

Machine Learning Assisted Sampling: Applications to Physics

Oct 3-7, 2022

ASSAI semester IA-PhyStat Workshop summary

Organizers: Marylou Gabrié (CMAP, École Polytechnique), Tony Lelièvre (ENPC, Cermics), Valentin de Bortoli (ENS, Deepmind)

Participants

Invited Speakers

- David Aristoff, Colorado State University
- Peter Bolhuis, University of Amsterdam
- Freddy Bouchet, École Normale Supérieure, Lyon
- Maria K. Cameron, University of Maryland
- Arnaud Doucet, University of Oxford
- Alain Durmus, ENS Paris Saclay & École Polytechnique
- Stéphane Mallat, Ecole Normale Supérieure, Paris
- Pierre Monmarché, Sorbonne Université
- Jutta Rogal, New York University
- Phiala Shanahan, Massachusetts Institute of Technology
- Gabriel Stoltz, École Nationale des Ponts et Chaussées, Paris
- Jonathan Weare, New York University
- Martin Weigt, Sorbonne Université
- Wei Zhang, Zuse Institute Berlin

Registered participants ~ 80 (50 % online)

Format: 2 open days + 3 discussion days

On YouTube!

Freddy Bouchet's Colloquium:

Probabilistic forecast of extreme heat waves using convolutional neural networks and rare event simulations

Main themes & domains of interests of participants

- Diverse backgrounds of physicists, applied mathematicians and chemists
- All with an interest in sampling

Molecular Systems & Climate Sciences: context

Well established field with experts thinking of opportunities in using machine/deep learning Siven a known dynamic operator and/or scarce observations:

- o How to sample rare transitions?
- Identifying reactive channels & maximum likelihood transition paths

- Estimating reaction rates or expected escape times from basins of attractors
- e.g. Understand isomers transformations, characterize whether a storm will become a hurricane
- - Infinitesimal generator

$$\mathcal{L} = \text{generator of the SDE}$$

Committor

$$q(x) = \mathbb{P}(\tau_A < \tau_B) = \text{committor}$$

solution of

$$\mathcal{L}q(x) = 0, \quad x \in (A \cup B)^c$$

 $q(\partial A) = 0, \quad q(\partial B) = 1$

Molecular Systems & Climate Sciences: context

- o Infinitesimal generator $\mathcal{L} = \operatorname{generator}$ of the SDE
- o Committor $q(x) = \mathbb{P}(\tau_A < \tau_B) = \text{committor}$

$$\mathcal{L}q(x) = 0, \quad x \in (A \cup B)^c$$

 $q(\partial A) = 0, \quad q(\partial B) = 1$

The committor is the optimal "reaction coordinate" to force the transition, but is a high-dimensional function: can it be inferred from data?

Molecular Systems & Climate Sciences: methods

- Dimensionality reductions
 - Use auto-encoders to learn non-linear low-d embeddings (Bolhuis, Stoltz)

Which features to include in the reconstruction loss?

 Project the dynamics to discrete states before solving for the committor solving a linear program (Cameron, Bouchet)

 Identify slow modes associated with metastability using a feed-forward NN to solve variationally the eigenvalue problem of the infinitesimal generator (Zhang)

 Adaptive methods to create data as you go (Bouchet, Stoltz, Gabrié, Weare)

[Belkacemi et al JCTC 2021]

Generative models for protein sequence data & statisfical field systems

Experts from different fields that have found applications of generative probabilistic models

- > Perform density estimation with a structured model and resample data
 - Predict mutational effects, forecast protein evolutions, design proteins (Weigt)
 - Avoid critical slowing down at resampling time (Mallat)

- Sample from a distribution known up to a normalization constant leveraging a surrogate generative model
 - Bayesian posterior (Doucet, Gabrié)
 - Boltzmann distributions (Shanahan, Gabrié)

Energy Based and Autoregressive Models for Protein Modelling

Scale by scale modelling of field systems

Log-concave conditionals allow fast sampling of learned factorization

Generative models in for protein sequence data & statisfical field systems

- ▶ Perform density estimation with a structured model and resample data
 - Predict mutational effects, forecast protein evolutions, design proteins (Weigt)
 - Avoid critical slowing down at resampling time (Mallat)
 - Quality of the retrieved model hard to measure
- Sample from a distribution known up to a normalization constant leveraging a surrogate generative model
 - Bayesian posterior (Doucet, Gabrié)
 - Boltzmann distributions (Shanahan, Gabrié)
 - Generative models incorporated in algorithms with performance guarantees

Assisting sampling with surrogate generative models 12

No data a priori, only a density of probability $\rho_*(x)$ (Bayesian posterior, Boltzamnn distribution)

 \triangleright **Architecture strategies:** Design generative models to incorporate known symmetries to ease the learning of a surrogate $\rho_{\theta} \approx \rho_{*}$ (e.g. Lattice QCD gauge invariances)

Training strategies:

- Variational inference (VI)
- Adaptive training to create data as you go

garantees!

Adaptive MCMC: $\min_{\theta} D_{\text{KL}}(\rho_* || \rho_{\theta})$ $\sum_{0.0}^{10.0} D_{0.0}$ $D_{0.0}$ $D_{0.0}$

-7.5 -5.0 -2.5

0.0

5.0

MCMC convergence

Learning a well covering generative model requires minimum knowledge of modes before-hand

Conclusion: how/where has machine learning

helped?

- Variational principles to solve eigenvalue problems
 & partial differential equations
- > Normalized generative models to accelerate sampling
- > Structured generative models to extract/exploit structure from data

Format: 2 open days + 3 discussion days

On YouTube!

Machine Learning Assisted Sampling: Applications to Physics

Oct 3-7, 2022

ASSAI semester IA-PhyStat Workshop summary

Organizers: Marylou Gabrié (CMAP, École Polytechnique), Tony Lelièvre (ENPC, Cermics), Valentin de Bortoli (ENS, Deepmind)