
or fixed-order calculation)

Example uncertainties
Missing higher orders




The (simplified) particle physics simulation chain
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Estimation procedure
Perturbative parton

shower calculations

Example uncertainties

Matching of energy scale

to that of Matrix Element
calculations




The (simplified) particle physics simulation chain

P

Q

)

7z

-

<
\Y<

Estimation procedure
Monte Carlo simulation
pbased on mostly empirical models
(Multiple implementation, with varying
degrees of tradeoff between concepts
and tuning)

Example uncertainties
Tuneable parameters with
poorly defined physical meaning
Disagreement between packages




The (simplified) particle physics simulation chain
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The (simplified) particle physics simulation chain

Estimation procedure
GEANT4 or “fast simulation”

Example uncertainties
Many tuneable parameters
in physics model of GEANT4
(notable hadronic showers),
parametrized model for digitatization
of detector response

‘




The (simplified) particle physics simulation chain

Estimation procedure
Separate custom-made
procedures for each particle type
(e,u,T, b/c/l-jets, Emiss, )

Example uncertainties
Wide ranging, including physics
Simulation uncertainties and
measurement uncertainties

from data-driven calibrations.




Is the simulation generally accurate?

e Despite (sometimes) decades of work on simulation packages, and amazing precision in many
measurements, some specific processes and kinematic regimes that are often crucial
appear really hard to be correctly modeled in simulation

e A handful famous/notorious examples

- LA B UL B L B B R

y ‘ . ' -1 ATLA Data _

—  QCD multijet production — the (by far) dominant process at the LHC 3 1§ V§=13§ev, ' POWHEGys D

— is almost impossible to simulate as background. =r "~ Fiducial phase Space ..... a5 aMOGNLO+PYS |

(Multitude of physics and technical reasons for this) 2 102 onerpa 2.2.1 =

o e

— Differential distributions of top-quark pair kinematics — k3 R Stat. @ Syst. tne. 7

(a dominant background in many analysis) SR S 3

very difficult to get right in simulation - ]

o —

— Simulated inclusive cross-section of processes like V+HF production 10 e

production rates are still off by O(40%) w.r.t observation despite D

many advances in calculations 10 3

— Efficiency of most object-identification procedures (notably jet-related) < 155 .
are multiplied with data-driven phase-space dependent correction 5lg
factors applied to simulation. §°

0 100 200 300 400 500 600 7QO 8—;)0
- Validation of simulation is generally not exhaustive Py GVl
—  Mostly focused on O(1)-dim differential distributions of high-pr physics objects

Nouter Verkerke, NIKHEF



Overview

2. Anatomy of a typical LHC analysis — minimizing depedence on uncertainties

Nouter Verkerke, NIKHEF



Anatomy of a typical LHC analysis

Given the many caveat and approximations made in simulation,
try to be careful not to rely too much on its details (‘data driven analysis’)

Typically — HEP analysis is a two-step process

Data reduction

Approximate modeling of simulation uncertainties generally acceptable

In case of mismodeling, selection could be suboptimal,
but effects can be corrected for inference

ML/Al abundantly used here (mostly BDTs traditionally)

Inference

Accurate modeling of simulation uncertainties crucial
Mismodelling may bias result and/or underestimate uncertainties on final result

Extensive strategies to minimize influence of systematics,
e.g. large number of control and validation regions common,
express results fiducial regions, perform calculations using ratios

Extensive explicit modeling of simulation systematic uncertainties.

ML/Al use increasing

25/ [l Background 2z )
r [ Background Z+jets,

2 r D Signal (m =125 GeV)
[ % Syst.Unc.

Events/5 GeV

15018 =7 TeV:[Ldt = 4.8 b"

[1s=8TeV:|Ldt=581b"

100 150 200

250
m, [GeV]
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Anatomy of a typical LHC analysis
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ggF H>WW
Signal Regions
(0j,1j,2j-ggF,2j-VBF)

SM WW
Control Regions

Z/y
Control Region

Anatomy of a typical LHC analysis
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Anatomy of a typical LHC analysis

8 T T T T T T b} T T T T T T73 1 3000 I
& ATLAS ., S zf:". E g ATLAS o Daia g as00-- ATLAS ® Data . Uncertainty i S ATLAS ® Data Uncertainty
s Vs =13TeV, 139 fb = A TS 2s00f 1s=13Tev, 139" | Uneerany o ol TRV 1390 Wy, He £ 2500f Fs=13Tev, 139" M Hoe W Hye 3
2 H— WW* — evuv w el ER) H— WW* — evuv = :\f @ H=WW'—evuv  BoterH fuw g H— WW* - evuy W Other H  ttiwt
o 9gF Ny, =0 vor & F N, =1 ver § 3500} ggF-enriched Nig: = 2 . 4w _enri ww zy"
ggF H>WW 8 et é I Other H 2 2000 gg. o M Other H 2 3000 goremchedfe=2 Wuww Wzy 200g)-Frenned Mar 2 SR ;M’sld :aa:erww)i
- . 2| -“ wt B # Eo Mis-id [l Other vv(v) 3 ot Sl
\ — H, 50
Signal Regions - Ew 1500 & 2500, el 15001 i B -
H m zy ] %
PR . d . 2000F
(0j,1j,2j-9gF,2j-VBF) o 1000
Il Other VV(V)] 1500
E 500 10001
e - g | 500=
T | 2, = PN 120 1y - 2 - —
15 2 5 3 0 05 il 15 2 25 . 3 0 0&
Ag, [rad] A¢ [rad]
5000, T T
3o = 3 3
%W - 8 g
3500} L2
SM WW L . 8 ! ]
- 2500; - H
. b
Control Regions a0 a
= o
1000} L wiv
500/
N o‘(r"""*'*' :
3 12 — 3 2
[ om gttt -3 &
FIRL | B 3 3 3
60 80 10012 IO 1( 1802002 2240263260 8 S
3 arias 3 oo . 3 £
o MO0 . iaTev, 1 S oot w' - ° g
Ry £ w0 ’ " F é
& 1000} Top quark CR @ go00 :- &
800! o .. :EN
600 . 3000 K 8, zy
400! 3 2000k k. l::-,wm
200 o° 1000| o,
o 0 i ) ”
E Lz“‘"‘. § ) eeseyl eneettegegis g F
0.8
R T ¥ g e g g
3 ATLAS | « on . Ureonamy 3™ 3 5
© 30000 (5= 13 TeV, 2 WA, © 2500 2 ;
2 o000l 1 W Woven
€ 25000| i &
7/ LE2eY | | bom ! .
ABGOE 3 1500,
Control Region o o9
5000/ 500
o*’*r*'—r—'—‘*—'vﬁr*'-l—*ﬂ*’w "
g L e g et ety hpey .',§' g g
ot i e i i
5 60 70 80 90 100 110 120 60 70 80 90 100 110 120 130 140 150

m, (Gev) m (Gev] my (GoV]



Events/(10 GeV)

Anatomy of a typical LHC analysis

Yield Distribution

bir (8))

L(Nklp,0) = | |Poisson (Nk,rllsk(ﬂ,ﬂ)'ff"'(ﬂ)

400 [~ e Data  \Total Unc. ATLAS
350 gt B W= esuy N0l
- mww  mzy Vs=13TeV, 139 fb™’
300 :_ Mis-Id [l Other VV(V) 120 < P:_' <1000 GeV
250 z— l
200 f—
150 E—
100 .
50

90 100 110 120 130 140 150 160-I
my [GeV]

o >
o

r = bin index
K = region index

Wouter Verkerke, NIKHEF



Events/(10 GeV)

L(Nk|u,0)

Anatomy of a typical LHC analysis

1_[ Poisson (Nk,rlsk(ﬂ, 0)- £ (0) + by, (0)) ’

400[— o Data -\ Total Unc. ATLAS ?
C WNgoFH MEVBF H e CN =
350 MMOther H i/t H Wiy Bl =
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300 :_ Mis-Id [l Other VV(V) 120 < P: <1000 GeV _:
250 =
200 =
150 =
100
50
n
80 90 100 110 120 130 140 150
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160

N4

r = bin index
K = region index

Relates yield to cross-section

summation over k' as m Hu\
5 may ( MHMT

se (0,0) = sza xek(e)

(o

A

Physics POI Acceptance x Eff.
rocess cross-section (relates reco-level

in some particle-level region k to particle-level

kinematic region k) region k)



Anatomy of a typical LHC analysis
G ®) + b @),

Sensitivity to simulation
modeling uncertainties




Anatomy of a typical LHC analysis - acceptance

Inclusive phase space (particle-evel) a
3
Acceptance =

P
"L
Py
s
Py
s
----
Py
P}
Py
.e
Py
.8

Measurement
phase space

Large extrapolation - [Large sensitivity to modeling uncertainties

3 -
4
sk (0,0) = L X E ok @
kl

Acceptance x Eff.
(relates reco-level
region Kk to particle-level

Wouter Q(P@@&Qﬂk\k&



Anatomy of a typical LHC analysis - acceptance

Inclusive phase space (particle-evel)

Acceptance =

-------------- r | l
I Measurement l [ —I
I Iphase space

.‘---l,.

Small extrapolation > Smaller sensitivity to modeling uncertainties

L il
kl
sk (00,0) = L X o ¢
kl

Acceptance x Eff.
(relates reco-level
region Kk to particle-level

H )
\Wouter \Q(P@@Qﬂ%@



Anatomy of a typical LHC analysis - cross-sections

SM BSM
(calculated to (calculated to
high order) lower order)

’

p L .
O = O0SM T Oint + OBSM

Apply ratio corrections (assumes factorization)

) SN0 _(NLO

'_ (N)N)NLO int BSM

Y A (1 o T (N)LO) = L } .
Tsm sm

Physics POI
(process cross-section
in some particle-level

kinematic region k')



Overview

3. Statistical treatment of uncertainties - Frequentist concepts

Nouter Verkerke, NIKHEF



Uncertainties in particle physics

U

Statistical methodology in particle physics is (very) predominantly frequentist
Notion of coverage is central in definition of uncertainties (68%, 95%)

Computational procedures for frequentist methodology quite different from those for Bayesian
influences practical aspects of how systematics uncertainties are modelled.

A 30-second nutshell reminder of Frequentist approach
— Observations {y } are summarized with a test statistic T(y),
in practice a likelihood ratio testing for compatibility of the data with a certain hypothesis p
- With knowledge of the distribution T,(y) under given hypothesis p can define an
acceptance interval that captures 68% of the observed outcomes
— A confidence belt maps the acceptance interval for each value of y, and allows to construct a
confidence interval in p for a given observed value of T ,(y)



Frequentist uncertainties in particle physics f, )
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parameter

Frequentist approach — asymptotic approximation

LR asymptotically £(t Iw)
distributed as log(x?) f g
and independent of |

tp.,obs

LR Acceptance /
Interval

lll]lll y/ | L

tu(x,)

1

Assumption

of asymptotics
("Wilks theorem”)
results in exactly
rectangular belt

TT T TT 7T

llIllllllllllllllllllllll
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[l

Frequentist approach - with nuisance parameters

—_—
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LR test statistic
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Nuisance parameters
(to incorporate modeling
uncertainties) included in
profile likelihood ratio

. - L(x|w
“L(x|p)
=

_ Lixlw

t
Y L(x|p, 0)



Frequentist approach - asymptotics & the profile likelihood ratio

_ Lixlw

t A
Y L(x|p, 0)

e Note 1: that t,, in profile likelihood can in principle depend on values of 6 in hypothesis

— Practical approach at LHC = always assume values values @

e Note 2: computation of t,, is relatively cheap even if even if dimension of 8 is large
— No practical penalty on introducing many nuisance parameters.

— Many LHC analyses often have hundreds nuisance parameters, and often enough more than 1000

e Note 3: notion of coverage should also extend to knowledge on nuisance parameters,

— Often difficult due to imprecise or incomplete definitions of nuisance parameters

— In practice only an issues if they result in large uncertainties in u, but that happens often enough

Wouter Verkerke, NIKHEF



Overview

4. Modeling of simulation uncertainties in the likelihood — general approach

Nouter Verkerke, NIKHEF



Modeling (simulation) uncertainties in the likelihood

‘Simple’

20

e Simple data-driven

Events/(0.5)

=3
S

L(NSR|NCR) = PO|SSOH(NSR | S + b) : PO|SSOH(NCR | T- b) sof

e Fully simulation-based

L(Ngg) = Poisson(Ngg| s + b) - Gauss( bg;y, | b, 0, im)

e Realistic data-driven

L(Nsg) = Poisson(Ngg| s + b) - Poisson(Neg | T - b) - Gauss( Tgim | T5 Or sim)



Modeling (simulation) uncertainties in the likelihood

¢ Generalization of modeling approach

L(Nsg) = Poisson(Ngg| s + b) - Gauss( bgjm | b, 61 sim)

¥

L(Ngp) = Poisson(Ngg| s + b(a)) - Gauss(0 | a, 1)

/ \

”Response function” ”Subsidiary measurement”

Can be non-linear For additive systematics, can always
be reduced to a unit Gaussian

Alternatively:
Poisson - For systematic effects of a statistical nature
LogNormal — For multiplicative systematics where

a positive-definite NP is required



Modeling (simulation) uncertainties in the likelihood
e (Generalization of modeling approach

L(Nsg) = Poisson(Ngg| s + b) - Gauss( bgjm | b, 61 sim)

L(Ngp) = Poisson(Ngg| s + b(a)) - Gauss(0 | a, 1)

/

11 Empirical approximation of true response

b(a)

« Sample simulation response at a=-1,0,+1
10 ° Apply piece-wise linear interpolation
(or higher-order smooth functions if needed)

0.9

-1 0 +1 a Wouter Verkerke, NIKHEF



Modeling (simulation) uncertainties in the likelihood
e (Generalization of modeling approach

L(Nsg) = Poisson(Ngg| s + b) - Gauss( bgjm | b, 61 sim)

L (Ngg) = Poisson(Ngg| s + b(ay, a,)) - Gauss(0 | ay, 1)
- Gauss( 0 | a,, 1)

Interpolated response function generalizes
easily to multiple nuisance parameters

Typically only ‘star topology’ sampled,
l.e. no correlation effects in response function
of a single bin

Eve@s / (g.06§66§( 0.@66@7 )

Wouter Verkerke, NIKHEF



Modeling (simulation) uncertainties in the likelihood

e (Generalization of modeling approach to distributions

a=-1 a=0 a=+1

o

X
Piecewise linear  ax
interpolation

response model
for a one bin

Bin-by-bin piece-wise interpolation
robust enough for small-to-moderate distortions
typically introduced by systematic variations




Modeling (simulation) uncertainties in the likelihood

¢ Modeling uncertainties across regions — choice of correlated or uncorrelated

common
normalization
parameter
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Modeling (simulation) uncertainties in the likelihood

¢ Modeling uncertainties across regions — choice of correlated or uncorrelated
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Modeling (simulation) uncertainties in the likelihood

3

In a complete analysis there will be agF HOWW
Signal Regions *

many nuisance parameters, with 01, 2-0cR Ve
typical number ranging from 100-1000

Number driven by approach i
to break down uncertainties into

individual sources that map to

known concepts in theory or detector

NP correlation scheme is always »
a major point of attention, Control Region
as for many modeling systematics it is
not always clear if source uncertainties
are correlated or uncorrelated across kinematic regions

Fartial correlations in individual sources/NPs uncommon.
In NP groups that collectively describe a systematic uncertainty source, partial correlations are
modeling through mix of correlated and uncorrelated components



Implementing “appropriately conservative” uncertainties

e Correlation model of NPs can present host of thorny issues
If there is no clear guidance from systematic source

e |llustration with '2-bin” analysis

S1 S1 S1
s 1 )
B1 B2 B1 B2 B1 B2
NP: 10% bkg uncertainty NP1: 10% bkg unc. — bin 1 NP: 10% bkg uncertainty
correlated modeling NP2: 10% bkg unc. —bin 2 anti-correlated model

POI « S1+S2 Conservative Optimistic? Very Optimistic



Implementing “appropriately conservative” uncertainties

e Beware propagation of constraining effects of high-statistic measurements
through correlation modeling assumptions

‘ore fit’
Data ¢
Uncertainty -
1

1 NP representing 10% bkg uncertainty
correlated effect in both bins

ML fit

)

‘'vost fit’

-—+—-

1 NP representing 5% bkg uncertainty
correlated effect in both bins

Uncertainty reduction in both bins
through contraining power of bin 1



Implementing “appropriately conservative” uncertainties

e Beware propagation of constraining effects of high-statistic measurements
through correlation modeling assumptions

‘ore fit’
Data ¢
Uncertainty -
1

1 NP representing 10% bkg uncertainty
correlated effect in both bins

ML fit

)

‘'vost fit’

-—+—-

i)

NP1 representing 5% bkg uncertainty
NP2 representing 10% bkg uncertainty

No uncertainty reduction in bin2
through constraining power of bin 1



Implementing “appropriately conservative” uncertainties

Beware propagation of constraining effects of high-statistic measurements

through correlation modeling assumptions

If correlation assumption between
regions well motivated
- smart analysis strategy

If no clear (physics) motivation behind
correlation assumption then
uncertainty reduction on POl may be
spurious —=» attention needed!

Diagnostics on constraining of NPs
in data vital part of analysis

‘'vost fit’

-—+—-

1 NP representing 5% bkg uncertainty
correlated effect in both bins

Uncertainty reduction in both bins
through contraining power of bin 1



Implementing “appropriately conservative” uncertainties

e Beware propagation of constraining effects of high-statistic measurements

through correlation modeling assumptions

+ But beware that decorrelating is not
necessarily conservative, effective /N
reduction of ‘sum POl's

« Notably for many theory uncertainties
nuisance parameters are ‘proxies’ with
no proper connection to actual
calculation

* Notion of correlation model is ill-defined
in many theory systematics,even
discussion on what quantity uncertainty
applies (‘envelope’ or 'integral’)

S1 S2 S1 S2
B1 B2 B1 B2

NP: 10% bkg uncertainty  NP1: 10% bkg unc. — bin 1
correlated modeling NP2: 10% bkg unc. — bin 2

¥

Effective 7% bkg uncertainty
on POl <« S1+52



Overview

5. Common issues with modeling of specific uncertainties

Nouter Verkerke, NIKHEF



Parameteric modeling of systematic uncertainties

Finding a parametric model for systematic uncertainties nuisance parameters
that can over the ‘true’ distribution is the ultimate goal

— But given that the true distribution is unknown, it is not a very practical goal

— Instead aim to inventorize all known source of uncertainty, formulate parametric uncertainty model for them
(response functions & subsidiary measurements) and implement them in the likelihood of a measurement

Easiest class of systematic uncertainties are those based on measurements,
but where the data are not part of the analysis dataset

— Parametrization often physics- or detector motivated

0
S
I

=
3

T[T T T [TTT[T

Events/(0.5)

— Uncertainties on parameters have clear statistical interpretation

— Main concern is any additional uncertainty &
on the ‘transport factor’ to the measurement space

60|

— In HEP these are usually called ‘good’ systematics a0

T

20

Wouter Verkerke, NIKHEF



Parameteric modeling of systematic uncertainties

e Difficult class of systematic uncertainties are those based on
shortcomings of theory calculations, with no relation to data

— Only a general notion of the uncertainty is indicated, no meaningful parametric form of the uncertainty
— No clear probabilistic intepretation of uncertainty prescription is provided

— In HEP these are usually called ‘ugly’ systematics

e ‘Ugly’ systematic prescriptions generally come in one of two forms

Envelope 2-point

L

two equivalent incompatible realizations of a simulation step,

No prescription of parametric form inside envelope with missing or incomplete intrinsic uncertainty specification




Proton structure - parton density models

e Proton density functions are effectively an experimental measurement
-> highly complex fits to large numbers of datasets

4
I

T T T T T T T T TTTTTT

NNPDF3.1 (NNLO)
xf(x,u2=10 GeV?) |
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Proton structure - parton density models

e Proton density functions are effectively an experimental measurement
-> highly complex fits to large numbers of datasets

e Detailed parametrization provided ‘prefit’ ‘postfit’
(O(40) parameter Hessian — or replica sets, £ ¥ TTITE e § I oo
, . , y Q*=1.9GeVZ  ATLAS ] 5 Q*=1.9GeV>  ATLAS ]
depending on PDF fitting collaboration E:: i : E:: 45 MUHTt4 proled .
Generally considered a ‘good’ systematic, 21-4 Em:
parametric even used to constrain PDF ——— 2 E 12K
uncertainties from fits to physics data o N
But multiple PDF sets exist, that do not 08 R o€ ;
, 0.4 R 0.4 3
perfectly agree with each other 02 e 02— " ]
10 102 x1o" 10° 102 10"




Hard Scatter - Missing Higher Orders

Leading uncertainty in hard scatter amplitude calculate (‘Matrix Element’)
is the incompleteness of the perturbative expansion of the calculation

— Calculation is truncated in expansion loops or legs at some point and therefore incomplete.

— Shape of missing part is — since it is presently uncalculable — unknown.

Magnitude of effect of missing part of calculation can be

approximately estimated through variation of ‘scale parameters’ -
nvelope
— Factorization and renormalization scales (ur Ug) are unphysical parameters
in the calculation, but the dependence of incomplete calculations on theirvalue | —~ _____————====v

gives and indication of how far off the calculation is from the ‘full answer R e

— Agreed evaluation procedure (empirical). consider for each separate
0.5x, Tx and 2x nominal (& product also in this range) = 7 (Mg Hg) configurations//

No prescription of parametric form inside envelop

— Envelope spanned by 7 variants of calculation is uncertainty prescription

— No assumptions on correlation structure inside phase-space should be made

. * *
.......... = e v




— Z+X, y_ inclusive pp— Z+X, y_ inclusive
PP Y, >
T

: T [ NLO uncorrelated

g/ Il NLO correlated

C || NNLO uncorrelated
i :— B NNLO correlated

[ —4— ATLAS data

3

Ratio to NLO
Ratio to NLO
—
~
S O o 8¢

J[T[TTTJTTT

Hard Scatter - Missing Higher Orders

Leading uncertainty in hard scatter amplitude calculate (‘Matrix Element’)
is the incompleteness of the perturbative expansion of the calculation

Example:
Evolution of ME prediction

with calculation order

0




Hard Scatter - Missing Higher Orders

Leading uncertainty in hard scatter amplitude calculate (‘Matrix Element’)
is the incompleteness of the perturbative expansion of the calculation

Correlation model scale uncertainties
1 NP (constraining?), 2 NP (,/2 red on int. unc?)

Beware of special modeling situations
e.qg. Stewart-Tackman prescription
across jet-counting boundaries
Envelope

jet veto

jet veto
Ho

H1
inclusive > 0-jet exclusive

Ha2
1-jet exclusive

>2-jet inclusive

— min

Resummation uncertainty
Scale uncertainty




Parton showers and Hadronization/Fragmentation

Showering Monte Carlo

typically integrated into a single package

Multiple equivalent implementations available

(Herwig, Pythia, Sherpa...)

Non-perturbative physics process is (semi-)empirically
modeled, and extensively tuned to available data

No (complete) set of internal systematic uncertainty

prescriptions available for packages

Prediction results can strongly disagree between packages

(and sometimes even within version
numbers of the same package)

/A

&

Prediction/Data

Example 1
Pythia retuning

or early LHC data

| —— PYTHIAB 4C

0.9
[ Vs=7 TeV;det =47’

T T T

——uData uncertainty ATLAS -

[ PYTHIA8 AZ

Ll sty vl

Example 2 "1°
Differences in &

' . c
Herwig/Pythia £ 1.1
predictions %
forJet—.gap ;1-05
fractions %
£
p=)

T
(0]
gl
50.95
=z

—_
L e T e 71

102 10 1

F Vs = 13'-rev === 'Pyt'hia'a AU2ET10

[ anti-k, R=0.4 —&— Pythia8 AU2-CTEQSL1

F lyl<0.5 —%— Pythia8 4C-CTEQ6L1

C —@— Pythia8 A14-NNPDF2.3LO
—®— Herwig++ UE-EE-5-CTEQ6L1 i
—5— Herwig++ UE-EE-5-MSTW2008LO

~ ATLAS Simulation

2x10? 10°  2x10°

p, [GeV]




Showering Monte Carlo

Given that dominant effect is difference
between packages, usually a ‘2 point systematic’ ——

Parametric implementation in likelihood
models have additional pitfalls.

For scalar predictions (counting experiments),

L(Ngr) = Poisson(Ngg|s+b(a)) - Gauss(0|a,1)

v

The response function is trivial.

The subsidiary measurement is not necessarily

— Common choice is a Gaussian centered on one prediction,
with alternative generator at 1 sigma away (symmetrized)

Background rate - b

— Probabilistic interpretation assigned to generators are
usually assumptions

: 2-point

Nuisance parameter = Qgen

&




Showering Monte Carlo

Modeling of 2-point systematics for differential predictions (shapes) fraught with many more issues

The response function is also not trivial. Brute-force 1-parameter shape interpolation common choice,

but no guarantee that has the flexibility to cover Nature or alternative predictions

Pythia

Events / (1 x 0.025)

Next years
generator

Vg '

&

‘Modeling space’

Nature

Modeled uncertainty
(with 1 parameter)
assumes that ‘nature’
is on the line’




Showering Monte Carlo

Modeling of 2-point systematics for differential predictions (shapes) fraught with many more issues

Constraining of 2-point systematic nuisance parameters ‘doubles down’ on assumption that all
modeling uncertainty can be captures with an empirical 1-parameter model. Rarely justifiable

Yet constraining of MCgenerator
systematics from the data often
occurs in analysis =2 almost all
SRs, CRs are sensitive to it

‘Modeling space’

Pythia
— Introducing separate NPs for regions @) Nature
helps, but is not ideal
O Sherpa
Way forward is development of Next Vetars O
full prescription of modeling generator Herwig

uncertainties for each generator

— There is progress, but slow

Z




Experimental systematic uncertainties Pasremmertion

calibration data (e.g. jet-y balance)

e Experimental systematic uncertainties relate data/simulation differences.
— Almost always based on measurement of (high-statistics) control samples

— Data/simulation differences removed (to 1st order) through correction functions

— Measurement uncertainties propagated as experimental uncertainties U

e [Experimental systematics mostly of the ‘good’ type

Calibration with parameterization
and correlation structure motivated by
underlying measurement
— Uncertainties on parameters have clear probabilistic interpretation ATLAS ik, - 04, EMLJES + in st

Data 2015, 1s =13 TeV (*'x*?) = (0.0,0.0)

— Parametric structure largely motivated by physics/detector considerations

— But beware some ‘ugly’ corners.
Difficult simulation uncertainties (b-quark fragmentation)
may influence measurement of certain experimental uncertainties

107 2x10° 10° 2x10°

)

Detector simulation Object Reco & ID

3\%’




Experimental systematic uncertainties

But beware of (intentional) limitations to accuracy of nuisance parameter model

Underlying model of calibration uncertainties often highly complex (>100 NP no exception)

But for many analyses high level of complexity not needed (e.g. a 1-bin counting experiments can use 1 NP)

— (Multiple) simplified representations of uncertainty model are often provided

- . . Simplified model
Original representation Eigenvector transformed (truncated EV basis)

ATLAS anti-k, R = 0.4, EM+JES + in situ

Data 2015, \s = 13 TeV  (n""'n™) = (0.0,0.0)

s ; m s
8 05 |%4 Vv
10 os £ B 11

.07 O

Hios ‘/22 V

. V' = V "= mm
102 ‘/33 f
1% Merger of
44 weakest modes

A
20 30 102 2x10° 10° 2x10°
P [GeV]

e Beware that not everything is quantified or measured
For example “correlation of systematic uncertainties between 65% and 75% b-tagging operating points” may not be known.

Detector simulation Object Reco & ID




Validation & Diagnostics

Extensive diagnostics of (often complex) fits Nuisance parameter
to LHC data crucial for validation ranking plots
Scale for POl impact
| : | |
-04 -0.2 OPl 0.2 0.4

NPs ranked
in order of
impact

L3N NELLZIE N LS NI LI
ATLAS Preliminary
Vs =13TeV, 132 fb"

Jet-vertex association

: Relative impact of
- +710 NP variation on POI

2£0Thag/3¢ non-prompt sample variation
ttH acceptance (QCD scale)
2£07hag/3¢ non-prompt e transfer factor
Pileup modeling

2811haq non-prompt normalization

ttH cross section (QCD scale)

1tW acceptance (QCD scale)

Jet Energy Scale variation 1

ttW acceptance (NLO vs LO)
2007ha4/3¢ non-prompt p transfer factor
ttW cross section (QCD scale)
Luminosity

2t0Thaqg ep non-prompt CR stat.

Jet Energy Scale (flavor composition)




Validation & Diagnostics

e Extensive diagnostics of (often complex) fits Nuisance parameter
to LHC data crucial for validation ranking plots

Ap
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ATLAS Preliminary
Vs =13TeV, 132 fb"

Pull of NP in fit
to observed data

Jet-vertex association
2£0Thag/3¢ non-prompt sample variation

ttH acceptance (QCD scale)

2£07hag/3¢ non-prompt e transfer factor )
value O = no bias

Pileup modeling

2811haq non-prompt normalization

Jet Energy Scale variation 1

s uncertainty +1 = of uncertainty
w.r.t input spec.

ttW acceptance (NLO vs LO)

2007ha4/3t non-prompt p transfer factor

ttW cross section (QCD scale)
Luminosity
280Thag ep non-prompt CR stat.

Jet Energy Scale (flavor composition)
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Validation & Diagnostics

e Extensive diagnostics of (often complex) fits Nuisance parameter
to LHC data crucial for validation ranking plots
Ap
‘Modeling space’ 08 04 02 0 %2 De %8 NP with 10x reduced
. . uncertainty
_> Parton Shower generator /// q /
Pvthia Nature / :
® 2 JES: flavour composition . :

O Sherpa JES: Efft
Next years O

generator

Highlights point of attention:
difficult modeling uncertainty
strongly reduced in fit to data
2 Investigaye

tt VFSR

Herwig

Luminosity

Wt ME generator
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PDF central value
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Overview

6. Summary & conclusion
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Summary & conclusions

Simulation of LHC events incredibly powerful tool, driving analysis design & inference

— Despite a decade of use, with advances in tools & methods, and very extensive validation efforts,
still many corners of phase-space where modeling is quite imperfect

— Some are known since years and simply hard to fix, but new ones are being discovered all the time as
new analysis rely ever more on the details of simulated events. Use of ML/AI will accelerate this trend
Extensive strategies exist to minimize dependence on simulation modeling uncertainties
— Clever formulation of analysis goals (fiducial regions’), clever use of theoretical predictions (‘ratio corrections’)
— Extensive use of control regions to validate and correct for any mismodellings at the analysis level

— Extensive use of object-level correction functions correct for data/simulation disagreements

Detailed modeling of simulation systematics in inference stage indispensible

— Fairly straightforward for ‘good’ type of systematics (based on measurement)

— Thomy issues on definition and interpretation for ‘ugly’ type of systematics (mostly of a theoretical nature)

Validation of results & statistical models indepensable for robust results
— Exploitation of simplistic parametrizations of ‘ugly’ systematics can easily lead to spurious improvements of results

— But careful design of analysis strategy can help to avoid ‘getting stuck’ being dominated by ‘ugly’ systematics



