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Figure 1: Cow and grass are spuriously correlated1

▶ Is the label “cow” really due to the presence of the cow in the image?

1Beery, Van Horn, and Perona, “Recognition in terra incognita”. 2



Machine learning needs causal reasoning
▶ React to events different from the training set
▶ Explain what happened
▶ Capture how the world works
▶ Answer what if, intervention, and counterfactuals questions2

• Was it the new tax policy that caused prices to increase?
• How effective is a treatment in preventing a disease?
• Can hiring records prove an employer’s guilty of gender discrimination?

Figure 2: Possible modeling interpretation

2Pearl, “The seven tools of causal inference, with reflections on machine learning”. 3



▶ If one can predict . . .

Figure 3: Messerli, “Chocolate consumption, cognitive function, and Nobel laureates”

▶ They can make things happen?
• Ask people to eat more chocolate to get more Nobel Prizes . . .

Slide credit: Sébag, M.(2020)
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▶ Opening session
▶ Three main symposiums

• When Causal Inference Meets Statistical Analysis
• Fundamental Challenges in Causality
• Causality in Practice

▶ Two research schools
• Spring School on Causality
• Tools for Causality

▶ One Study Week on Causal Inference for Industry
• Two industrial use cases:

• Causal Discovery from Sequential Data
• Estimating Marketing Uplifts as Heterogeneous Treatment Effects with Meta-learners

▶ Materials available at quarter-on-causality.github.io
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What is causality? – partial propositions

▶ Causality is what connects one process (the “cause”) to another (the “effect”). The
former is partially responsible for the latter, and the latter is partially dependent on the
former [Pearl,2009].

• If X is a necessary cause of Y, then, the presence of Y implies a prior occurrence of X;
however, the presence of X does not imply that Y occur.

• If X is a sufficient cause of Y, then the presence of X necessarily implies the subsequent
occurrence of Y; however, the presence of Y does not imply the prior occurrence of X, as
another cause may be responsible for it.

• X is an INUS condition of Y if it is an insufficient but non-redundant part of a condition
which is itself unncessary but sufficient for the occurrence of Y [Warr and Warr,2016].

Slide credit: Chambaz, A. (2019)
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What is causality? – interventionists’ interpretation

▶ “A necessary and sufficient condition for X to be a direct cause of Y with respect to
some variable set V is that there is a possible intervention on X that will change Y (or
the probability of Y) when all other variables are held fixed at some value by
interventions” [Woodward,2005]

▶ The existence of a possible intervention is a necessary and sufficient condition for direct
type-level cause.

▶ Direct cause X → Y

PXj |do(Xi =x ,X\ij =c) ̸= PXj |do(Xi =x ′,X\ij =c)

▶ Example:
C: Cancer, S: Smoking, G: Genetic factors

P(C |do(S = 0, G = 0)) ̸= P(C |do(S = 1, G = 0))

▶ X is a cause of Y iff
changing X leads to a change in Y,
keeping everything else constant.
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Gold standard: randomized controlled trials (RCTs)

▶ Draw i.i.d. samples, from two subsets:
• T = 1: treatment group
• T = 0: control group

▶ Estimate the average treatment effect (ATE)3

ATE = E[Y (1) − Y (0)]

▶ where:
• Y : outcome (survival)
• X : covariates
• T : treatment (0or1)
• Yi(0): outcome of the i-th sample if it does not get the treatment
• Yi(1): outcome of the i-th sample if it does get the treatment

One knows only one output of Yi(0) and Yi(1)

3It is also known as average causal effect (ACE) 8



Potential outcomes – estimating average treatment effect (ATE) [Rubin,2005]

▶ It works under certain assumptions

ATE = E[Y (1) − Y (0)]
= E[Y (1)] − E[Y (0)]

linearity of expectation

= E
x
[E[Y (1)|X ]] − E

x
[E[Y (0)|X ]]

expectation over covariates

= E
x
[E(Y (1)T = 1, X )] − E

x
[E(Y (1)T = 0, X )]

no hidden confounder; no unobserved common causes overlap assumption

T=1 and T=0 are observed in the data

= E
x
[E[Y |T = 1, X ]] − Ex [E[Y |T = 0, X ]]

consistencyYi(1) ∼ Y |T = 1, X = Xi
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Questions-Assumptions-Data (QAD) and the Pearl’s Causal
Hierarchy (PCH)

Figure 4: Question-Assumptions-Data template4

4Runge et al., “Causal inference for time series”. 10



Causal inference framework

Slide credit: Jakob Runge
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Observational causal discovery

▶ Similar to machine learning
• Given the data, infer the causal models
• Data quality, quantity, and learning criterion may be challenging

▶ Difference: functional causal models
• Assumptions

• Causal sufficiency: no unobserved confounders
• Causal Markov: all d-separations in the causal graph G imply conditional independence in the

observational distribution P
• Causal faithfulness: all conditional independence in P imply d-separations in G

Image credit Rosemary and Bauer, 2021
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Functional models a.k.a. structural causal models (SCM) [Pearl,2009]

▶ If a DAG G formalizes the causal relation between the random variables X1, . . . , Xn,
then every Xj can be written as a deterministic function of PAj and a noise variable Nj

Xj = fj(PAj , Nj)

where Nj are the noises (i.e., all unobserved influences), and
they are all jointly independent
▶ Markov condition in functional models: every joint

distribution P(X1, . . . , Xn) generated according to the causal
faithfulness condition satisfies the Markov conditions relative
to G .

▶ Functional models formalize the conception that the outcome of an experiment is
completely determined by the values of all relevant parameters where the only uncertainty
stems from the fact that some of them are hidden.
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Acyclicity assumption does not hold in different domains

Image credit Robeva and Semnani, 2023

▶ How can we learn the structure of these graphs from observations?
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Looking at higher order moment to introduce hidden variables

Slide credit: Robeva, 2023
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Slide credit: [Robeva and Seby,2021]
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Causal Inference with Information Algebras

Making the case for Information Dependency Model (IDM)

• Unlock mathematical toolboxes

• Unifying and generalizing framework for causality3

• Elegant style of expression and proof : equational reasoning

• Potential to bridge causality, game theory, control and

Reinforcement Learning

3can deal with spurious edges, cycles

3

Information Dependency Models and Information Fields

• Information dependency models: causality with information

fields

• Information fields: Witsenhausen’s 1971 paper 1

• Witsenhausen’s motivation: control of multi-agent systems

• but in fact, it is a very generic tool

• Used to revisit the foundations of game theory2

• Theoretical toolbox for causality: the Information Dependency

Model (IDM)

1On information structures, feedback and causality.
2Kuhn’s equivalence theorem for games in product form

2

Slide credit: Heymann, Benjamin and De Lara, Michel and Chancelier, Jean-Philippe
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Scaling causal discovery through diffusion models [Sanchez et al.,2023]

Image credit [Sanchez et al.,2023]
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Time series and causal representation learning [Assaad, Devijver, and Gaussier,2022]
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● standard PC algorithm:

       

    

Learning causal graphs

Given data and general assumptions, estimate causal graph 

from observational distribution

       

    
Time series case: 

● PCMCI causal discovery framework – main idea:
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Slide credit: Runge, Jakob and Ninad, Urmi and Wahl, Jonas
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Causal representation learning and LLMs

Figure 5: LLMs-based causal analysis pipeline [Kıcıman et al.,2023]
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Combining LLMs and PCMCI algorithm for causal discovery

Figure 6: Google PaLM and the MIMIC III dataset
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Counterfactual inference as a mass transportation problem

Slide credit: De Lara, Lucas. See [De Lara et al.,2021]
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Take-home message

▶ Causal inference provides a framework that integrates statistical and machine learning
methods to answer causal questions from observational data

▶ Two settings:
1 Assume known causal graphs and learn causal effects
2 Learning causal graphs

▶ Different approaches have been proposed to enable research questions to be framed as
causal questions and analysis the underlying assumptions to answer them

▶ The First CNRS AISSAI Thematic Quarter on Causality enabled us to explore them under
different viewpoints
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