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My scientific wanderings

Physics
Quantum physics

Atom-interferometric tests of relativity

Brain image analysis for cognition
Statistics, machine learning, image
analysis
Cognitive neuroscience, psychology

Machine learning for public health
Informing policy?

From absolute quantities
to qualitative subject matters
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Questions of interest

How does scientific knowledge
emerge from data?

Can we have a statistical control on
this process?

What role do models play?
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This talk

1 Rethinking modeling

2 Model uncertainty and validation
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1 Rethinking modeling

AI as statistical methods
for imperfect theories



Scientific progress and statistical evidence

Dominant framework of statistical reasoning:
Formulating a probabilistic model from mechanical hypotheses
Integrating empirical evidence (data) by fitting this model
Reasoning from model parameters

Rigour breaks down with wrong modeling ingredients

Science needs more reasoning from model outputs
For statistics: robustness to mis-specification
Generalization grounds scientific theories

Black-box phenomenological data models are good for science
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Statistical evidence in science and data science

1. Model the data

Based on the knowledge and constructs of the field
& the understanding of data collection

m
d2

dt2 x⃗ = F⃗

F⃗ = q (E⃗ +
d
dt

x⃗ × B⃗)

Intelligence

Fluid
intelligence

Crystallized
intelligence
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Statistical evidence in science and data science

1. Model the data

Based on the knowledge and constructs of the field
& the understanding of data collection

2. Statistical inference
Fit model to data (typically maximizing likelihood)

Reason from the model and its parameters

Relies on statistical modeling [Cox 2006]
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Example: studying brain brain activity
Neural support of mental process
Model of task and mental processes
⇒ brain maps

Uncontrolled variability �

In modeling across teams
[Botvinik-Nezer... 2019]

Across software for same model
[Bowring... 2019]

Even experts cannot chose the “right” model
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Teachings from history of science

Current view of physics,
chemistry...
Building models from the right ingredi-
ents – “first principles”

The past
Refining relevant constructs
from wrong models
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The birth of mechanics

Early scientists (eg ancient Greece)
“natural motion of objects”, no notion of force, or acceleration.

Lacking key ingredients

Observation of planetary motion (eg Kepler)
Search for regularities in planets – “harmonies”
The period squared is proportional to the cube of the major diameter of the orbit

Phenomenological model1 crucial

Modern laws of dynamics (Newton)
Differential calculus⇒ laws with force and acceleration
Unite observations of celestial and earthly motions

Validity established by strong generalizability
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Modern physics does not need phenomenological models?

Vulcan: false discovery of a planet (19th century)
Anomaly in Mercury’s orbit not explained by Newtonian physics
⇒ invent and “observe” an additional planet, Vulcan

Theory laden observations

Particle physics builds evidence with machine learning (today)
Fundamental laws of the universe = most precise theory ever
Particle detection by discriminating physics model

with non-parametric background
“Pure” models insufficient for “dirty” reality
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Phenomenological data fits have been crucial to science

Science uses false models as means for truer theory
[Wimsatt 2007]

The reductionist aesthetics of “pure” simple mathematical theories
is not adapted to the messy world beyond pure physics

Generalization or prediction failures make or break scientific theories
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Statistics and scientific evidence

Validity
Reasonning

= more than formal problems
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Validity of scientific findings – much more than statistical validity

External validity [Cook and Campbell 1979]

External validity asserts that findings apply beyond the study
Generalizability

Constructs and their validity [Cronbach and Meehl 1955]

Construct = abstract ingredients such as “intelligence”
Construct validity: measures and manipulations

actually capture the theoretical construct

Implicit realistic stances in theories
Realism = objective and mind-independent unobservable entities

Is intelligence a valid construct? How about a center of gravity?

Places implicit preferences on models beyond empirical evidence
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Reasoning with statistical tools

Model reasoning [Cox 2006]

Carefully craft a probabilistic model of the data
Estimated model parameters are interpreted within its logic
“data descriptions that are potentially causal” [Cox 2001]

Warranted reasoning [Baiocchi and Rodu 2021]

Relies on warrants in the experiment (eg randomization)

Output reasoning [Breiman 2001, Baiocchi and Rodu 2021]

Relies on capacity to approximate relations
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Benefits of reasoning on outputs
rather than models

Science needs black-box output
reasoning
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For statistical validity

Even expert modeling choices explore meaningful variability
Model reasoning is conditional to the model
parameters have a meaning in a model

Imperfect science: 70 different teams of brain-imaging experts
qualitatively different neuroscience findings [Botvinik-Nezer... 2020]

Analytical variability breaks statistical control

Output reasoning: milder conditions for statistical control
Theoretical results in mispecified settings [Hsu... 2014]

Multi-colinearity no longer an issue
Higher-dimensional settings

⇒ Forces less reductionist choices
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For understanding?

“Nobody understands quantum mechanics” Richard Feynman

Narrative truth versus operational truth
Humans need stories, for teaching, for intuitions, for “selling”

these simplifications are not “truth”

Counterfactual reasoning & causal inference
We want to reason on new situations

Causal, not correlational knowledge
Bad health is associated with hospitals, but seldom caused by.

Predictive models enable counterfactual reasoning if
- they extrapolate enough
- they build on the right variables (confounds, not colliders)
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For broader scientific validity of findings

The only strong evidence is strong generalization

Model reasoning favors internal validity
Model reasoning often need “pure” models with little generalization

Fields without a unifying formal theory
tackle empirical evidence with overly reductionist lenses

Machine learning/AI can model the full problem space
and give testable generalization

Relating to more general constructs
Theories & models are written in terms of constructs (eg attention)

To help generalizing across vastly different situations
Must ground these directly on observations
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2 Model uncertainty and validation
Scientific criticism and reasonning on model output



Controlling
uncertainty on predictions

Applications need full
probability of error

In medicine:
harm-benefit trade-offs

[Vickers... 2016]

Gaël Varoquaux 20



Controling probabilities: Calibration is not enough [Perez-Lebel... 2023]

Calibration controls: Average
error rate for all samples with
score s is s

A calibrated classifier can assign a
score of .6 to individuals, but be
100% accurate on a subgroup,
and 20% on another. Samples predicted 

with confidence .6

20% of 
class 1

100% of 
class 1

. Calibration does not control individual probabilities
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Metrics controlling individual probabilities

Does the classifier approach P(y |X)?
P is never observed, only discrete events

Proper scoring rules

Brier score =
∑

i

(ŝ i − yi)2
Observed (binary) label

Confidence score

(also log-loss)Minimal for ŝ = P(y |X)

Drawback: what is “good enough”?
cannot be interpreted as an error rate
no scale
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Decomposing scoring rules into error rates [Perez-Lebel... 2023]

Scoring rules (eg Brier) compound multiple aspects of error
Classifier output: S = f(X)

Label probabilities: Q = P[Y |X ]

Calibrated score1: C = E
[
P[Y |X ]

∣∣∣S]
1 Knowing the classifier output, what’s the label probabilities

Scoring rule decomposition

E [d(S,Y)] = E [d(S,C)]︸        ︷︷        ︸
Calibration

error

+ E [d(C ,Q)]︸        ︷︷        ︸
Grouping

error︸                             ︷︷                             ︸
Epistemic error = distance to best achievable prediction

+ E [d(Q ,Y)]︸        ︷︷        ︸
Irreducible

error

Classifier output

Label distribution

Calibrated score

Expected label
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The grouping error: remainder after calibration [Perez-Lebel... 2023]

An oracle calibration plot

0 1

0

1

Predicted confidence

T
ru

e
p
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b

ab
il

it
y

ECE = 0.0002

GL = 0.0174

ECE = 0.00

GL = 0.01

ECE GL
0.0

0.1

No calibration error
On average
predicted confidence

= true probability

Grouping error
Classifier over-confident on
some samples, under-confident
on others

Measures the dispersion of
scores

Requires access to true probabilities �
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Estimating the grouping loss [Perez-Lebel... 2023]

P(Y=1|X)
         = .2

P(Y=1|X)
          = 1

Estimating true
probabilities on
well-chosen bins

(and controlling errors due to

binning)

Unlike Brier: the ideal classifier has zero grouping loss
removes the irreducible error
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Controlling
uncertainty on predictions

Application need full
probability of error

Controling the individual probability
is possible

[Perez-Lebel... 2023]
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Controlling more than the
binary decision

Machine-learning validation is a
proxy of the error of interest

Broader question: estimating
application risks
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Prediction
to support decision

when predictors should be causal
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Predictors and causal effects

Prognostic model: predicting a health outcome

Health covariate

O
u
tc

o
m

e

Prediction function of intervention (treated Y0(x) vs untreated Y1(x))

For decisions: Individual treatment effect:
comparing predicted outcomes for the same individuals
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Causal inference: distribution shift [Doutreligne and Varoquaux 2023]

Untreated outcomeY0(x)

Treated outcomeY1(x)

Untreated outcomeY0(x)

Treated outcomeY1(x)

Baseline health

Healthy individuals did not receive the treatment
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Causal inference: distribution shift [Doutreligne and Varoquaux 2023]

Untreated outcomeY0(x)

Treated outcomeY1(x)

µ̂a(x)

Untreated outcomeY0(x)

Treated outcomeY1(x)

µ̂a(x)

Baseline health

Standard cross-validation / predictive accuracy not good
Must weight equally errors on treated vs untreated outcome

Healthy individuals did not receive the treatment
The model associates treatment to negative outcomes
A worse predictor gives better causal inference
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Selecting predictors for treatment [Doutreligne and Varoquaux 2023]

Lemma – rewriting of outcome model:

(R-decomposition) y(a) = m(x) +
(
a − e(x)

)
τ(x) + ε(x; a)

(Conditional mean outcome) m(x) def
= EY∼D[Y |X = x],

(Propensity score) e(x) def
= P[A = 1|X = x].

Model-selection procedure
1. Compute m and e on train set (with standard ML tools)

2. On test set, use adjusted risk (“doubly robust”):

R-risk(f) = E(Y ,X ,A)∼D

[(
(Y −m (X)) − (A − e (X)) τf (X)

)2]
Gaël Varoquaux 31

[Nie and Wager 2021]



Prediction
to support decision

A causal question
R-risk
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Raising the bar

Machine learning research
Addressing distribution shifts
Better model validation

Beyond technosolutionism
Stop the overfitting
Right focus
Right incentives
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The soda team: Machine learning for health and social sciences

Machine learning for statistics
Causal inference, biases, missing values

Health and social sciences
Epidemiology, education, psychology

Tabular relational learning
Relational databases, data lakes

Data-science software
scikit-learn, joblib, skrub
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AI gives statistical methods for imperfect theories [Varoquaux 2021]

Model reasoning has no guarantees for imperfect models
Scientific roadblocks are on model ingredients, not functional forms

Gauge models more on their predictions than their ingredients
Scientific inference from model predictions as in [Eickenberg... 2017]

counterfactual reasoning, model comparison, feature importances

Model validation from outputs
Uncertainty beyond calibration

[Perez-Lebel... 2023]

Causal reasonning
[Doutreligne and Varoquaux 2023]

Machine-learning evaluation
[Varoquaux and Colliot 2023]
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