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You and I

Myself:

1. researcher at CEA on formal
methods for software safety
and security applied to
machine learning;

2. also working on case-based
reasoning and
out-of-distribution detection in
industrial use cases;

3. not a nuclear scientist!

The audience:

1. fundamental physics
practionners;

2. used to computing enormous
amount of (structured?) data;
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Definitions

Explanation

“An explanation is a presentation of (aspects of) the reasoning, function-
ing and/or behavior of a machine learning model in human-understandable
terms” [Nau+23]
“The belief (by the trustor) in the ability (of the trustee) to achieve some-
thing”
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Explanation is a spectrum

Social science have quite a big corpus on what constitutes a good
explanation ([Mil19])?

1. contrastive: why P instead of Q?

2. a social process: A explains P to B

3. more generic (cover more facts), simpler (quote less causes), and coherent
(related to previous knowledge) are more easily understood
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Why explaning?

“The software discovered a new fundamental particle with 99% accuracy!”: not
enough to convince scientists! What is the causal chain that led to this decision?
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Why it matters

1. debugging and audit

2. refutability

3. compliance with regulation (GDPR article 13.f [SP17])
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About the wording “black-box”

Machine learning is the piling of billions of simple mathematical operations that
are atomically well understood
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Notations

1. samples 𝑥 ∈ 𝒳 ⊆ ℝ𝑑 an input space, i𝑡ℎ feature 𝑥𝑖
2. an output 𝑦 ∈ 𝒴 ⊆ ℝ𝑝, the i𝑡ℎ feature 𝑦𝑖
3. a program 𝑓 ∶ 𝒳 ↦ 𝒴 trained on a 𝒳

• we can usually decompose 𝑓 = ℎ ∘ 𝑔
• in the following, ℎ(𝑥) is the output of an intermediate layer for neural network

4. ∇𝑥𝑦 is the gradient of 𝑦 at 𝑥
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Decision trees

from Wikipedia https://en.wikipedia.org/wiki/Decision_tree_learning/

Issue: the deeper the tree, the less amenable it is to understand its decision
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Linear regressions

𝑦 = β0 + β1𝑥1 + β2𝑥2 + ... + β𝑛𝑥𝑛 + ε

A feature will contribute to the decision by its linear coefficient:

β𝑘 =
𝑦 − ∑𝑖=𝑛

𝑖=1,𝑖≠𝑘 β𝑖𝑥𝑖
𝑥𝑘
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Under the framework of feature attribution

Basic idea: for a given (𝑥, 𝑓, 𝑦), identify which 𝑥𝑖 was the most useful for the
decision

From de [RSG16]
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LIME

Local Interpretable Model-agnostic Explanations (LIME) [RSG16]:

1. causal approach: change 𝑥𝑖 to quantify their impact on 𝑦
• if no(sneeze) => no(flu), then sneeze is an important feature

2. once relevant features are identified, train a surrogate model that is easier to
interpret
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LIME - cont.

The resulting surrogate model only explains one prediction
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LIME pros and cons

Pros:

1. no need for the input data;

2. no need to have access to the
program;

Cons:

1. training process requires a notion
of neighborhood, which can be
troublesome (images);

2. no validity domain for the
surrogate model;
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Derivated approaches: Shapley values

1. identify the mean-shift of each feature contribution SHAP [LL17] (Shapley
values) to analyze ensemble models

2. gradually mask parts of the inputs (RISE [PDS18])
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Feature heatmaps

from [ZF14]

basic idea: compute ∇𝑥𝑦 and project back on the input space the most important
𝑥𝑖
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GRADCAM, SMOOTHGRAD

GRADCAM [Sel+16; Cha+18] computes ∇ℎ(𝑥)𝑦𝑖, then upsample the resulting
point 𝒳

SMOOTHGRAD [Smi+17] ∇𝑥∗𝑦 where 𝑥∗ is a gaussian neighborhood of 𝑥

Figure 2: From [Cha+18]
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Integrated gradients

Gradient on the line between 𝑥 and a baseline image 𝑥
′
[STY17]

IG𝑖 = (𝑥𝑖 − 𝑥
′
𝑖 ) ∫

1

α=0
∇𝑥𝑖𝑓 (𝑥

′
+ α(𝑥 − 𝑥

′
))𝑑α

usually computed using Riemann approaches

IG𝑖 ≈ (𝑥𝑖 − 𝑥
′
𝑖 )

𝑚
∑
𝑘=0

∇𝑥𝑖𝑓 (𝑥
′
+ 𝑚

𝑘
(𝑥 − 𝑥

′
)) ∗ 1

𝑚
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Integrated gradients
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Wrapping up: empirical feature attribution approaches

1. usually only require gradient computation access;

2. provide attributions on the input space;

3. heavily rely on the program internal representation;

4. no validity domain;

5. the question of which distance function to use is still open;
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Protoype based approaches - ProtoPnet

From [Che+19]
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Approches par prototypes - ProtoPnet

1. learn “prototypes” : part of the input set that are used for the prediction;

2. during inference, the various ℎ(𝑥) are compared to the various prototypes

3. still rely on the hypothesis that “proximity in the latent space equals
proximity in the input space”
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Class-wise part detectors [Xu-+23c]

From [Xu-+23c]
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And more...

1. diffusion models [Aug+22]
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How to evaluate explanation methods?

Some criterion proposed by [Nau+23] (Co12)

1. correction

2. cohérence (implementation invariance)

3. compactness (size of the explanation)

4. composability

5. controllability
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How to evaluate explanation metrics?

See [Xu-+23a; Xu-+23d] there is no “one size fits all” metric

27 / 37



From [Mol22]



From [Mol22]



The network decision is ill-based. Why is that? How to fix it?

This explanation does not help to adjust our mental model on the program’s
behaviour, it is not a good one
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Nuance

Extracting a causal chain and displaying it to a person is causal attribution, not
(necessarily) an explanation [Mil19].

Attribution-based approaches are not enough to “fill the holes” for complex
programs

“How the decision was taken” and “Why the decision was taken” are two
different questions
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Feeding our own biases

From [Tom+19]
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Feeding our own biases

From [Tom+19]. The more on the right, the more random the network is.
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Feeding our own biases

Confirmation bias (Wikitionnaire)

(psychology) A cognitive bias towards confirmation of the hypothesis under
study

A “nice” heatmap will confirm that the network works as expected, without
being necessarily an accurate description of its inner working

34 / 37



Preliminaries Post-hoc explanations Explanable by design programs Limitations The future?

Explanations can be manipulated [Dom+19]

From [Dom+19] 35 / 37
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Open questions

1. validity of feature methods (for a variation on 𝑓? on 𝑥?)

2. how to evaluate explanations and sort evaluation metrics?

3. “social” explanation is yet to happen
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Our work, present and future

1. case-based reasoning [Xu-+23c], out-of-distribution detection [Xu-+23b]

2. explainable by design approaches with a soon-to-come open source library
(CABRNET)

3. formal explanation of AI

Open to collaborations!
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