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(A) Cow: 0.99, Pasture: (B) No Person: 0.99, Water: (C) No Person: 0.97,

0.99, Grass: 0.99, No Person: 0.98, Beach: 0.97, Outdoors: Mammal: 0.96, Water: 0.94,
0.98, Mammal: 0.98 0.97, Seashore: 0.97 Beach: 0.94, Two: 0.94

Figure 1: Cow and grass are spuriously correlated?

» Is the label “cow” really due to the presence of the cow in the image?

!Beery, Van Horn, and Perona, “Recognition in terra incognita”.



Machine learning needs causal reasoning

> React to events different from the training set
» Explain what happened

» Capture how the world works
» Answer what if, intervention, and counterfactuals questions?
® Was it the new tax policy that caused prices to increase?
® How effective is a treatment in preventing a disease?
® Can hiring records prove an employer's guilty of gender discrimination?

Context information
(location, time, device)

> Background
s

B L LA
(A) Cow: 0.99, Pasture: (B) No Person: 0.99, Water: (C) No Person: 0.97,
0.99, Grass: 0.99, No Person: 0.98, Beach: 0.97, Outdoors: Mammal: 0.96, Water: 0.94,
0.98, Mammal: 0.98 0.97, Seashore: 0.97 Beach: 0.94, Two: 0.94

Figure 2: Possible modeling interpretation

2Pearl, “The seven tools of causal inference, with reflections on machine learning”.



» If one can predict ...

Nobel Laureates per 10 Million Population
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Figure 3: Messerli, “Chocolate consumption, cognitive function, and Nobel laureates”

» They can make things happen?

® Ask people to eat more chocolate to get more Nobel Prizes ...

Slide credit: Sébag, M.(2020)



A thematic quarter on causality

» Opening session
» Three main symposiums
® When Causal Inference Meets Statistical Analysis plesandoLete | eorsesOopenheim

aaaaaaaaaaaaaaaaaaa

® Fundamental Challenges in Causality
® (Causality in Practice

» Two research schools

Emilie Devijver Marianne Clausel
® Spring School on Causality e GTHA ytiorne
® Tools for Causality ;i g1

¢
» One Study Week on Causal Inference for Industry =
® Two industrial use cases: e Michal Sébag

SAINT-GOBAIN

® Causal Discovery from Sequential Data
® Estimating Marketing Uplifts as Heterogeneous Treatment Effects with Meta-learners Ekimetrics.

» Materials available at quarter-on-causality.github.io gsonsom université
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http://quarter-on-causality.github.io

What is causality? — partial propositions

» Causality is what connects one process (the “cause”) to another (the “effect”). The
former is partially responsible for the latter, and the latter is partially dependent on the
former [Pearl,2009].

® |f X is a necessary cause of Y, then, the presence of Y implies a prior occurrence of X;
however, the presence of X does not imply that Y occur.

e |f X is a sufficient cause of Y, then the presence of X necessarily implies the subsequent
occurrence of Y; however, the presence of Y does not imply the prior occurrence of X, as

another cause may be responsible for it.
® X is an INUS condition of Y if it is an insufficient but non-redundant part of a condition
which is itself unncessary but sufficient for the occurrence of Y [Warr and Warr,2016].

Slide credit: Chambaz, A. (2019)



What is causality? — interventionists' interpretation

> “A necessary and sufficient condition for X to be a direct cause of Y with respect to
some variable set V is that there is a possible intervention on X that will change Y (or
the probability of Y) when all other variables are held fixed at some value by
interventions” [Woodward,2005]

P> The existence of a possible intervention is a necessary and sufficient condition for direct
type-level cause.

» Direct cause X — Y
Px;ldo(xi=x,x\;=c) 7 Px;|do(Xi=x', X\ ;=c)
» Example:
C: Cancer, S: Smoking, G: Genetic factors
P(Cldo(S =0,G =0)) # P(C|do(S =1,G =0))

> X is a cause of Y iff
changing X leads to a change in Y,
keeping everything else constant.




Gold standard: randomized controlled trials (RCTs)

» Draw i.i.d. samples, from two subsets:
® T = 1: treatment group
® T = 0: control group

» Estimate the average treatment effect (ATE)3
ATE =E[Y(1) — Y(0)]

» where:

Y: outcome (survival)

X: covariates

T: treatment (Oorl)

Yi(0): outcome of the i-th sample if it does not get the treatment
Yi(1): outcome of the i-th sample if it does get the treatment

One knows only one output of Y;(0) and Y;(1)

31t is also known as average causal effect (ACE)



Potential outcomes — estimating average treatment effect (ATE) [Rubin,2005]

» |t works under certain assumptions

ATE = E[Y/(1) — Y(0)]
= E[Y(1)] - E[Y(0)]
linearity of expectation

= E[E[Y(1)[X]] - E[E[Y(0)[X]]

expectation over covariates

= BE(Y()T = 1.X)] - EE(Y()T = 0,X)]

no hidden confounder; no unobserved common causes overlap assumption
T=1 and T=0 are observed in the data
=E[E[Y|T =1, X]] - E[E[Y|T =0,X]]

consistency Y;(1) ~ Y|T =1, X = X;



Questions-Assumptions-Data (QAD) and the Pearl’s Causal
Hierarchy (PCH)

Question Causal Inference Engine Data
(with examples)
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Figure 4: Question-Assumptions-Data template*

“Runge et al., “Causal inference for time series”.



Causal inference framework

Two es of questions: ‘ f:cvti;?:memal
1. Assume qualitative causal graph to quantify causal effects: /
Aerosols Clouds

2. Make general assumptions to learn causal graph:

Slide credit: Jakob Runge



Observational causal discovery

» Similar to machine learning

® Given the data, infer the causal models

® Data quality, quantity, and learning criterion may be challenging
» Difference: functional causal models

® Assumptions

® Causal sufficiency: no unobserved confounders

® Causal Markov: all d-separations in the causal graph G imply conditional independence in the
observational distribution P

® Causal faithfulness: all conditional independence in P imply d-separations in G

MEC = Markov Equivalence Class
G* = Ground Truth Graph

Space of
DAGs MEC

Image credit Rosemary and Bauer, 2021



Functional models a.k.a. structural causal models (SCM) [pear,2009]

> If a DAG G formalizes the causal relation between the random variables Xi,..., X,,
then every X; can be written as a deterministic function of PA; and a noise variable N;

INL Legend

X = (PA; ) e —
where N; are the noises (i.e., all unobserved influences), and e
they are all jointly independent /é\ J,
» Markov condition in functional models: every joint
distribution P(Xi,..., X,) generated according to the causal 69/ @—» 4—‘
faithfulness condition satisfies the Markov conditions relative é
to G.

» Functional models formalize the conception that the outcome of an experiment is
completely determined by the values of all relevant parameters where the only uncertainty
stems from the fact that some of them are hidden.



Acyclicity assumption does not hold in different domains
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' [Xing and van der Laan, 2005] [Barbini, Manzi, Barbini 2013]
GENE REGULATORY NETWORKS DISEASE DIAGNOSIS GRAPHS

Image credit Robeva and Semnani, 2023

> How can we learn the structure of these graphs from observations?



Looking at higher order moment to introduce hidden variables

X=0-N""Te.

Definition
The linear structural equation model M(2:3)(G) of second and third order moments
corresponding to a DAG G = (V, E) with |V| = n is defined as
MEI(G) ={(s=(1-N"TD( -N7",
T=0® e(I=AN)"Le(I-A)Te(/I-=N)1):
QD isnxn positive definite diagonal matrix,

Q®isnxnxn diagonal 3-way tensor, and A € ]RE}.
Here, e denotes the Tucker product.

Theorem (Améndola, Drton, Grosdos, Homs-Pons, and R., 2021+)

The set of second and third order moments (T, S) of a linear non-Gaussian causal model
corresponding to a tree DAG are precisely the ones that satisfy certain quadratic binomials
which arise as the 2 X 2 minors of certain matrices constructed from the DAG.

Slide credit: Robeva, 2023



Vanishing of cumulants

» For a zero-mean random vector X = (Xi,...,Xy), its k-th order cumulant is an
d x --- x d (k times) tensor C(k) whose entries can be obtained from the
moments of X, e.g. for k = 4:

i, i ie = ELXi X Xiy X |~ EX, X5, IE[X, X, —ELXi, X5 JE[X;, X;, |~ E[Xi, X, JE[X, X5,
Theorem (Robeva and Seby, 2020)

If X comes from a linear non-Gaussian acyclic model with graph G = (V,E, H) and X has
cumulants C(K), then

(k) _
Ci1,m,"k =0
if and only if there is no k-trek between the vertices i1,..., ik in G.
Jo, yo
- %) )
() O

Slide credit: [Robeva and Seby,2021]



Causal Inference with Information Algebras

Dependency Models and Information ng the case for Information Dependency Model (IDM)

e Information dependency models: causality with information
fields

o Information fields: Witsenhausen's 1971 paper ! SRl ccnathematicaliteciboxss

. ) - . o Unifying and generalizing framework for causality?
e Witsenhausen's motivation: control of multi-agent systems ying & g ¥

5 LR e kb e wy sk e Elegant style of expression and proof : equational reasoning

o Used to revisit the foundations of game theory® o Potential to bridge causality, game theory, control and

e Theoretical toolbox for causality: the Information Dependency Reinforcement Learning
Model (IDM)

10n information structures, feedback and causality.
2Kuhn's equivalence theorem for games in product form 3can deal with spurious edges, cycles

Slide credit: Heymann, Benjamin and De Lara, Michel and Chancelier, Jean-Philippe



Scaling causal discovery through diffusion models [Sanchez et al. 2023]

Overview

1. Causal discovery can be efficiently done  Algorithm - Greedy

via topological ordering _ .
For d-1 variables leaf = arxgi g{ln Var x [VX €9 (X7 t)]

2. Assuming additive noise models (ANM) .. 1vain diffusion model
the log-likelihood’s Hessian can be used 2 Findleaf

. 1. Pass data through diffusion model
to find leaf nodes. 2. Backpropagate w.r.t. inputs to obtain Hessian
3. Compute the variance
4. Leaf is diagonal element with smallest variance

3. Diffusion models can approximate a e
Hessian 6. Remove leaf from data

Score with Diffusion Models  €p
method 1400 method

000 DIIAN 3 DIffAN
Training SCORI 2 SCORE
P20 R
L X
Denoise X¢, a corrupted version of a data point. s Z \\
* . 2 5 —
0" = argmin Ex, 1.0 [\(1) [|es(xe. 1) — €2 00 m N
0 /\/ - _—
t controls the amount of corruption. 0 800
Intuition 10° 10° 10" 10° 10° 10° 10" 10°
Sample Size Sample Size

Denoising approximate the score function V; log p(x) Synthetic data with d = 500 for different dataset sizes.

Exror bars across different samples of ER and SF graphs.

Image credit [Sanchez et al.,2023]



Time series and causal representation learning [Assaad, Devijver, and Gaussier,2022]
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Learning causal graphs

Ground truth
=2 -1 t
Given data and general assumptions, estimate causal graph °
from observational distribution ® ..:I
o e
Time series case:
* PCMCI causal discovery framework — main idea: * standard PC algorithm:
1. PC, lagged skeleton phase 2. Contemp. + lagged MCI skeleton phase 1. Skeleton phase
— Find supersets B; (X7) of lagged parents - Use these parent-supersets as added conditions — Iterate through subsets of adjacencies
for p=0,1,...: S, = {adi}_y,_, (X))}, for p=0.1,...: S, Cadj’(X}) of cardinality p for p=0,1,...: S, Cadjf,_, (X}) of cardinality p
X{ LX) |S, forT>0 Xi_ LX) | S, By (X)X} B (X]_.) for >0 Xi ,UX]|S, forT>0
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Slide credit: Runge, Jakob and Ninad, Urmi and Wahl, Jonas



Causal representation learning and LLMs

Smoking

Lung Health

Life Expectancy

| “Is Lung Health the
"| effect of Smoking?”

Smoking Lung Health

Life Expectancy

—

G

LLM

Smoking

Answer

Lung Health

—  » ’)"\

©

Life Expectancy

‘9

Conventional Causal
Discovery Algorithm

<

Figure 5: LLMs-based causal analysis pipeline [Kiciman et al.,2023]




Combining LLMs and PCMCI algorithm for causal discovery

Tell me about the pairwise casual relationship
hatwesn the four variables ("Systolic blood
l}ressure , "Resp. 1r—=|tnrhr rate®, "Heart Rate",
nygen saturation®) shown in the time series
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Figure 6: Google PaLM and the MIMIC Il dataset



Counterfactual inference as a mass transportation problem
The effect of do(S = s’|S = s) is fully characterized by the coupling

ﬂ'fs,|5> = £((X, XS:31)|S = S) 5

It assigns a probability to all the pairs (z, z’) between an observable
value z and a counterfactual counterpart z’.

This coupling admits p, := L(X|S = s) as first marginal and
Bsrisy i= L£(Xg—s|S = s) as second marginal.

Remark: Therefore, Torisy € I(ps, psrisy) 7 (s, prsr).

Slide credit: De Lara, Lucas. See [De Lara et al.,2021]



Take-home message

» Causal inference provides a framework that integrates statistical and machine learning
methods to answer causal questions from observational data

> Two settings:

@ Assume known causal graphs and learn causal effects
@® Learning causal graphs

» Different approaches have been proposed to enable research questions to be framed as
causal questions and analysis the underlying assumptions to answer them

» The First CNRS AISSAI Thematic Quarter on Causality enabled us to explore them under
different viewpoints
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