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Introduction

As described in the talk by Gilles Louppe, simulation-based inference is a
way to make inferences about the parameters θ of a statistical model
p(X |θ) without using the model explicitly. The model is implicitly defined
via a forward simulator, D ∼ F(θ), that can simulate data sets D given
parameters θ.

Recently, a method called likelihood-free frequentist inference (LF2I) was
introduced by Prof. Ann Lee1 and her group at Carnegie Mellon University
that features correct conditional coverage.

I’ll begin with a brief reminder of what that means and follow with a
description of a modified version of this method, called amortized
likelihood-free frequentist inference (ALFFI), which is illustrated with a
couple of simple examples.

1Likelihood-Free Frequentist Inference: Confidence Sets with Correct Conditional
Coverage Niccolò Dalmasso, Luca Masserano, David Zhao, Rafael Izbicki, Ann B. Lee,
arXiv:2107.03920v6 [stat.ML] 6 Apr 2023.
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Introduction Hypothesis Tests and Confidence Sets

Consider a large ensemble of experiments (say all those that have been
performed since the discovery of the electron).

For each experiment, we assert that the true value of some parameter θ
lies in some subset R(D) of the parameter space associated with the
experiment. Each such statement is either True or False.

In frequentist inference, it is required that the fraction of true statements,
that is, the coverage probability, over an ensemble of statements of the
form θ ∈ R(D) never fall below the claimed confidence level (CL) 1− α,
where α is typically a small number.

Random sets {R(D)} with this property, of which a confidence interval is
a special case, are called confidence sets.
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Introduction Hypothesis Tests and Confidence Sets

The LF2I approach of Lee et al. is a method for constructing confidence
sets, R(D), which

1 does not presume the validity of Wilks’ theorem and its variants2 and,
therefore, works for finite data samples and

2 does not require knowledge of the statistical model, and, therefore,
the likelihood function.

The method

1 exploits the fact that confidence sets for all the parameters taken
together can always be constructed;

2 exploits the close relationship between classical hypothesis tests and
confidence sets, and

3 leverages the availability of high-fidelity simulators and machine
learning.

2G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for
likelihood-based tests of new physics, Eur.Phys.J.C71:1554, 2011.
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Introduction Hypothesis Tests and Confidence Sets

Consider the hypothesis H0 : θ = θ0. It is typically tested as follows.

𝜆

Critical Region
𝛼

Acceptance Region
1 − 𝛼

𝐻!: 𝜃 = 𝜃!

𝑝(𝜆|𝜃!)

Choose a small probability α;

Construct a function of
(potential) observations X
called a test statistic, λ(X , θ)
with the property that large
values of λ cast doubt on the
validity of the hypothesis H0.

Compute the p-value = P(λ > λobs|θ0) = 1− C(λobs|θ0), where
λobs = λ(D, θ0) is the observed value of the test statistic, and the
cumulative distribution function is given by

C(λobs|θ0) =

∫
Y≤λobs

dY

∫
dX δ(Y − λ(X , θ0)) p(X |θ0). (1)

If the p-value < α then the test statistic has landed in the so-called
critical region in which case the parameter value θ0 is rejected.
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Introduction Hypothesis Tests and Confidence Sets

If H0 : θ = θ0 is true, then by construction the probability to reject θ0 is
α3. Therefore, the probability not to reject θ0 is 1− α.

In other words, we keep θ0 whenever the p-value ≥ α or, equivalently,
whenever C(λobs|θ) ≤ 1− α.

For a given data set D, the confidence set R(D) is constructed by
collecting together all values of θ that are kept.

Therefore, the task is to approximate either the p-value or the cumulative
distribution function, which is the basis of the LF2I method and its recent
variant ALFFI.

3Rejecting a true hypothesis is called a Type 1 error.
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Amortized Likelihood Free Frequentist Inference Approximating C(λobs|θ)

Algorithm 1 Amortized likelihood-free frequentist inference (ALFFI)

1. Initial training samples: X← ∅, T← ∅
while k ∈ [1, · · ·K ] do

2. Sample θk ∼ π(θ)
3. Sample Xk ≡ X1,k , · · · ,Xn,k ∼ F(θk)
4. Update training sample X← X ∪ {(θk ,Xk)}

end while
5. Produce a second data sample, Y = {(θk ,Xk)}, to serve as instances
of “observed” data by randomly shuffling the Xk relative to the θk
while k ∈ [1, · · ·K ] do

6. Compute test statistic λk ← λ(Xk , θk)
7. Compute test statistic λ′k ← λ(Yk , θk)
8. Compute indicator Zk ← I(λk ≤ λ′k)
9. Update training sample T← T ∪ {(θk , λ′k ,Zk)}

end while
10. Train an ML model, f (θ, λobs;ω), to approximate C(λobs|θ).
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Amortized Likelihood Free Frequentist Inference Approximating C(λobs|θ)

Since Z = I(λ ≤ λobs) then, for a given θ, the probability that λ ≤ λobs is
the same as the probability that Z = 1, which, in turn, is the same as the
conditional expectation value E[Z |θ], which is approximated with a neural
network.

The neural network models of interest are trained by minimizing an
empirical risk function (aka cost function, average loss function), given by

R(ω) =
1

K

K∑
i=1

L(fi , ti ), fi ≡ f (xi ;ω), (2)

where ti are known targets associated with known inputs xi and L(f , t) is
a loss function.

In the limit of an infinite training sample the empirical risk function
becomes the risk functional R[f ],

R[f ] =

∫ [∫
L(f , t) p(t|x) dt

]
p(x) dx . (3)
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Amortized Likelihood Free Frequentist Inference Approximating C(λobs|θ)

If

the training data sample is large enough, and

the ML model has sufficient capacity, and

a good approximation to the minimum of the risk functional can be
found,

then, provided that p(x) > 0 ∀ x , minimizing the risk functional R[f ] yields
the important result, ∫

∂L

∂f
p(t|x) dt = 0, (4)

which is a generalization of a result from the early 1990s.

LF2I uses the quadratic loss L(f , t) = (f − t)2 with the targets set to
t = Z . According to the Eq. (4), this implies that the best-fit ML model
parameters ω∗ yield a trained ML model that satisfies,

f (θ;ω∗) ≈ p(Z = 1|θ) ≡ P(λ ≤ λobs|θ). (5)
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Examples ON/OFF Model

ON/OFF Experiment

In an ON/OFF experiment, the data comprise two independent counts
D = N,M obtained under the signal plus background condition (ON) or
the background-only condition (OFF). In the simplest case, the statistical
model is

p(X ,Y |θ) = Poisson(X , µ+ ν)Poisson(Y , ν),

where X and Y are random counts.

When data D are entered into the model, we arrive at the likelihood
function

p(D|θ) = Poisson(N, µ+ ν)Poisson(M, ν).

Usually, we don’t care about ν, the mean background, but we’ll pretend
that we do!
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Examples ON/OFF Model

The search for neutron-antineutron oscillations at the Institut Laue
Langevin (ILL) in Grenoble, France (1980 - 1985) is a pedagogically
perfect example of an ON/OFF experiment in particle physics.

H18 cold neutron beam: neutron flux
1.5× 109n/s, neutron temperature
∼ 1.5K (neutron speed ∼ 160m/s).
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Examples ON/OFF Model

The CERN-Rutherford-ILL-Sussex-Padova Collaboration4 conducted the
experiment sketched below.

Field-OFF: 𝑁

Field-ON: 𝑀

Results:

N = 3 field-OFF events,

M = 7 field-ON events.

4G. Fidecaro et al., ”Experimental search for neutron-antineutron transitions with
free neutrons”, Phys. Lett. B 156, 122 (1985).
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Examples ON/OFF Model

We use the following test statistic

λ(D, θ) = −2 log

[
p(D|µ, ν)

p(D|µ̂, ν̂)

]
, (6)

where µ̂ and ν̂ are the best-fit values of the parameters. Since µ ≥ 0, we
take the estimate of the mean signal to be

µ̂ =

{
N −M if N > M
0 otherwise,

, (7)

which explicitly violates one of the regularity conditions for the validity of
Wilks’ theorem, namely, that estimates must lie within the interior of the
parameter space. For the estimate of the mean background, we take

ν̂ =

{
M if µ̂ = N −M
(M + N)/2 otherwise.

(8)
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Examples ON/OFF Model

A simple feed-forward neural network is trained that yields the following
confidence sets and coverage probabilities.

Confidence sets Coverage

The coverage probabilities shown in the rightmost plot at the parameter
points displayed in the middle plot are indeed bounded by the confidence
levels 1− α even for the sparse data of the Grenoble experiment.
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Examples SIR Model

In our second example the statistical model is intractable, which of course
is where simulation-based inference is most needed.

The susceptible-infected-recovered (SIR) model is the prototypical model
of an epidemic. In this model, individuals in the susceptible class, S, can
migrate to the infected class, I, and from there to the recovered (or
removed) class, R. We apply this model to a widely used data set from a
flu outbreak more than a century ago at an English Boarding School.

The mean counts in the three classes are governed by the equations

dS

dt
= −βSI ,

dI

dt
= −αI + βSI ,

dR

dt
= αI , (9)

where θ = α, β are the model parameters.
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Examples SIR Model

The test statistic is chosen to be

λ(D, θ) =

√√√√ N∑
n=1

(xn − In(θ))2

In(θ)
, (10)

where xn are the observed number of infected school children on a given
day. The likelihood function is intractable because the counts are
correlated across time and the fluctuations are super-Poissonian.
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Again, a relatively simple neural network
is trained to approximate P(λ ≤ λobs|θ)
and is used to compute the solid
contours in the figure to the left. The
dashed lines are obtained, as before, with
the histogram approximation. We see
good agreement between the two
approximations.
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Examples SIR Model
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There is some
under-coverage, but
overall the results are
reasonable.

The examples chosen for illustration are very simple.

It remains to be seen how well the method scales to large problems and
whether a way can be found to map the confidence sets to confidence
intervals for individual parameters in a way that gives correct coverage.

Harrison B. Prosper (FSU) Simulation Based Inference The Frequentist Perspective 28 November, 2023 21 / 30



Summary

Outline

1 Introduction

2 Amortized Likelihood Free Frequentist Inference

3 Examples

4 Summary

Harrison B. Prosper (FSU) Simulation Based Inference The Frequentist Perspective 28 November, 2023 22 / 30



Summary

If a high-fidelity simulator is available, the LF2I approach can be used
to create confidence sets with good coverage and, in principle, exact
coverage.

A simple modification (ALFFI) makes it possible to use the same
network to construct confidence sets and check their coverage
explicitly.

Two simple examples illustrate the potential of simulation-based
frequentist inference, but work is needed to find algorithm to map
from confidence sets to confidence intervals.

The LF2I approach contains methods to compute confidence sets for
subsets of the parameters, but, alas, without frequentist guarantees
for small samples.
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BACKUP L2FI

The likelihood-free frequentist inference (LF2I) approach comprises several
components, including an algorithm for approximating the p-value or the
cumulative distribution function, which is shown below.

Algorithm 2 LF2I approximation of C(λobs|θ) given a simulator F(θ)

1. Initialize training sample T← ∅
while k ∈ [1, · · ·K ] do

2. Sample θk ∼ π(θ)
3. Sample Xk ≡ X1,k , · · · ,Xn,k ∼ F(θk)
4. Compute test statistic λk ← λ(Xk , θk)
5. Compute test statistic λobs,k ← λ(D, θk)
6. Compute indicator Zk ← I(λk ≤ λobs,k)
7. Update training sample T← T ∪ {(θk ,Zk)}

end while
8. Use T to train a machine learning (ML) model, f (θ;ω), to approx-
imate C(λobs|θ), where θ are the inputs to f (θ;ω), and ω are the ML
model parameters.
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BACKUP Example: Cosmological Model

As noted, the power of simulation-based inference is that knowledge of the
statistic model is not needed. Moreover, LF2I and ALFFI work for samples
of all sizes. However, it is useful to have simple benchmark models, with
known likelihoods, to validate and illustrate the method.

We first apply ALFFI to a cosmological model that is fitted to the Union
2.1 compilation of data for 580 Type 1a supernova5.

For the test statistic, we use the function

λ =
N∑
i=1

(
xi − µ(zi , θ)

σi

)2

, (11)

where xi ± σi are the measured distance moduli, µ(z , θ) the predicted
distance modulus function, and zi the measured supernovae red shifts,
which are accurately known.

5https://www.supernova.lbl.gov/
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BACKUP Example: Cosmological Model

Our toy cosmological model is defined by the rather odd equation of state

P = −1

3
nanΩ(a), (12)

where n is a free parameter, and a(t), Ω(a), and P are the dimensionless
universal scale factor, the dimensionless energy density, and the
dimensionless pressure, respectively, and t is the time since the Big Bang.

This equation of state yields the energy density

Ω(a) = exp(an − 1) / a3. (13)

About the only virtue of this model is that it has only two parameters, the
other being the Hubble constant H0 (not to be confused with an
hypothesis), and the model can be exactly integrated.
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BACKUP Example: Cosmological Model

When the cosmological model is fitted to the Type 1a data by minimizing
λ (using, for example, iminuit), the following excellent fit is found.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

z

32
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38
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42

44

46
µ The Union2.1 Compilation

The Supernova Cosmology Project

χ2/ndf = 567.2/578 = 0.98

phantom model

data

By the way, the model predicts that the universe will self-destruct in a Big
Rip at about 1.4 times its current age!

Harrison B. Prosper (FSU) Simulation Based Inference The Frequentist Perspective 28 November, 2023 28 / 30



BACKUP Example: Cosmological Model

We approximate P(λ ≤ λobs) using a 5-layer fully-connected feed-forward
neural network, with 20 nodes per layer, a single output, and ReLU

non-linearities. The confidence sets are shown in the figure below.
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The solid contours are computed
with ALFFI, while the dashed
contours are computed by
approximating E[Z |θ] using the
ratio HZ/H1 of two 2D
histograms, one (HZ ) in which
entries are weighted by the
indicators Z and the other (H1)
uses unit weights.
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BACKUP Example: Cosmological Model

In ALFFI, unlike LF2I, the “observed” test statistic is an input to the
neural network model. Therefore, we can directly check the coverage by
simulating ensembles of data sets at many randomly selected points within
the parameter space and explicitly counting how often the confidence sets
at each point contain that point.
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