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The problem with unfolding
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A well defined problem

e Existence

o The problem must
have a solution

e Uniqueness

o There must be only
one solution to the
problem

e Stability

o The solution must
depend continuously
on the data
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Simplest ill-posed problem

x1+x2=1
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The Unfolding Problem

Medical imaging - CT scanning, electro-cardiography, etc
Geophysical prospecting - search for oil, land-mines, etc
Image deblurring - astronomy, crime scene investigations, etc

Deconvolution of a measurement instruments response.
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The Unfol_d|ng Problem ¢ Estimatingthe particle-level spectrum
— o Some physical quantity of interest

Some basis of observations
Smeared by an imperfect
measurement device

e Estimating the true distribution when you measure a smeared spectrum
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Standard Measurement Roadmap
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Standard Measurement Roadmap
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Standard Measurement Roadmap
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Alternative Measurement Roadmap

14


#

Dr. Vincent Croft Unfolding in High Energy Physics: Artificial Intelligence and the Uncertainty Challenge in Fundamental Physics

Alternative Measurement Roadmap

Ratio o default pred.

Events/5 GeV
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Why use the alternative?

e Multiple predictions differ within the
uncertainties
e Ready for future reinterpretations and
combinations with other experiments
e |earnabout the physics model
o Not just the likelihood
o Physics parameters!

November 30t 2023
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Fredholm integral equation

Consider a random variable Y, the goal is to determinef(y)

/0 K(z,y)f(w)dy = g2l

Here the kernel K and the right-hand side measured function g are considered known functions.

If fand K are known (as in the forward case) then we can simply compute g by evaluating the integral

November 30t 2023
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Properties of the FIE L
P | K@ wswiy = o

Riemann-Lebesgue Lemma (aka Mercer’s Theorem): mapping from f -> g has a dampening/smoothing
effect for arbitrary kernels such that the information content of f diminishes with precision of g. As such,
estimating f from a measurement of g means that arbitrary levels of noise in g can produce unbounded
contributions to the prediction of f.

Smoothing Z :U'Zul (y)

where . are a decreasing sequence of singular values.
The “smoother” the kernel K, the faster the singular values decay to 0. The Picard condition states that
for a solution to exist, coefficients singular functions describing the noise have to decay faster than the
the singular values of the kernel.

TL;DR: Lots can go wrong!
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Counting Experiments in HEP

If parameterization f(y; 8) known, find Maximum Likelihood estimators@

If no parameterization available, often construct histogram:
construct estimators for the b, (or pj)
Where M, corresponds to the ‘true’ histogram
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Counting Experiments in HEP (Notation)

migration_pt

Histogram dataare n = (ny,ng,...,ny)

M
V; = E[ni]:ZRijﬂj 1 =1,...,N
J=1

Where: Rij = P(observed in bin i| produced in bin j) iscalled the response matrix

Note p and v are constant while n is subject to statistical fluctuations
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Counting Experiments in HEP (Notation)

The ‘true’ histogram [ = (,LL]_, coos ,LLM)

Expectation values for observed histogram [/ — (l/]_ g ooy I/N)

Observed histogram TV =— (nl g voos nN)

Expected backgrounc B = (ﬁz, ey 6]\7)

Response matrix Rij = P(observed in bin i | produced in bin j)

Related by E[n] — [ = R,u + 5
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Maximum likelihood (ML) solution

Let us take the most obvious solution;
Assume that the problem v = R i + 8 can be inverted

p=R"1(v - pB)

e Butremember; v are the expectation values of the observed histogram, not the observed
histogram (which is denoted by n).

Assume as well that the data can be considered as independent poisson distributions for each
bin

e Now the maximum likelihood estimator ic = 71: so then

a=R"(n-p)

24
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Example in practice

The problem: We don't have v, only n.
® R linterpretsfluctuationsinn
as the residual of original fine-
structure and puts this back into.
® Causesbreakdown
o Inthis example 40
components corresponds to
the matrix inversion solution

x108

Truth
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Bias, variance and coverage

Conclusion: In unfolding one must accept some bias in exchange for a (hopefully large) reduction in variance. So what

do we need to consider?

e Bias: the difference between the estimator’s expectation and the parameter’s true value.
e Variance: the diagonal elements of the covariance matrix of the estimators fo 4
Coverage: the probability that the true value o ,Uz: falls between plus and minus one standard deviation about

the estimator of ,uz

Note: the bias, variance and coverage are always defined with respect to the chosen true and expected data

histograms.
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Variance, Bias, and Coverage

Use a toy dataset with K events, the variance for bin i is then calculated as

K
9 1 R 1 R
ot = 7 2 | B — 2 Do)
i K —1 K
1- 1-
Use a toy dataset with K events, the bias for bini is then calculated as 1 K

b = E Z(/zz)k — M

k

Under the assumption that tiz are Gaussian distributed coverage probability can be calculated in closed form as

PCOV=<I>( bi +1)—<I>( bi —1)
O O

Where & is the Standard Gaussian cumulative distribution function.
27
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Choosing regularisation strength

So how do you take all these things into account in a smart way?

e Choose aregularisation strength that unconditionally minimises
the bin-averaged MSE (the mean squared error, aka sum of bias
squared and variance, averaged over the bins)

e Require the that the bin-averaged estimate of the coverage of the
unfolded data reaches the target coverage of 68.3% within 1%.

November 30t 2023
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Likelihood formalism and regularisation function.

The data are described with a given probability model that determines the likelihood functio L(&) = P(i|iZ)
Often the mi are modelled as independent and Poisson distributed, so that the likelihood is

N n
L(pg) = H 'nf-' e
i=1 v

M
Where you can remember Vi = Zj:i Rz’j,uj + B

To suppress the large variance of the maximum-likelihood estimator one chooses apy that

does not correspond to the maximum of the log-likelihood inL__ , but rather one considers a
region of p-space where In L( p) is within some threshold achieved by maximising not In L( p)
but rather a linear combination of it and a regularisation function S( p), which represents the

smoothness of the histogram p 3 " 5
¢(f) =In L(g) + 7.5(K)
E.g Tikhonov regularisation M—2

S(E)=— > (—pi + 281 — pita)’ .
i=1
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Study on smeared exponential distribution

We define as benchmark model an exponential decay distribution, smeared with a resolution function that is loosely
inspired on a calorimeter response:

f(37|a) — fphysics (xtruela) % fdetector(wtruea 37)
= (a-exp(—a - Tirue)) * Gauss (T — Tirue, 7.5, 0.5 + \/Ttrue + 2.5)

where the * symbol represents the convolution operator.

We define two models variants, labeled SM (‘Standard Model’) and BSM (‘Beyond the Standard Model’), that
correspond to an exponential distribution with a slope a of 0.035 and 0.05 respectively

30
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Single Value Decomposition (SVD)
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Single Value Decomposition (SVD)
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Richardson-Lucy (D'Agostini, IBU)

Looking at Coverage, Variance and Bias
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Richardson-Lucy (D'Agostini, IBU)
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A Summary of Unfolding Methods in RooUnfold

° Common interface to
multiple methods 1000
° Each with different error

T

True distribution
—— Measured distribution
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Detector uncertainties in the Likelihood

L(p,o|n
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Unbinned unfolding

e Inference aware binning
e Derivative measurements il q
e Extension to higher dimensions

N -

W -

(1 -

November 30t 2023
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Function based unfolding

Goal: Train model to produce a function to approximate P(truth), evaluate conditional on data: P(truth|data)

3
1.0 X]‘O 1 1 | I 8 X1O4 \ ) i |
N =100 7] N = 10000 i
Three approaches: ] i
PP 081 _t(x) “std(b(x) 61 --t(x) 1 std(b(x)) !
x (\
e Fitanon-parametric density 2 %0 - med (k) 1
estimator. 'ch 0.4
e  GAN/VAE learnimplicit models 5 |
for P g
e NF/DDIMslearn 00
representation of P(truthldata)150_
0 =]
—150 |
0.0 0.2 0.4 X 0.6 0.8 1.0 0.0 0.2 04 X 0.6 0.8 1.0
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Classifier unfolding
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Events / bin-width

Truth / Unfolded
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RooUnfoldML - .iueiian.cem.cnroountold/RooUnfolamLs

X
-
i (=]

200

w

In [1]: import ROOT
response = ROOT.RooUnfoldResponse(reco,truth,migration)
unfold = ROOT.RooUnfoldBayes(response, data)
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ATLAS Example

BN unfolded_hist = unfold.Hunfold()

omnifold
cINN

[ ]
fs=14TeV, 36.2 fb" e gg}garession
QCD jets in Z+jets events m=== Binned Regression
Herwig 7.1.5 unfolded with Pythia 8.2 s ;
I

In [2]: import RooUnfoldML
response = RooUnfoldML.RooUnfoldMLResponse(reco,truth)

h_dnn = RooUnfoldML.RooUnfoldBinnedRegression(response,data)

unfolded_hist = h_dnn.Hunfold()
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Conclusions & Outlook

Lots of exciting developments for uncertainty aware unfolding
We are always open to more methods to be added to the HEP
unfolding package RooUnfold. 7 (] 1
A deep link between statistics, ML, and science. f i

O O O O O

November 30t 2023

If you have suggestions, please let us know
Wide-bin and RUN unfolding methods incoming
Additional uncertainty handling methods
In-Likelihood unfolding method implemented

ML unfolding interface available for development.
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Where do | find more information and code?

e RooUnfold; https://gitlab.cern.ch/RooUnfold (RooUnfold and RooUnfoldML)
Paper; Comparison of unfolding methods using RooFitUnfold. International Journal of Modern Physics A, Vol. 35, No.
24,2050145 (2020) https://arxiv.org/abs/1910.14654

e Paper; Publishing unbinned differential cross section results. JINST 17 (2022) 01, P01024
https://arxiv.org/abs/2109.13243

e Paper; An algorithm for automatic unfolding of one-dimensional data distributions, Nuclear Instruments and
Methods in Physics Research A 729 (2013) 410-416. PHYSTAT 2011

e Per Christian Hansen: “Discrete Inverse Problems: Insight and Algorithms” Discrete Inverse

Problems
Insight and Algorithms

Issues or questions?

Email roounfold-support@cern.ch, vincent.croft@cern.ch 45
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Thanks!

The whole RooUnfold team
Lydia Brenner, Tim Adye, Carsten Burgard, Vincent Croft

Les Houches PhysTeV workshop unfolding team:

Miguel Arratia, Anja Butter, Mario Campanelli, Vincent Croft, Dag Gillberg, Aishik
Ghosh, Kristin Lohwasser, Bogdan Malaescu, Vinicius Mikuni, Benjamin Nachman, Juan
Rojo, Jesse Thaler, Ramon Winterhalder

Study collaborators

Pim Verschuuren, Glen Cowan, Wouter Verkerke
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A different study: Bimodal distribution and biases

Look deeper into situations where the response matrix and the data are not sampled from the same model.

The bimodal model for this study is the sum of two Crystal Ball functions smeared by a a Gaussian resolution model

f(x|a) = fphysics(xtruela) * fdetector(xtrue, 33)
= (05 ? fCB(wtruelll =24,0=048,a,n = ]_) +
0.5 foB(@true|lt = 5.6,0 = 0.48,a,n = 1))

* Gauss(T — Tyrye, 0,0.4)
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A different study: Bimodal distribution and biases
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A different study: Bimodal distribution and biases

Bin-averaged unfolding bias for data from the distorted distribution unfolded with a response matrix for an
undistorted distribution.
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A different study: Bimodal distribution and biases

Bin-averaged unfolding bias for data from the distorted distribution unfolded with a response matrix for an
undistorted distribution.

=. 10°E
2 = O Gaussian Process
> =
® - O Invert
) = Bin-By-Bin
10°
101 — 2
= O f——_
—
1 E_ ——
G g faig g g giee] oy e g o qe g of g g oy ol g ogiey o O g
L 0.5 1 15 2 25 3


#

Dr. Vincent Croft Unfolding in High Energy Physics: Artificial Intelligence and the Uncertainty Challenge in Fundamental Physics

RooUnfold update

® Many frameworks /implementations for unfolding exist
o Most use RooUnfold as a backend internally
o Main focus of many of these frameworks: uncertainty handling
® Updatesto RooUnfold itself
o Integration with RooFit
m Easier uncertainty handling
o  Workspace handling
m Easyfor combination
® Make RooUnfold “future proof”
o Ready for possible unbinned unfolding methods in the future
o Improved user friendliness

® Endproduct
o Saved in away to allow changing of method at later time

November 30t 2023
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Unfolding and fitting

Unfold taking systematic variations into account

o Also done by other advanced frameworks
Can unfold after fitting signal and background contributions

o Need to bring fit results into a format suitable as unfolding input
o Non-trivial to propagate uncertainties

Why not do both at the same time?
o ldeal solution: RooFit implementation of unfolding!

November 30t 2023

57


#

Dr. Vincent Croft Unfolding in High Energy Physics: Artificial Intelligence and the Uncertainty Challenge in Fundamental Physics

Introduction to RooFitUnfold

e |dea: Updated implementation of RooUnfold directly in RooFit
e Includes: Improved handling of uncertainties
@ Uses error propagation from any NPs to the unfolded distribution
o  Allows for inclusion of uncertainties coming from migration matrix
e Handels different input formats
o  Histograms (as already RooUnfold did)
o  pdfs->Means unbinned distributions can now be unfolded
m  Binned methods allow setting of internal binning
m  unbinned methods can technically be included in the future
e Livesinworkspaces

November 30t 2023
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Methods included

All RooUnfold methods included

Iterative Bayes Documentation:

I DS https://qitlab.cern.ch/roofitunfold-tutorial-2019/RooUnfold/blob/master/README.md
https://arxiv.org/pdf/1105.1160.pdf

SVD

TUnfold

Gaussian Processes unfolding (NEW)

Poisson unfolding, a simple likelihood unfolding (NEW)

Unregularised
o Bin-by-bin
o Matrixinversion

- Caneasily include more methods
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Implementation

RooUnfold uses TH1 objects as basis

o Very user-friendly, but internally not ideal with RooFit
Templated to use RooAbsReal as a base object

o Can easily be plugged on top of an existing workspace
Created RooUnfoldFunc

o a RooAbsReal wrapper around RooUnfold

November 30t 2023
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Implementation: Inputs

e Truthdistristributions

o  Histograms (TH1) or pdf (RooFit/Workspace)
e Recodistributions

o  Histograms (TH1) or pdf (RooFit/Workspace)
e Response matrix

o 2D Histogram (TH2) or pdf (RooFit/Workspace)
e Data: background subtracted if needed
o binned (TH1 or RooDataHist) or unbinned (TTree or RooDataSet)

November 30t 2023
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Implementation: Features

e RooUnfoldFunc can be imported into workspace

©)

©)

O

O

O

Can use any existing workspace as an input
Can update reco level workspace after unfolding
Can unfold and fit (on reco-level) simultaneously
Easy persistence

Extremely useful for combinations

e RooUnfoldSpec can be used to construct RooUnfoldFunc

©)

Helper class similar to HistFactory

e Unfolding result is only cached

©)

Can switch to a different unfolding method a-posteriori

November 30t 2023
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Workspace write out

eDirectly written out into a workspace
e Atany level of the analysis
e Savesall information to be able to do a change of unfolding method on the fly
e Includes error propagation
e  Writes out for ALL unfolding methods

o  Soalsoforregularised methods

November 30t 2023
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Error propagation

e Default RooUnfold can propagate simple uncertainties
o Statistical uncertainties on Data
o Bin-by-bin correlations
o No handling of systematic uncertainties!
e RooFit functions (pdfs) can depend on arbitrarily many parameters
o automatic error propagation from input parameters to all outputs by RooFit
o ony requirement: the output needs to be a RooFit object

o Nuisance parameter treatment comes “for free” with RooUnfold integration in
RooFit

e No explicit handling of systematic uncertainties needed in RooUnfold
o RooUnfold+RooFit handles uncertainties neatly :)

o Some toy sampling methods required for bias calculation, but error bands on
plots come directly from RooFit

November 30t 2023
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Bias

Two bias calculations included

Bias estimate without toys and a full bias calculation

Bias Estimate

Lt

e v v e v e b e e v e b e by ey by 1y
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Example: Bimodal distribution

Reconstruction level plots

Response matrix
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Example: Bimodal distribution

Compare different unfolding methods

Unfolding data
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Example: Bimodal distribution

Compare different regularisation strengths
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Example: Bimodal distribution

Compare different regularisation strengths: Don’t forget the bias!
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Bias calculation

(Asimov) data-driven

First the uncertainties are taken truth level from the unfolded Asimov dataset. Toys are thrown in each bin
around the Asimov truth values based on the full uncertainty. These toys are called level 1 toys. For each
level 1 toy further toys are thrown, called level 2 toys. Each of the level 2 toys is folded and then unfolded
with the chosen unfolding method. The bias for each level 2 toy is calculated as

biasl2 = (orefold - otruth)/ctruth,

where the truth refers to the value of the level 1 toy at truth level from which the level 2 toy is thrown and
refold refers to the value of the level 2 toy after folding and unfolding. The bias of each bin in the distribution

that is being unfolding is the average over all biasl2.
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ATLAS Example

s=14 TeV, 36.2 b

QCD jets in Z+jets events

Herwig 7.1.5 unfolded with Pythia 8.2
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import ROOT

response = ROOT.RooUnfoldResponse(reco,truth,migration)
unfold = ROOT.RooUnfoldBayes(response, data)
unfolded_hist = unfold.Hunfold()

import RooUnfoldML

response = RooUnfoldML.RooUnfoldMLResponse(reco,truth)

h_dnn = RooUnfoldML.RooUnfoldBinnedRegression(response,data)
unfolded_hist = h_dnn.Hunfold()

Easy to use

e Will Ship as a lightweight extension to RooUnfold
e Optional extra flag on compilation

e Minimal Dependencies

e Meaningful default settings
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r = roounfoldml.RooUnfoldMLResponse(simobs, genobs)
cINN = roounfoldml.RooUnfoldCondition(r, dataobs)
cINN data = cINN.Vunfold()

h_cINN = cINN.Hunfold("Mass",bin_edges)

3

omnifold = roounfoldml.RooUnfoldReweight(r, dataobs) £ 2000 ———
omnifold data,omnifold weights = omnifold.Vunfold() 2 180F— ATLAS  Example & B =
h omni = omnifold.Hunfold("Mass",bin_edges)| £ = s-14TeV,36.21" mmm Regression =
= 160 — QCD jets in Z+jets events _ m=== Binned Regression
z 140 Herwig 7.1.5 unfolded with Pythia 8.2  wmmm omnifold =
2 = == CINN =
w 120/— =
; 100 =
reg = roounfoldml.RooUnfoldRegression(r, dataobs) = =
reg_data = reg.vunfold() 80~ =
h_reg = reg.Hunfold("Mass",bin_edges)| 60— =
wE- =
20— —
c . . - q 0 »

Will Ship as a lightweight extension 2 3
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. dataobs = ROOT.RDF.MakeCsvDataFrame("/home/vcroft/dataobs.csv")

o= el Unfol dincin Hich Energy Physi  simobs = ROOT.RDF.MakeCsvDataFrame("/home/vcroft/simobs.csv”) November 302023
genobs = ROOT.RDF.MakeCsvDataFrame("/home/vcroft/genobs.csv")

truthobs = ROOT.RDF.MakeCsvDataFrame("/home/vcroft/truthobs.csv")

r = roounfoldml.RooUnfoldMLResponse(simobs, genobs)
u = roounfoldml.RooUnfoldRegression(r, dataobs)

Standard input is
da

pandas dataframes &

Automatic ::2::ﬁﬁ:zc(>$c)>r(noor. kRed+2)

h.Draw()
data hist.Draw("same")

conversion for: ¢ Draut)
o TTree
o RDataFrame

Some internal

conversions to

tf.data.Datasets

Might be inefficient.

Easy integration

ROOT.TCanvas()

ta_hist = truthobs.HistolD(("","",30,0,80), 'Mass')
= u.Hunfold("Mass",30,0,80)

with existing
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