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Introduction

• Increasing use of generative models in 
different aspects of LHC analysis chain


• Proper treatment of uncertainties is not fully 
keeping up: interesting problems


• Will discuss 4 examples:


• Calorimeter Simulation


• Ephemeral learning


• Anomaly Detection


• Surrogate Classifiers
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Overview of generative architectures

→Use generative models trained on 
simulation or data as efficient surrogates
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In this paper, we introduce a method for e�ciently generating jets in the field of High Energy
Physics. Our model is designed to generate ten di↵erent types of jets, expanding the versatility of jet
generation techniques. Beyond the kinematic features of the jet constituents, our model also excels in
generating informative features that provide insight into the types of jet constituents, such as features
that indicate if a constituent is an electron or a photon, o↵ering a more comprehensive understanding
of the generated jets. Furthermore, our model incorporates valuable impact parameter information,
enhancing its potential utility in high-energy physics research.

I. INTRODUCTION

Recently there has been considerable interest and
activity in generative modeling for jet constituents.
While showering and hadronization with standard
programs such as Pythia and Herwig is not a ma-
jor computational bottleneck at the LHC [1] what

about NLO generators?, generative modeling at
the jet constituent level still has potentially far-
reaching applications to anomaly detection [2] and
beyond. More generally it is also an interesting
laboratory for method development. In particular,
it has been fruitful and e↵ective to view the jet
constituents as a high-dimensional point cloud, and
to devise methods for point cloud generative mod-
els that incorporate permutation invariance. This
route has led to a number of state-of-the-art ap-
proaches, recently explored in [3–11], that combine
di↵erent permutation-invariant layers such as trans-
formers [12] and the EPiC layer [4], with state-of-
the-art generative modeling frameworks such as dif-
fusion [13–17] and flow-matching [18–21]. Successful
models developed for jet point clouds can also po-
tentially be adapted to other important point cloud
generative modeling problems such as for fast emu-
lation of GEANT4 calorimeter showers [9, 11].

So far this activity has focused almost exclusively
on the JetNet dataset of [22, 23]. Originally gener-
ated by [24], this dataset was subsequently adopted
in the works of [3] as a useful benchmark dataset
for jet generative modeling. However, the JetNet
dataset has a number of drawbacks that are readily
becoming apparent. First and foremost is the size –
since it is limited in size, there are not enough jets
in JetNet to facilitate the training of state-of-the-art
generative models as well as metrics such as the bi-
nary classifier metric which require additional train-
ing data. Second, JetNet uses small-radius (R = 0.4)
jets, despite saying otherwise in their papers. This

⇤
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FIG. 1: Schematic overview of the di↵erent jet con-
stituent features available in the JetClass dataset.
The horizontal line at the bottom represents the
beam axis and the circle on this line represents the
primary vertex (PV).

can lead to the problem that the decay products are
not fully contained in the jet, which can be seen e.g.
in distributions such as the jet mass for top quarks,
where there is a prominent secondary mass peak.
Finally, JetNet focuses solely on the kinematics of
the jet constituents, whereas there is a wealth of ad-
ditional information inside the jets that could also
be modeled, such as trajectory displacement, charge,
and particle ID as illustrated in Figure 1.

In this work, we introduce the first jet cloud
modeling on the much larger dataset of JetClass.
Other than demonstrating that existing techniques
scale well to this new dataset, we also tackle new
challenges introduced by the JetClass dataset, in-

Jet Constituents

Reduce computational bottleneck Learn from data

Simulation targets
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Fast Geometry-Independent Highly-Granular Calorimeter Simulation 11

Figure 4: Illustration of the reverse di↵usion process. Starting from the initial

noise. The color scale corresponds to the point energy.

on additional quantities beyond multiplicity N and shower energy E.

In principle, one could add additional physically relevant quantities such as

the total visible energy, the center of gravity, or the shower start as explicit

conditioning features. However, such a choice of observables might bias the

generated showers. Instead, we opt for learning an additional global context vector

z to capture any other relevant distributions via an additional encoder.

This encoding is learned by an Equivariant Point Cloud (EPiC) Encoder

using three EPiC layers introduced in Ref. [27] with a hidden dimensionality of

128. The EPiC Encoder is conditioned on E and N and learns to encode the

original Geant4 point cloud into two latent space vectors µ and �. Similar to

the encoder in a VAE, µ and � are regularised towards a Gaussian distribution

with the Kullback-Leibler divergence (KLD) loss and the latent space z is sampled

with the reparametrization trick [44]. The KLD loss is given by:

LKLD = DKL(Z||N (0, 1)) = �
1

2

�
1 + log(�2) � µ2

� �2
�
, (6)

with the latent variables sampled via z ⇠ Z = N (µ,�2). We set the size of z to

256, the default in Ref. [32].

as fixed grid as point cloud 

Simulation targets



24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 18

Bounded Information Bottleneck Autoencoder

•Combines VAE and GAN approaches

•Final Post Processor network for fine tuning
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Slava Voloshynovskiy et al.: 
Information bottleneck through 
variational glasses: 1912.00830


24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 2020

Cell Energy Spectrum
Photons Pions

BIB-AE (GAN + VAE): 
1st simulation of Photon 
shower in 27k cell 
calorimeter

24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 16

Shower Dataset
Training data:

•Photons / charged Pions

•1 million / 500k showers 

•10 to 100 GeV

•Fixed incident point & angle

•Project to grid

•30×30×30 / 25×25×48

Photon shower 

Buhmann et. al. Hadrons, Better, Faster, 
Stronger: (2021) 2112.09709 

Charged pion shower

Buhmann et al.: Getting High: High Fidelity 
Simulation of High Granularity Calorimeters 
with High Speed (2020) 2005.05334 

Generative progress

Buhmann, .., GK et al 2005.05334
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Photons Pions

Progress
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Handle more complex 
pion showers

Buhmann, .., GK et al 2112.09709;

24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 2020

Cell Energy Spectrum
Photons Pions
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Generative progress

Extend to condition on 
angles

Diefenbacher, .., GK et al 2303.18150
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We use generative models as surrogates to 
speed-up calorimeter shower simulations.


We advance these models in three major directions:
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Figure 5: Left: Histogram of the cell energies. Right: Num-
ber of hits distributions for single energies at 10, 50, and
90 GeV. The bottom panel provides the ratio to GEANT4.
Figures taken from Ref. [39].

Finally, we distill this model into132

CALOCLOUDS II (CM), a consis-133

tency model (CM) [50] allowing for134

single shot generation without loss135

in fidelity. The diffusion model ar-136

chitecture uses weight sharing among137

all points, hence it samples all points138

independently and identically dis-139

tributed (i.i.d.) with respect to the140

global conditioning. Due to the141

computational efficiency of CALO-142

CLOUDS and the linear scaling of the143

computing cost with the point cloud144

size, the models can be applied to145

point clouds with a higher granularity146

than the actual physical sensors. This147

way, the models become largely cell148

geometry-independent, and showers149

can be projected into any part of the150

detector (except changing its depth)151

with minimal artifacts. We generated such a dataset with GEANT4 using photon showers with152

energies between 10 and 90 GeV. The dataset contains point clouds with up to 6,000 points per153

shower — noticeably higher than the number of cell hits (< 1, 500).154

Table 1: Comparison of the computational perfor-
mance of CALOCLOUDS, CALOCLOUDS II, and CALO-
CLOUDS II (CM) to the baseline GEANT4 simulator on
a single CPU core. The number of function evaluations
(NFE) indicate the number of diffusion model passes.
Table adapted from Ref. [39].

Simulator NFE Time / Shower [ms] Speed-up

GEANT4 3914.80 ± 74.09 ⇥1

CALOCLOUDS 100 3146.71 ± 31.66 ⇥1.2
CALOCLOUDS II 25 651.68 ± 4.21 ⇥6.0
CALOCLOUDS II (CM) 1 84.35 ± 0.22 ⇥46

We compare the generative fidelity of the155

CALOCLOUDS variants to GEANT4 with156

various cell-level and shower-level observ-157

ables after projecting the point cloud to the158

real ILD ECAL geometry with 30 layers159

each containing 30⇥30 cells. Fig. 5 shows160

the cell energy distribution for the full en-161

ergy spectrum and the number of hits (non-162

zero cells) for single energy showers. Over-163

all, both CALOCLOUDS II models improve164

upon CALOCLOUDS and reach a high fi-165

delity compared to GEANT4.166

In Tab. 1 we benchmark the speed-up of the167

CALOCLOUDS models over the GEANT4168

simulation. For a fair comparison the per-169

formance is compared on the same single CPU core, as GEANT4 does not support GPUs, and CPUs170

are cheaper and more widely available. Using consistency distllation, the CALOCLOUDS II (CM)171

model is able to generate photon showers 46⇥ faster than GEANT4. A comparison to the BIB-AE172

and L2LFLOWS models is not performed as the data structures are too different to allow for a fair173

compairson. More details on the CALOCLOUDS models can be found in Refs. [35, 39].174

5 Conclusion175

We have shown recent advances on three different frontiers in the generative modelling of calorimeter176

showers. Eventually we envision a model that combines all three: flexible conditional sampling,177

high fidelity, and computational efficiency. For the already established models, further fidelity and178

timing studies with common benchmark metrics datasets with the same dimensionalities should179

be performed. A valuable comparison is currently undertaken in form of the Fast Calorimeter180

Challenge [51]. Beyond photon showers, we plan to explore the generative modelling of hadronic181

showers, which are more challenging to model due to their more complex shower topology. For182

CALOCLOUDS this will likely necessitate a more complex model architecture taking inter-point183

correlations during sampling into account, e.g. by using linearly scalable EPiC layers [46] introduced184

for particle jet modelling. Finally, ongoing efforts are made to include the generative models as a185

drop-in replacement for parts the full GEANT4 simulation pipeline.186
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We use generative models as surrogates to 
speed-up calorimeter shower simulations.


We advance these models in three major directions:
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Figures taken from Ref. [39].

Finally, we distill this model into132

CALOCLOUDS II (CM), a consis-133

tency model (CM) [50] allowing for134

single shot generation without loss135

in fidelity. The diffusion model ar-136

chitecture uses weight sharing among137

all points, hence it samples all points138

independently and identically dis-139

tributed (i.i.d.) with respect to the140

global conditioning. Due to the141

computational efficiency of CALO-142

CLOUDS and the linear scaling of the143

computing cost with the point cloud144

size, the models can be applied to145

point clouds with a higher granularity146

than the actual physical sensors. This147

way, the models become largely cell148

geometry-independent, and showers149

can be projected into any part of the150

detector (except changing its depth)151

with minimal artifacts. We generated such a dataset with GEANT4 using photon showers with152

energies between 10 and 90 GeV. The dataset contains point clouds with up to 6,000 points per153

shower — noticeably higher than the number of cell hits (< 1, 500).154

Table 1: Comparison of the computational perfor-
mance of CALOCLOUDS, CALOCLOUDS II, and CALO-
CLOUDS II (CM) to the baseline GEANT4 simulator on
a single CPU core. The number of function evaluations
(NFE) indicate the number of diffusion model passes.
Table adapted from Ref. [39].

Simulator NFE Time / Shower [ms] Speed-up

GEANT4 3914.80 ± 74.09 ⇥1

CALOCLOUDS 100 3146.71 ± 31.66 ⇥1.2
CALOCLOUDS II 25 651.68 ± 4.21 ⇥6.0
CALOCLOUDS II (CM) 1 84.35 ± 0.22 ⇥46

We compare the generative fidelity of the155

CALOCLOUDS variants to GEANT4 with156

various cell-level and shower-level observ-157

ables after projecting the point cloud to the158

real ILD ECAL geometry with 30 layers159

each containing 30⇥30 cells. Fig. 5 shows160

the cell energy distribution for the full en-161

ergy spectrum and the number of hits (non-162

zero cells) for single energy showers. Over-163

all, both CALOCLOUDS II models improve164

upon CALOCLOUDS and reach a high fi-165

delity compared to GEANT4.166

In Tab. 1 we benchmark the speed-up of the167

CALOCLOUDS models over the GEANT4168

simulation. For a fair comparison the per-169

formance is compared on the same single CPU core, as GEANT4 does not support GPUs, and CPUs170

are cheaper and more widely available. Using consistency distllation, the CALOCLOUDS II (CM)171

model is able to generate photon showers 46⇥ faster than GEANT4. A comparison to the BIB-AE172

and L2LFLOWS models is not performed as the data structures are too different to allow for a fair173

compairson. More details on the CALOCLOUDS models can be found in Refs. [35, 39].174

5 Conclusion175

We have shown recent advances on three different frontiers in the generative modelling of calorimeter176

showers. Eventually we envision a model that combines all three: flexible conditional sampling,177

high fidelity, and computational efficiency. For the already established models, further fidelity and178

timing studies with common benchmark metrics datasets with the same dimensionalities should179

be performed. A valuable comparison is currently undertaken in form of the Fast Calorimeter180

Challenge [51]. Beyond photon showers, we plan to explore the generative modelling of hadronic181

showers, which are more challenging to model due to their more complex shower topology. For182

CALOCLOUDS this will likely necessitate a more complex model architecture taking inter-point183

correlations during sampling into account, e.g. by using linearly scalable EPiC layers [46] introduced184

for particle jet modelling. Finally, ongoing efforts are made to include the generative models as a185

drop-in replacement for parts the full GEANT4 simulation pipeline.186
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Figure 4: Overlay of 95k showers for all simulators for the full spectrum, where the voxel energies
are summed along the I- (top), G- (middle) and H-axis (bottom). In all plots, the mean over the
number of showers is taken. For G����4, the shown colormap is the energy scale, whereas for
the BIB-AE and L2LF����, the colormap (both generative networks make use of the same one)
corresponds to the relative deviations to G����4, defined in Eqs. 4.1 and 4.2.

about 1%, for L2LF���� the deviation is everywhere below 0.75%. For the width plot,7 the relative

7One might be tempted to call d90 the “resolution”, but because of the different thicknesses of the tungsten absorber
layers, cf. Sec. 2, this is not the case [12].
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Figure 4: Overlay of 95k showers for all simulators for the full spectrum, where the voxel energies
are summed along the I- (top), G- (middle) and H-axis (bottom). In all plots, the mean over the
number of showers is taken. For G����4, the shown colormap is the energy scale, whereas for
the BIB-AE and L2LF����, the colormap (both generative networks make use of the same one)
corresponds to the relative deviations to G����4, defined in Eqs. 4.1 and 4.2.

about 1%, for L2LF���� the deviation is everywhere below 0.75%. For the width plot,7 the relative

7One might be tempted to call d90 the “resolution”, but because of the different thicknesses of the tungsten absorber
layers, cf. Sec. 2, this is not the case [12].
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Figure 2: Illustration of the training and sampling procedure of the CaloClouds

architecture. The separate training of the Shower Flow and the Latent Flow is not

shown.

in a conditional point cloud di↵usion model termed PointWise Net.

During sampling, the encoded latent space is generated with a conditional

Latent Flow model. Since this Latent Flow needs to be conditioned on the

incident energy and the number of points, a second Shower Flow is employed

during sampling to generate an appropriate number of points from a requested

incident energy. This way, the only conditional variable for the whole model is

the particle incident energy E. Additionally, the Shower Flow generates the total

visible energy of the calorimeter point cloud Esum as well as the number of points

per layer Nz,i for a post-di↵usion calibration of the generated point cloud.
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Figure 4: Illustration of the reverse di↵usion process. Starting from the initial

noise. The color scale corresponds to the point energy.

on additional quantities beyond multiplicity N and shower energy E.

In principle, one could add additional physically relevant quantities such as

the total visible energy, the center of gravity, or the shower start as explicit

conditioning features. However, such a choice of observables might bias the

generated showers. Instead, we opt for learning an additional global context vector

z to capture any other relevant distributions via an additional encoder.

This encoding is learned by an Equivariant Point Cloud (EPiC) Encoder

using three EPiC layers introduced in Ref. [27] with a hidden dimensionality of

128. The EPiC Encoder is conditioned on E and N and learns to encode the

original Geant4 point cloud into two latent space vectors µ and �. Similar to

the encoder in a VAE, µ and � are regularised towards a Gaussian distribution

with the Kullback-Leibler divergence (KLD) loss and the latent space z is sampled

with the reparametrization trick [44]. The KLD loss is given by:

LKLD = DKL(Z||N (0, 1)) = �
1

2

�
1 + log(�2) � µ2

� �2
�
, (6)

with the latent variables sampled via z ⇠ Z = N (µ,�2). We set the size of z to

256, the default in Ref. [32].
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We advance these models in three major directions:
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Finally, we distill this model into132

CALOCLOUDS II (CM), a consis-133

tency model (CM) [50] allowing for134

single shot generation without loss135

in fidelity. The diffusion model ar-136

chitecture uses weight sharing among137

all points, hence it samples all points138

independently and identically dis-139

tributed (i.i.d.) with respect to the140

global conditioning. Due to the141

computational efficiency of CALO-142

CLOUDS and the linear scaling of the143

computing cost with the point cloud144

size, the models can be applied to145

point clouds with a higher granularity146

than the actual physical sensors. This147

way, the models become largely cell148

geometry-independent, and showers149

can be projected into any part of the150

detector (except changing its depth)151

with minimal artifacts. We generated such a dataset with GEANT4 using photon showers with152

energies between 10 and 90 GeV. The dataset contains point clouds with up to 6,000 points per153

shower — noticeably higher than the number of cell hits (< 1, 500).154

Table 1: Comparison of the computational perfor-
mance of CALOCLOUDS, CALOCLOUDS II, and CALO-
CLOUDS II (CM) to the baseline GEANT4 simulator on
a single CPU core. The number of function evaluations
(NFE) indicate the number of diffusion model passes.
Table adapted from Ref. [39].

Simulator NFE Time / Shower [ms] Speed-up

GEANT4 3914.80 ± 74.09 ⇥1

CALOCLOUDS 100 3146.71 ± 31.66 ⇥1.2
CALOCLOUDS II 25 651.68 ± 4.21 ⇥6.0
CALOCLOUDS II (CM) 1 84.35 ± 0.22 ⇥46

We compare the generative fidelity of the155

CALOCLOUDS variants to GEANT4 with156

various cell-level and shower-level observ-157

ables after projecting the point cloud to the158

real ILD ECAL geometry with 30 layers159

each containing 30⇥30 cells. Fig. 5 shows160

the cell energy distribution for the full en-161

ergy spectrum and the number of hits (non-162

zero cells) for single energy showers. Over-163

all, both CALOCLOUDS II models improve164

upon CALOCLOUDS and reach a high fi-165

delity compared to GEANT4.166

In Tab. 1 we benchmark the speed-up of the167

CALOCLOUDS models over the GEANT4168

simulation. For a fair comparison the per-169

formance is compared on the same single CPU core, as GEANT4 does not support GPUs, and CPUs170

are cheaper and more widely available. Using consistency distllation, the CALOCLOUDS II (CM)171

model is able to generate photon showers 46⇥ faster than GEANT4. A comparison to the BIB-AE172

and L2LFLOWS models is not performed as the data structures are too different to allow for a fair173

compairson. More details on the CALOCLOUDS models can be found in Refs. [35, 39].174

5 Conclusion175

We have shown recent advances on three different frontiers in the generative modelling of calorimeter176

showers. Eventually we envision a model that combines all three: flexible conditional sampling,177

high fidelity, and computational efficiency. For the already established models, further fidelity and178

timing studies with common benchmark metrics datasets with the same dimensionalities should179

be performed. A valuable comparison is currently undertaken in form of the Fast Calorimeter180

Challenge [51]. Beyond photon showers, we plan to explore the generative modelling of hadronic181

showers, which are more challenging to model due to their more complex shower topology. For182

CALOCLOUDS this will likely necessitate a more complex model architecture taking inter-point183

correlations during sampling into account, e.g. by using linearly scalable EPiC layers [46] introduced184

for particle jet modelling. Finally, ongoing efforts are made to include the generative models as a185

drop-in replacement for parts the full GEANT4 simulation pipeline.186
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Figure 4: Overlay of 95k showers for all simulators for the full spectrum, where the voxel energies
are summed along the I- (top), G- (middle) and H-axis (bottom). In all plots, the mean over the
number of showers is taken. For G����4, the shown colormap is the energy scale, whereas for
the BIB-AE and L2LF����, the colormap (both generative networks make use of the same one)
corresponds to the relative deviations to G����4, defined in Eqs. 4.1 and 4.2.

about 1%, for L2LF���� the deviation is everywhere below 0.75%. For the width plot,7 the relative

7One might be tempted to call d90 the “resolution”, but because of the different thicknesses of the tungsten absorber
layers, cf. Sec. 2, this is not the case [12].

– 9 –

Fast Geometry-Independent Highly-Granular Calorimeter Simulation 11

Figure 4: Illustration of the reverse di↵usion process. Starting from the initial

noise. The color scale corresponds to the point energy.

on additional quantities beyond multiplicity N and shower energy E.

In principle, one could add additional physically relevant quantities such as

the total visible energy, the center of gravity, or the shower start as explicit

conditioning features. However, such a choice of observables might bias the

generated showers. Instead, we opt for learning an additional global context vector

z to capture any other relevant distributions via an additional encoder.

This encoding is learned by an Equivariant Point Cloud (EPiC) Encoder

using three EPiC layers introduced in Ref. [27] with a hidden dimensionality of

128. The EPiC Encoder is conditioned on E and N and learns to encode the

original Geant4 point cloud into two latent space vectors µ and �. Similar to

the encoder in a VAE, µ and � are regularised towards a Gaussian distribution

with the Kullback-Leibler divergence (KLD) loss and the latent space z is sampled

with the reparametrization trick [44]. The KLD loss is given by:

LKLD = DKL(Z||N (0, 1)) = �
1

2

�
1 + log(�2) � µ2

� �2
�
, (6)

with the latent variables sampled via z ⇠ Z = N (µ,�2). We set the size of z to

256, the default in Ref. [32].
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Figure 1: Illustration of the training and sampling procedure of the

CaloClouds II model. When sampling with CaloClouds II (CM) only one

denoising step is performed.

of points Nuncal,G4 to the number of cell hits Ncell,G4 of the Geant4 showers

and pgen is a fit of the ratio of number of cell hits Ncell, gen to the (uncalibrated)

number of points Nuncal, gen of a given model. Hence, this polynomial fit pgen is

performed for each model separately. More details on the model components and

the calibrations can be found in Ref [40]. A schematic overview of the training

and sampling procedure is shown in Fig. 1.

In the following Sec. 3.1 we describe the continuous time di↵usion paradigm

implemented in the CaloClouds II model and in Sec. 3.2 we outline its

distillation into a consistency model, referred to as CaloClouds II (CM). Both

models use the same model components outlined above. Details on the training

and sampling hyperparameters are outlined in Sec. 3.3.

3.1. Di↵usion Model

The di↵usion model [34] used in the CaloClouds model is a Denoising Di↵usion

Probabilistic Model (DDPM) with the same discrete time steps during model

training and sampling [37,85]. Since the introduction of DDPM, subsequent works,

i.e. Refs. [38,67,86], have shown that it is advantageous to train a di↵usion model

with continuous time conditioning. This allows for a more flexible sampling regime

for which various SDE and ODE solvers with either a fixed or an adaptive number

of solving steps can be applied.

In the following, we outline the key parts of a di↵usion model based on the

paradigm outlined in Ref. [67]. The training of a di↵usion model starts by di↵using
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Figure 3: Histogram of the cell energies (left), radial shower profile (center), and

longitudinal shower profile (right) for Geant4, CaloClouds, CaloClouds II,

and CaloClouds II (CM). In the cell energy distribution, the region below

0.1 MeV is grayed out (see main text for details). All distributions are calculated

with 40,000 events sampled with a uniform distribution of incident particle energies

between 10 and 90 GeV. The bottom panel provides the ratio to Geant4. Values

outside the range are indicated by small triangles.

4.1. Physics Performance

In this Section, we compare various calorimeter shower distributions from Ref. [40]

between the Geant4 test set and datasets generated using CaloClouds,

CaloClouds II, and CaloClouds II (CM). First, we compare various cell-level

and shower observables calculated from the model generated showers to Geant4

simulations with samples of incident photons with energies uniformly distributed

between 10 and 90 GeV (also referred to as full spectrum). In Fig. 3 we investigate

three representations of the energy distributed in the calorimeter cells, namely

the per-cell energy distribution (left), the radial shower profile (center) and the

longitudinal shower profile (right). The per-cell energy distribution contains the

energy of the cells of all showers in the test dataset. The peak of the distribution at

about 0.2 MeV corresponds to the most probable energy deposition of a minimum

ionising particle (MIP) in the silicon sensor. For downstream analyses a cell energy

cut at half a MIP is applied, since below this threshold the sensor response is

indistinguishable from electronic noise. Hence this cut was applied to all showers

when calculating the shower observables and scores in this section. All models
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Hardware Simulator NFE Batch Size Time / Shower [ms] Speed-up

CPU Geant4 3914.80 ± 74.09 ⇥1

CaloClouds 100 1 3146.71 ± 31.66 ⇥1.2

CaloClouds II 25 1 651.68 ± 4.21 ⇥6.0

CaloClouds II (CM) 1 1 84.35 ± 0.22 ⇥46

GPU CaloClouds 100 64 24.91 ± 0.72 ⇥157

CaloClouds II 25 64 6.12 ± 0.13 ⇥640

CaloClouds II (CM) 1 64 2.09 ± 0.13 ⇥1873

Table 3: Comparison of the computational performance of CaloClouds,

CaloClouds II, and CaloClouds II (CM) to the baseline Geant4 simulator

on a single core of an Intel® Xeon® CPU E5-2640 v4 (CPU) and on an NVIDIA®

A100 with 40 GB of memory (GPU). 2,000 showers were generated with incident

energy uniformly distributed between 10 and 90 GeV. Values presented are the

means and standard deviations over 10 runs. The number of function evaluations

(NFE) indicate the number of di↵usion model passes.

On GPU the CaloClouds model achieves a speed up of 157⇥,

CaloClouds II achieves 640⇥, and CaloClouds II (CM) achieves 1873⇥

speed up over the baseline Geant4 simulation on a single CPU. Note that

Geant4 is currently not compatible with GPUs and that GPUs are significantly

more expensive than CPUs.

For reference, the training of the CaloClouds model on similar NVIDIA®

A100 GPU hardware took around 80 hours for 800k iterations with a batch size

of 128, while training of the CaloClouds II model took around 50 hours for

2 million iterations with the same batch size. The consistency distillation for 1

million iterations with a batch size of 256 took about 100 hours.

The speed up between CaloClouds and CaloClouds II is the result of

a combination of the improved di↵usion paradigm requiring a reduced number of

function evaluations as well as the removal of the latent flow. The speed up due to

the consistency model in CaloClouds II (CM) yields another large factor, since

only a single model evaluation is performed. Both models would be slightly slower

when applied in conjunction with the Latent Flow of the CaloClouds model as
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Figure 6. Comparison of the visible energy and number of active hits between
Geant4 and the di↵erent generative models for three selected pion energies. The
number of hits in the right plot is calculated after applying a cuto↵ at 0.5 MIP.

Figure 7. Mean (µ90, left) and relative width (�90/µ90, right) at generator level for
pions with various incident energies. In order to avoid edge e↵ects, the phase space
boundary regions of 10 and 100 GeV are removed for the response and resolution
studies. In the bottom panels, the relative o↵set of these quantities with respect to
the Geant4 simulation is shown.
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simulation-reconstruction chain. To ensure a consistent comparison, the Geant4 data

undergoes the same projection/conversion operation as the WGAN and BIB-AE.

Figure 8 shows the same quantities presented in Fig. 7, but now at the

reconstruction level. The leftmost plot shows that the position of the mean is well

captured in the middle range of energies by both the models. Likewise, both models

display some larger discrepancies, up to 3-5% in the high and low energy sections, but

still have a reasonable agreement with Geant4. The relative width on the right plot

shows a fairly good agreement for the WGAN for the middle incident energies. On

the edge regions, however, up to 20% di↵erences for the BIB-AE and up to 40% for the

WGAN are present. It is worth noting that our models andGeant4 have better relative

width compared to the generator level as PandoraPFA uses a software compensation

algorithm [51] that improves the energy reconstruction of clusters by weighting hits

depending on their hit energy density.

Figure 8. Mean (µ90, left) and relative width (�90/µ90, right) at reconstruction level
for pions with various incident energies. In order to avoid edge e↵ects, the phase space
boundary regions of 10 and 100 GeV are removed for the response and resolution
studies. In the bottom panels, the relative o↵set of these quantities with respect to
the Geant4 simulation is shown.

4.3 Computing Times

The prime objective for using generative models in particle physics is to reduce the time

and cost per simulated sample. To do so, we benchmark the per-shower generation time

both on CPU and GPU hardware architectures. Fixed factors, such as initial sample

generation and network training time, are not included in this accounting, as they are

Without reconstruction

With reconstruction

→ Non-linear effects 
of reconstruction can 
change relative performance
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FIG. 2: The weights of the low-level and high-level Dctr
models. The top plot presents histograms of the weights and
the bottom plot presents a scatter plot demonstrating the cor-
relation between the weights of the two models. The Pearson
correlation (⇢) is indicated in the plot.

tween 1-10 while the Gan is many ten-thousand times
faster than Geant4 [39].

Three composite observables are presented in Fig. 3.
The total number of activated cells is more peaked
around 780 in Geant4 than the Gan and both the low-
level and high-level models are able to significantly im-
prove the agreement with Geant4. The value of hS2i
is about 20 times smaller than the unweighted Gan for
the high-level Dctr model and about 5 times smaller for
the low-level model. The statistical dilution is modest for
the low-level model with r = 1.2 while it is 3.6 for the
high-level model. The modeling of the total energy is
also improved through the reweighting, where both the
low-level and high-level models shift the energy towards
lower values. The longitudinal centroid is already rela-
tively well-modeled by the Gan, but is further improved
by the high-levelDctrmodel, reducing the hS2i by more
than a factor of two.

Histograms of the energy in representative layers are
shown in Fig. 4. Generally, the Geant4 showers pen-
etrate deeper into the calorimeter than the Gan show-
ers, so the energy in the early layers is too high for the
Gan and the energy in the later layers is too low. The
Dctr models are able to correct these trends, with a sys-
tematically superior fidelity as measured by hS2i for the
high-level model.

The modeling of correlations between layers is probed

FIG. 3: Histograms of various observables from simulated
calorimeter showers of 50 GeV photons in a 5-layer calorime-
ter with 30 ⇥ 30 cells in each layer. A cell is activated if a
non-zero energy is registered in that cell. The panels below
each histogram show the ratio between the Gan or the Dctr-
Gan and the physics-based simulator Geant4. The legend
includes the separation power hS2i between the (weighted)
Gan model and the Geant4 model. Additionally, the ratio r
of the uncertainty in the mean of the observable between the
Gan and Geant4 is also presented.

Train classifiers to reweight 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• Possible alternative: 


• Train a generative model online during data taking
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1 Introduction

The ATLAS and CMS experiments at the Large Hadron Collider (LHC) produce data rates
around 40 terabytes per second and per experiment [1,2], a number that will increase further
for the high-luminosity upgrades [3, 4]. These rates are far too large to record all events, so
these experiments use triggers to quickly select potentially interesting collisions, while discard-
ing the rest [5–8]. The first two trigger stages are a hardware-based low-level trigger, selecting
events with µs-level latency, and a software-based high-level trigger with 100 ms-level latency.
After these two trigger stages, some interesting event classes, such as events with one highly-
energetic jet, still have too high rates to be stored. They are recorded using prescale factors,
essentially a random selection of events to be saved. An additional strategy to exploit events
which cannot be triggered on systematically is data scouting, or trigger-level analysis [9–12].
Through fast online algorithms, parts of the reconstruction are performed at trigger level, and
significantly smaller, reconstructed physics objects are stored instead of the entire raw event.
This physics-inspired compression increases the number of available events dramatically, with
the caveat that the raw events will not be available for offline analyses.

Using machine learning (ML) to increase the trigger efficiency is a long-established idea [13],
and simple neural networks for jet tagging have been used, for example, in the CMS high-
level trigger [14]. The advent of ML-compatible field-programmable gate arrays (FPGAs) has
opened new possibilities for employing such classification networks even at the low-level trig-
ger [15–21]. ML-inference on FPGAs is making rapid progress, but the training of e.g. graph-
based networks on such devices is still an active area of research. At the same time, the
available resources limit the size and therefor complexity of possible ML models.
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Figure 1: Illustration of data compression at the LHC. Most analyses are performed
offline, based on entire events and lossless compression (left). Data scouting employs
lossy compression per event (center). Our method compresses an entire data set by
learning a generative model for events x in terms of network parameters ✓ (right).

We propose a new strategy, complementary to current trigger strategies and related meth-
ods, where instead of saving individual events, an online-trained generative ML-model learns
the underlying structure of the data. The advantage of our strategy, illustrated in Fig. 1, is its
fixed memory and storage footprint. While in a traditional trigger setup more events always
require more storage, the size of the generative model is determined by the number of param-
eters. Additional data increases the accuracy of these parameters at fixed memory size, until
the capacity of the model is reached. In practice, we envision an online generative model to
augment data taking at the HLT level† and act as a scouting tool in regions currently swamped
by background. However, a sufficiently optimized version of this approach could transform

†as training (as opposed to inference) models on FPGA hardware deployed at earlier trigger stages is currently
not possible
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• Fixed size, independent of training data amount


• Radically different format from usual way of storing data, but 
might open up new approaches
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Measurement
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Figure 2: Illustration of the proposed workflow. First, we train a generative model on
all incoming events (online). Then, we use the trained model to generate data and
analyze the generated data for signs of new physics (offline). If necessary, we adjust
the trigger to take new data accordingly (online) and analyze that data (offline).

While our idea is not tied to specific generative models, normalizing flows (NF) [28–31]
are especially well suited due to their stable training. This allows us to train our ONLINEFLOW

without stopping criterion, a property well suited for training online. Furthermore, NFs have
been shown to precisely learn complex distributions in particle physics [32–42]. The statistical
benefits of using generative models are discussed in Ref. [43], for a discussion of training-
related uncertainties using Bayesian normalizing flows see Refs. [44,45].

The properties of online training, specifically seeing every event independently and only
once, are in tension with training generative models. Such models perform best when they
have the option to look at data points more than once. Additionally, processing several events
at the same time should allow the model to train significantly faster through the use of GPU-
based parallelization and stochastic gradient descent. This is why we follow a hybrid approach:
incoming events are collected in a buffer with size Nbuff. Once this buffer is full, it is passed
to the network, which processes the information in batches of size Nbatch. This process is
iterated over Niter times. After this, the buffer is discarded and replaced by the next buffer. We
visualize this scheme in Fig. 3. In addition to aiding the network training, this hybrid training
also decouples the network training rate from the data rate, as we can continuously adapt Niter
to ensure the network is done with the current buffer by the time the next is filled. Additional
technical details, including the estimation of uncertainties, of our approach are discussed in
the context of the examples presented below.

3 Parametric example

We first illustrate our strategy for a 1-dimensional parametric example. While in practice it
would be straightforward to store at least a histogram for any given 1-dimensional observ-
able, this scenario still allows us to explore how generative training and subsequent statistical
analysis approaches need to be modified for the ephemeral learning task.
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Figure 4: Illustration of our 1-dimensional, exponentially falling, mass spectrum. B
denotes background events, S is the signal, following the truth distributions of Eq.(1).
The ONLINEFLOW histogram shows 10M events generated after training on S + B.

training samples for the statistical uncertainty, we use bootstrapping. Creating classical boot-
strapped ensembles is not possible because we do not have the full dataset to resample from
with replacement. Instead, we use an online-compatible version whereby each event in each
bootstrapped ensemble is given a weight that is Poisson distributed with unit mean. These
weights are independent for each flow in the ensemble and are kept constant as the flow iter-
ates over one buffer. We leave the further exploration of this ad hoc solution and alternative
methods such as Bayesian flows [44,51,52] to the future.

3.2 Classical bump hunt benchmark

Our goal is to compare how well a potential signal can be extracted from flow-generated
events, vs. a range of classical offline analyses, consisting of standard bump hunts on the
training data reduced by different levels of prescale triggers. First, we describe our procedure
for the latter.

We use SCIPY [53] to fit a background model to the mass histogram of Npre = Ndata/ fpre

events, where Ndata = 5 ⇥ 106 and fpre is the prescale factor. We find that the following
background model fits the data well:

p(x) = ↵ e�� x+�x2+�x3+✏x4+⇣x5
, (2)

with best fit parameters that depend on fpre.
We supply this background model to BUMPHUNTER [54] to identify the most likely signal

region. Our BUMPHUNTER-setup scans the emulated mass ranging from 0 to 5, divided into 50
bins, with a minimal signal window size of two bins and maximal window size of six. Given
the data, BUMPHUNTER extracts a lower and an upper bound on the most likely bump position
and defines our signal region. We then extract the local significance as

significance=
O� Bp

B
⌘ Sp

B
, (3)

ization and training are negligible compared to the data statistical uncertainty. If this is not the case, one could
reduce these with further ensembling.
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region. Our BUMPHUNTER-setup scans the emulated mass ranging from 0 to 5, divided into 50
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Figure 5: Example of the BUMPHUNTER used on the training data, based on the
background model of Eq.(2). Dotted lines indicate the upper and lower bounds of
the signal region. The lower panel shows the significance.

where B is the number of background events predicted in the signal region, and S is defined
as the number of observed events O minus background model. As the prescale factor is in-
creased, we expect the local statistical significance of the bump hunt to decrease as 1/

∆
fpre.

We illustrate an example of the classical analysis in Fig. 5, corresponding to fpre = 1 (i.e. using
the full 5M training data). We see that the background model agrees well with the data over
the entire range, except for the identified signal region (and the surrounding regions, which
must compensate for the excess).

3.3 ONLINEFLOW performance

For ONLINEFLOW, we train (in the online fashion described above) on the full 5M events, and
use an ensemble of networks to generate 100M events, combined into one large set. This
large number is used to make the statistical uncertainty from sampling negligible compared
with other sources of uncertainty. We again fit the same background model, Eq.(2), to the
mass histogram of these 100M events, and find the best fit parameters to be

↵= 1.0099194(5) � = 1.020952(15) �= 0.03216(4)
� = �0.017450(14) ✏= 0.003913(1) ⇣ = �0.00031395(1) . (4)

While the background model is trained on a large sample of flow-generated data, its �2

for the smaller set of training events and a smaller set of flow-generated events is excellent
(�2/dof⇡ 1) and consistent with each other. We have also checked that changing the analytic
form of the background model has little effect on our results.

As for the classical analysis, the best-fit background model is then input to BUMPHUNTER

in order to identify the most likely signal region. To reduce the chance of mistaking imperfect
network trainings for a signal, we randomly split our model ensemble into two equal parts,
other splits being possible as well (such as k-folding; see e.g., Refs. [55,56]). The first ensemble
of ten networks defines the signal region using BUMPHUNTER. Given the signal region, we then
use the second ensemble of ten networks to compare the number of generated events in the
signal region to the predicted background.

7
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Figure 2: Quantile error for the 1D camel back function for sampling (blue), fit (green), and
GAN (orange). We fit to and train on 100 data points, but also show (hypothetical) results
for larger data sets with 200, 300, 500 and 1000 data points (dotted blue). These results were
obtained using the same procedure as for the sample, but they have no influence on the GAN
or fit. Left to right we show results for 10, 20, and 50 quantiles.

populated 1D-phase space, the assumed functional value for the fit allows the data to have the
same statistical power as a dataset with no knowledge of the functional form that is 10 times
bigger. If we define the amplification factor as the ratio between asymptotic performance to
training events, the factor when using the fit information would be about 10. The question
is, how much is a GAN with its very basic assumptions worth, for instance in comparison to
this fit?

We introduce a simple generative model using the generator-discriminator structure of a
standard GAN. This architecture remains generic in the sense that we do not use specific
knowledge about the data structure or its symmetries in the network construction. Our setup
is illustrated in Fig. 3. All neural networks are implemented using PyTorch [48]. The
generator is a fully connected network (FCN). Its input consists of 1000 random numbers,
uniformly sampled from [�1, 1]. It is passed to seven layers with 256 nodes each, followed by
a final output layer with d nodes, where d is the number of phase space dimensions. To each
fully-connected layer we add a 50% dropout layer [49] to reduce over-fitting which is kept
active during generation. The generator uses the ELU activation function [50].

The discriminator is also a FCN. In a naive setup, our bi-modal density makes us especially
vulnerable to mode collapse, where the network simply ignores one of the two Gaussians. To
avoid it, we give it access to per-batch statistics in addition to individual examples using an
architecture inspired by DeepSets [51, 52]. This way its input consists of two objects, a data
point x 2 Rd and the full batch B 2 Rd,n, where n is the batch size and x corresponds to one
column in B. First, we calculate the di↵erence vector between x and every point in B, B� x
with appropriate broadcasting, so that B � x 2 Rd,n as well. This gives the discriminator a
handle on the distance of generated points. This distance is passed to an embedding function
� : Rd,n ! Rm,n, where m the size of the embedding. The embedding � is implemented as
three 1D-convolutions (256 filters, 256 filters, m filters) with kernel size 1, stride 1 and no
padding. Each of the convolutions uses a LeakyReLU [53] activation function with a slope
of 0.01. For the embedding size we choose m = 32.

We then use an aggregation function F : Rm,n ! Rm along the batch-size direction. The

5

SciPost Physics Submission

2 One-dimensional camel back

The first function we study is a one-dimensional camel back, made out of two normalized
Gaussians Nµ,�(x) with mean µ and width �,

P (x) =
N�4,1(x) +N4,1(x)

2
. (1)

We show this function in Fig. 1, together with a histogrammed data set of 100 points. We
choose this small training sample to illustrate the potentially dramatic improvement from a
generative network especially for an increasing number of dimensions. As a benchmark we
define a 5-parameter maximum-likelihood fit, where we assume that we know the functional
form and determine the two means, the two widths and the relative height of the Gaussians in
Eq. (1). We perform this fit using the iminuit [46] and probfit [47] Python packages. The
correctly assumed functional form is much more than we can encode in a generative network
architecture, so the network will not outperform the precision of this fit benchmark. On the
other hand, the fit illustrates an optimal case, where in practice we usually do not know the
true functional form.

To quantify the agreement for instance between the data sample or the fit on the one hand
and the exact form on the other, we introduce 10, 20, or 50 quantiles. We illustrate the case
of 10 quantiles also in Fig.1. We can evaluate the quality of an approximation to the true
curve by computing the average quantile error

MSE =
1

Nquant

NquantX

j=1

✓
xj �

1

Nquant

◆2

, (2)

where xj is the estimated probability in each of the Nquant quantiles, which are defined with
known boundaries. In a first step, we use this MSE to compare

1. low-statistics training sample vs true distribution;

2. fit result vs true distribution.

In Fig. 2 the horizontal lines show this measure for histograms with 100 to 1000 sampled
points and for the fit to 100 points. For the 100-point sample we construct an error band by
evaluating 100 statistically independent samples and computing its standard deviation. For
the fit we do the same, i.e. fit the same 100 independent samples and compute the standard
deviation for the fit output. This should be equivalent to the one-sigma range of the five
fitted parameters folded with the per-sample statistics, if we take into account all correlations.
However, we use the same procedure to evaluate the uncertainty on the fit, as is used for the
other methods.

The first observation in Fig. 2 is that the agreement between the sample or the fit and
the truth generally improves with more quantiles, indicated by decreasing values of the quan-
tile MSE on the y-axis. which is simply a property of the definition of our quantile MSE error
above. Second, the precision of the fit corresponds to roughly 300 hypothetical data points
for 10 quantiles, 500 hypothetical data points for 20 quantiles, and close to 1000 hypothetical
data points for 50 quantiles. This means that for high resolution and an extremely sparsely

4

Diefenbacher, .., GK et al 2008.06545



Statistics - 2DSciPost Physics Submission

Figure 5: Relative deviation of the training sample (left) and the GANned events (right) for
the 2D Gaussian ring. We show the same 7⇥ 7 2D-quantiles as in Fig. 4,

separately, remembering that the network is trained on Cartesian coordinates. In our setup
the GAN learns the peaked structure of the radius, with an amplification factor around four,
much better than the flat distribution in the angle, with an amplification factor below two.
Both of these amplification factors are computed for ten quantiles, to be compared with the
1D-result in Fig. 2. We can combine the two dimensions and define 7⇥ 7 quantiles, to ensure
that the expected number of points per quantile remains above one. The 2D amplification
factor then comes out slightly above three, marginally worse than the 50 1D-quantiles shown
in Fig. 2. One could speculate that for our simple GAN the amplification factor is fairly
independent of the dimensionality of the phase space.

We illustrate the 49 2D-quantiles in Fig. 5, where the color code indicates the relative
deviation from the expected, homogeneous number of 100/49 events per quantile. We see the
e↵ect of the GAN improvement with more subtle colors in the right panel. While it is hard
to see the quality of the GAN in radial direction, we observe a shortcoming in the azimuthal
angle direction, as expected from Fig. 4. We also observe the largest improvement from the
GAN in the densely populated regions (as opposed to the outside) which agrees with the
network learning to interpolate.

4 Multi-dimensional spherical shell

To see the e↵ect of a higher-dimensional phase space we further increase the number of
dimensions to five and change the Gaussian ring into a spherical shell with uniform angular
density and a Gaussian radial profile

P (r) = N4,1(r) +N�4,1(r)

(4)

with radius r � 0 and angles '1,..,4.

Even if we limit ourselves to the hard scattering, around ten phase space dimensions is
typical for LHC processes we would like to GAN [19]. In typical LHC applications, the number
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quantile values

DJS(g, p) =
1
2

X

Qi2Q

Ç
gi log

gi
1
2(gi + pi)

+ pi log
pi

1
2(gi + pi)

å
. (5)

Just like the DJS, this estimate lies between zero and log 2. It turns into the continuous DJS
between the histogram estimators

g(x) =
X

Qi2Q

gi

vol(Qi)
1Qi
(x) =
X

Qi2Q

#{x 0 2Qi | x 0 2 G}
#G · vol(Qi)

1Qi
(x)

and p(x) =
X

Qi2Q

pi

vol(Qi)
1Qi
(x) ,

(6)

with vol the n-dimensional volume, 1Qi
the indicator function of the i-th quantile and G all

showers in either an evaluation set of GEANT4 samples or in the generated set. As for all
histogram estimators, independent of the choice of bin edges, the overall number of bins, the
cardinality of the fitted set, as well as the number of showers per bin have to go to infinity
for the estimator to converge to the underlying distribution. As DJS goes to zero, the two
distributions g and p are identical.

To determine the quality of our generative model relative to truth or validation distribu-
tions, we look at the dependence of the Jensen–Shannon divergence DJS on the number of
quantiles nquant we can reliably construct. This will allow us to gauge where the density es-
timation underlying the VAE-GAN beats the statistically limited training data. As discussed
earlier, we estimate the uncertainty on DJS for the 5k and 10k evaluation sets of GEANT4 data
from five independent sets each.

4 16 64 256 1k 4k 16k
nquant

10�1

10�2

10�3

10�4

10�5

1k 5k

10k 50k

1k�1000k

218k validation
showers

DJS

Evis

Geant4

VAE-GAN

Figure 6: Dependence of DJS on the number of quantiles nquant for different amounts
of GEANT4 data (orange) and VAE-GAN data (blue) for the observables given in
Eq.(2). Solid lines indicate meaningful, non-sparse quantile sets. The 1k GEANT4
samples were also used to train the VAE-GAN. Errors are calculated as the standard
deviation from five datasets. For 50k we omit the negligible errors.
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Figure 4: Differential distributions for the observables given in Eq.(2) from GEANT4
and from the VAE-GAN-generated images. Errors of the validation set (grey) and the
training set (orange) correspond to the Poisson-error per bin, while the uncertainty
on the VAE-GAN line (blue) is illustrated by the standard deviation of three indepen-
dent trainings on the 1k training data. All histograms are normalized, such that all
bins add up to one. The insets show the ratio to the high-statistics estimate of the
truth distribution.

and our VAE-GAN, but now using the high-statistics validation set. Figure 4 shows a set of
distributions for 1k shower images used for a single VAE-GAN training and 1000k showers
from the corresponding generative network. They are compared to the validation set of 218k
GEANT4 showers. In addition to the continuous distributions we also show the number of
active pixels per image. First, we see that statistical fluctuations of the training set propagate
into under- and over-densities of the learned distributions. One prominent difference is the
number of active pixels, which can be attributed to the under-estimation of the number of low
energy hits below 5 MeV. The remaining learned distributions are smoother and show fewer
fluctuations than the training data. For the visible per-pixel energy, the VAE-GAN interpolates
into the sparsely populated interval between around 2 and 120 MeV even though the training
set does not include a single pixel in this range. Previous work has shown [30] how to correct
the low-energy behavior through an additional, consecutively trained post-processing network,
using an maximum mean discrepancy loss [18,57] on the pixel energy spectrum. Here we skip
this post-processing and instead focus on the statistical properties of the generated data for
visible pixel energies above 5 MeV.

Quantiles

We now turn to quantifying the efficacy of the VAE-GAN, given the strong performance shown
in Fig. 4. Like in Sec. 2, we could use standard histograms with bins of equal size. However,
in this case the occupation number of the bins strongly depend on the assumed support of the
distributions and on the binning. To avoid zero bins and sparse distributions we have to define
the ranges and binnings by hand, making this strategy inconsistent in evaluation. Instead,
we now split the support of the distributions into bins of equal probability weight, so-called
quantiles, forming the set Q. We generate the quantiles for a given distribution by iteratively
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Figure 1: Illustrated transformation of the original calorimeter images from left to
right. All histograms feature a logarithmic color coding, with an equal scaling for the
10 ⇥ 10 images. The final step of cutting below half the MIP energy is applied for
evaluation only.

method can be applied to gauge the merit of a generative surrogates whenever the underlying
distribution can be accessed either through a large number of samples or analytically. We
expect similar results in all cases where the smoothness assumption on the underlying density
distribution is valid.

The paper is organized as follows. In Sec. 2, we start by introducing our data set and the
established generative Variational Autoencoder-GAN (VAE-GAN) architecture adapted to this
simulation [30]. Next, we describe our treatment of the comparison between generated and
truth samples and the relevant observables in Sec. 3. We then present the amplification effects
of the generative networks in Sec. 4. This comparison includes an estimate of the effective
sample size to the information encoded and a comparison to standard density estimators. In
Sec. 5, we briefly summarize our promising findings.

2 Dataset and model

The International Large Detector (ILD) [44] is one of two detector concepts proposed for the In-
ternational Linear Collider (ILC). It is optimized towards the Particle Flow analysis concept for
optimal global event reconstruction [45,46]. It combines high-precision tracking and vertex-
ing capabilities with very good hermiticity and highly-granular electromagnetic and hadronic
calorimeters (ECal/HCal). We choose one of its two proposed electromagnetic calorimeters,
the Si-W ECal, for our dataset. It consists of 30 active silicon layers in a tungsten absorber
stack with 20 layers of 2.1 mm and 10 layers of 4.2 mm thickness. The silicon sensors have a
cell size of 5⇥ 5 mm2.

ILD uses iLCSoft [47] for detector simulation, reconstruction, and analysis. The GEANT4 [48]

Figure 2: Illustration of the VAE-GAN architecture. The encoder and decoder form
a VAE setup, while the decoder can also be understood as a GAN generator. The
discriminator acts as a binary classifier, as in a classical GAN.
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Figure 6: Left: signal significance as a function of the amount of training data for the
classical approach, based on all training data, and the ONLINEFLOW. Right: signal
significance as a function of the prescale factor. A prescale factor of one corresponds
to 500 ⇥ 104 events. The shaded regions estimate the uncertainty based on five
executions of the experimental setup. The dotted grey line indicates the crossover
point at a datafaction of 1

4 , which corresponds to a prescale factor of 4.

To estimate the significance of the signal encoded in the ONLINEFLOW, it is a bit more
subtle than just using Eq,(3), since we are essentially taking the statistical uncertainty of the
generated events to be zero by generating 100M of them. Instead, the statistical uncertainty
on the training data is translated into a systematic uncertainty in the generated events. To
quantify this, we use the second network ensemble to compute bootstrap statistics in the usual
way. First, combining all flow-generated events in the signal region, O, and the event count
from the respective background fit, B, gives us the total signal and background in the signal
region and the corresponding uncertainties
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Figure 1. Feynman diagram for signals of R&D dataset and Black Box 1.

Setting R&D BB1 BB3

Tune:pp 14 3 10

PDF:pSet 13 12 5

TimeShower:alphaSvalue 0.1365 0.118 0.16

SpaceShower:alphaSvalue 0.1365 0.118 0.16

TimeShower:renormMultFac 1 0.5 2

SpaceShower:renormMultFac 1 0.5 2

TimeShower:factorMultFac 1 1.5 0.5

SpaceShower:factorMultFac 1 1.5 0.5

TimeShower:pTmaxMatch 1 2 1

SpaceShower:pTmaxMatch 0 2 1

Table 1. Pythia settings for the di↵erent datasets. For R&D the settings were the Pythia defaults
while for BB1 and BB3 they were modified. BB2 is not shown here because it was produced using
Herwig++ with default settings.

2.2 Black Box 1

This box contained the same signal topology as the R&D dataset (see Fig. 1) but with

masses mZ0 = 3.823 TeV, mX = 732 GeV and mY = 378 GeV. A total of 834 signal

events were included (out of a total of 1M events in all). This number was chosen so

that the approximate local significance inclusively is not significant. In order to emulate

reality, the background events in Black Box 1 are di↵erent to the ones from the R&D

dataset. The background still uses the same generators as for the R&D dataset, but

a number of Pythia and Delphes settings were changed from their defaults. For the

– 6 –
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Fig. 4. A histogram of the resonant feature< in units of GeV with a parametric fit (U0 (1 �<)U1<U2+U3 log(<) ) using the SB data
overlaid. The fit Kolmogorov-Smirnov (KS) ?-value is well above 0.05 in the SB.

for the R&D dataset, but a number of P����� and D������ settings were changed from their defaults to mimic the
domain shift between simulation and experimental data.

2.3 Black Box 2

This sample of 1M events was background only. The background was produced using a di�erent publicly-available and
standard particle-physics event generation tool, H�����++ [27], instead of P�����. Also, it used a modi�ed D������
detector card that is di�erent from Black Box 1 but with similar modi�cations on top of the R&D dataset card.

2.4 Black Box 3

The signal was based on Ref. [35, 36] and consisted of a hypothetical heavy BSM particle with two di�erent decay modes
resulting in two collimated showers of particles (“dijets") or with three collimated showers of particles (“trijets") as
illustrated in Fig. 1 center and right. These signals are inspired by theories introducing extra dimensions of space-time.
1200 dijet events and 2000 trijet events were included along with Standard Model backgrounds in Black Box 3 (for
a total of 1M events). These numbers were chosen so that an analysis that found only one of the two modes would
not observe a signi�cant excess. The background events were produced with modi�ed P����� and D������ settings
(di�erent than the R&D and other Black Box datasets).

2.5 Evaluation of the Challenge

During the initial challenge phase (see [5]), only the signal contained in the R&D Dataset was known to participants.
For this, both the physical properties (decay topology, masses) and per-event labels were given. No such information
was made available for Black Box 1–3. Participants were asked to submit (separately for each Black Box): I) A p-value
associated with the dataset having no new particles (null hypothesis); II) As complete a characterization of the new
physics as possible (in text-form) (e.g. masses and decay modes of all new particles with associated uncertainties); and
III) How many signal events (central value and uncertainty) are in the dataset (before any selection criteria).

After the challenge phase, the physical properties and datasets with added per-event labels (signal or background)
were made public, rendering the initial evaluation criteria obsolete. However, as better signal identi�cation will aid
better anomaly detection, quantities such as accuracy, area under the curve (AUC), or signi�cance improvement (SIC,
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Fig. 2. A schematic diagram of a detector at the LHC to illustrate the standard coordinate system. In the top view, protons collide
into and out of the page while in the bo�om view, protons collide from the le� and right. The collision debris flies out in all directions
and for simplicity is represented by six particles. These particles register signals in a series of detector components. Their trajectories
are then reconstructed using their transverse momentum ?) and angular coordinates q and [.

high-level features are:< 91 the invariant mass of the lighter jet; �< 9 the mass di�erence of the two jets; and g21,1

and g21,2 the # -subjettiess ratios [33, 34] of the leading two jets. This feature quanti�es the degree to which a jet is
characterized by two subjets or one subjet, with smaller values indicating two-prong substructure.

Many approaches in the LHC Olympics challenge were based on these features, instead of the low-level features.
Plots of these high-level (histograms marginalized over the rest of the feature space) are shown in Fig. 3. We see that
many of them are quite useful in separating signal vs background. The resonant feature is shown in Fig. 4.

Fig. 3. Histograms of the four high-level features provided in the LHCO2020 data. The features in the right plot are dimensionless
and the features in the le� plot are given in units of TeV.

2.2 Black Box 1

This box contained the same signal topology as the R&D dataset (see Fig. 1) but with di�erent parameters for the
anomalous particles, in order that a method trained exclusively on the R&D dataset could not trivially succeed on the
Black Box dataset. A total of 834 signal events were included (out of a total of 1M events in all). This number was chosen
so that the approximate local signi�cance inclusively is not signi�cant.4 In order to emulate reality, the background
events in Black Box 1 are di�erent to the ones from the R&D dataset. The background still uses the same generators as

4It is important to keep in mind that in particle physics, the discovery threshold is conventionally taken to be 5f , corresponding to a ?-value of 3 ⇥ 10�7
under the null hypothesis.
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Fig. 2. A schematic diagram of a detector at the LHC to illustrate the standard coordinate system. In the top view, protons collide
into and out of the page while in the bo�om view, protons collide from the le� and right. The collision debris flies out in all directions
and for simplicity is represented by six particles. These particles register signals in a series of detector components. Their trajectories
are then reconstructed using their transverse momentum ?) and angular coordinates q and [.

high-level features are:< 91 the invariant mass of the lighter jet; �< 9 the mass di�erence of the two jets; and g21,1

and g21,2 the # -subjettiess ratios [33, 34] of the leading two jets. This feature quanti�es the degree to which a jet is
characterized by two subjets or one subjet, with smaller values indicating two-prong substructure.

Many approaches in the LHC Olympics challenge were based on these features, instead of the low-level features.
Plots of these high-level (histograms marginalized over the rest of the feature space) are shown in Fig. 3. We see that
many of them are quite useful in separating signal vs background. The resonant feature is shown in Fig. 4.

Fig. 3. Histograms of the four high-level features provided in the LHCO2020 data. The features in the right plot are dimensionless
and the features in the le� plot are given in units of TeV.

2.2 Black Box 1

This box contained the same signal topology as the R&D dataset (see Fig. 1) but with di�erent parameters for the
anomalous particles, in order that a method trained exclusively on the R&D dataset could not trivially succeed on the
Black Box dataset. A total of 834 signal events were included (out of a total of 1M events in all). This number was chosen
so that the approximate local signi�cance inclusively is not signi�cant.4 In order to emulate reality, the background
events in Black Box 1 are di�erent to the ones from the R&D dataset. The background still uses the same generators as

4It is important to keep in mind that in particle physics, the discovery threshold is conventionally taken to be 5f , corresponding to a ?-value of 3 ⇥ 10�7
under the null hypothesis.
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Figure 8: Observables for the LHCO data set, as listed in Eq.(9). We show the original
training data, with 1% signal contamination, and the data generated by the flow. The
signal region in mj j is indicated by dotted lines.

particles, which in turn decay into quarks,

W 0 ! X (! qq)Y (! qq) . (8)

The respective particle masses are mW 0 = 3.5 TeV, mX = 500 GeV, and mY = 100 GeV. All
events are generated using PYTHIA8 [58] and DELPHES3.4.1 [59–61]. The jets are clustered
using FASTJET [62]with the anti-kT algorithm [63] using R= 1. Finally, all events are required
to have at least one jet with pT > 1.2 TeV.

While this dataset features high mass resonances that are not perfectly in line with the
intended application range of ONLINEFLOW, we feel that the proven and well known nature of
the LHCO data, as well as its availability make up for this shortcoming.

The same input format used for the anomaly detection [32, 40, 64] is also used for the
ONLINEFLOW. Specifically, there are five input features, the dijet mass, the mass of the leading
jet, the mass difference between the leading and sub-leading jets, and the two n-subjettiness
ratios [65,66],

¶
mj j , m1, m2 �m1,⌧(1)21 ,⌧(2)21

©
. (9)

All observables except for mj j are subjet observables and at most weakly correlated with mj j .
We show distributions of all observables in Fig. 8, for the training data and the ONLINEFLOW

output. We also show a 10-fold enhanced signal, relative to the 1% signal rate we will use for
our actual analysis, to illustrate the narrow kinematic patterns of the W 0 resonance.

The LHCO version of the ONLINEFLOW network is slightly modified compared to the para-
metric setup to accommodate a 10-dimensional input. These comprise five features and five
additional noise dimensions, the additional noise was found to increase the performance, al-
though no systematic scan over this hyperparameter was performed. The number of MADE
blocks is now 10, and the number of nodes in the fully connected layers is quadrupled to 128.
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Figure 9: ROC (left) and significance improvement (right) for the CWoLa benchmark
approach, based on a decreasing amount of data, compared with the ONLINEFLOW.
The signal fraction is 1%. Vertical order of the Data lines corresponds to their order
in the legend.

merit, namely the ROC curve and the signal improvement ✏S/
p
✏B, are shown in Fig. 9. For

the standard CWoLa approach, trained on the LHCO data, the smaller training samples cor-
respond to prescale factors of 2, 5, 10, and 20. The shaded regions indicate the one-sigma
range from repeating the CWoLa analysis ten times. We see that, for instance for a constant
signal efficiency, the background rejection drops increasingly rapidly for smaller training sam-
ples. This illustrates how larger prescale factors seriously inhibit the reach of searches for new
physics in non-trivial kinematic regions.

To determine the power of the ONLINEFLOW we then train the CWoLa network on 500k
events generated from the ONLINEFLOW, with an additional 62500 ONLINEFLOW events serv-
ing as the validation set. This mirrors the split into training-validation-test data of the LHCO
data. In both panels of Fig. 9 we can now compare the ONLINEFLOW results to the differ-
ent prescalings and find that it performs similarly to 10% of the training data. In a setting
where one has to work with a trigger fraction of less then 10%, one could benefit from the
ONLINEFLOW setup.

While the CWoLa results show that the ONLINEFLOW does not only encode features repre-
sented in the input variables, but also describes correlations directly, it remains to be shown
that its performance is stable when we decouple the main features more and more from the
input variables. This happens when we train the generative networks on low-level event rep-
resentation, challenging the network both in expressivity and reliability. In line with the con-
clusions from Fig. 6 this might, for instance, require a larger network and adjustments to the
building blocks of the normalizing flow and the bijectional training.

5 Conclusions

Data rates of modern particle colliders are a serious challenge for analysis pipelines. In terms
of data compression, triggered offline analyses use lossless data recording per event, but at the
price of a huge loss in deciding which event should be recorded. Trigger-level analyses accept
losses in the individual event information, to be able to analyze significantly more events. Our
strategy is inspired by the statistical nature of LHC measurements and aims at analyzing as
many events as possible, but accepting a potential loss of information on the event sample level.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 6. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of
the signal e�ciency. The solid lines are deduced from a median value of 10 fully independent trainings on the same training,
validation and evaluation set. The uncertainty bands quantify the variance from retraining the NNs on the same, fixed dataset
and are defined such that they contain 68% of the runs around the median.

FIG. 7. Left: Median maximum significance improvement of each method with 10 di↵erent signal injections (leading to a
di↵erent split of training, validation and evaluation sets in each run) at each decreasing value of signal/background ratios.
Here, the 68% hatched uncertainty bands quantify the variance (around the median) from both retrainings of the NN and

random realizations of the training and validation data, including di↵erent realizations of the 1,000 injected signal events.
Right: Achieved maximum significance, which is computed by multiplying the uncut significance by the maximum significance
improvement. Both plots feature the significance without any cut applied in the upper horizontal axis. The dotted lines on the
right hand side denote 3 and 5 � significance values.

• Both Cathode and Anode need to learn the
smoothly varying background. However, Anode
must also learn the sharply peaked distributions in
x where the signal is localized (the “inner” den-
sity estimator trained on the SR). This results in
a degradation of the Anode anomaly detection
method and worse performance than Cathode and
CWoLa Hunting.

• As for how Cathode is able to outperform CWoLa
Hunting, there are two reasons. Firstly, there is a
correlation at the percent level between the cho-

sen features in x within the original LHCO R&D
dataset with the search variable (mJJ). Since
CWoLa Hunting is very sensitive to correlations,
this small correlation is su�cient to degrade the
performance compared to that of Cathode. De-
tails of the correlation study can be found in
Sec. IVC. Secondly, CWoLa Hunting is limited to
only using the events within the sidebands to train
the classifier (approximately 65,000 events), while
Cathode is able to oversample events from the
background model (here 200,000 events are used).
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Figure 5: Relative deviation of the training sample (left) and the GANned events (right) for
the 2D Gaussian ring. We show the same 7⇥ 7 2D-quantiles as in Fig. 4,

separately, remembering that the network is trained on Cartesian coordinates. In our setup
the GAN learns the peaked structure of the radius, with an amplification factor around four,
much better than the flat distribution in the angle, with an amplification factor below two.
Both of these amplification factors are computed for ten quantiles, to be compared with the
1D-result in Fig. 2. We can combine the two dimensions and define 7⇥ 7 quantiles, to ensure
that the expected number of points per quantile remains above one. The 2D amplification
factor then comes out slightly above three, marginally worse than the 50 1D-quantiles shown
in Fig. 2. One could speculate that for our simple GAN the amplification factor is fairly
independent of the dimensionality of the phase space.

We illustrate the 49 2D-quantiles in Fig. 5, where the color code indicates the relative
deviation from the expected, homogeneous number of 100/49 events per quantile. We see the
e↵ect of the GAN improvement with more subtle colors in the right panel. While it is hard
to see the quality of the GAN in radial direction, we observe a shortcoming in the azimuthal
angle direction, as expected from Fig. 4. We also observe the largest improvement from the
GAN in the densely populated regions (as opposed to the outside) which agrees with the
network learning to interpolate.

4 Multi-dimensional spherical shell

To see the e↵ect of a higher-dimensional phase space we further increase the number of
dimensions to five and change the Gaussian ring into a spherical shell with uniform angular
density and a Gaussian radial profile

P (r) = N4,1(r) +N�4,1(r)

(4)

with radius r � 0 and angles '1,..,4.

Even if we limit ourselves to the hard scattering, around ten phase space dimensions is
typical for LHC processes we would like to GAN [19]. In typical LHC applications, the number
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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Figure 2: Illustration of the proposed workflow. First, we train a generative model on
all incoming events (online). Then, we use the trained model to generate data and
analyze the generated data for signs of new physics (offline). If necessary, we adjust
the trigger to take new data accordingly (online) and analyze that data (offline).

While our idea is not tied to specific generative models, normalizing flows (NF) [28–31]
are especially well suited due to their stable training. This allows us to train our ONLINEFLOW

without stopping criterion, a property well suited for training online. Furthermore, NFs have
been shown to precisely learn complex distributions in particle physics [32–42]. The statistical
benefits of using generative models are discussed in Ref. [43], for a discussion of training-
related uncertainties using Bayesian normalizing flows see Refs. [44,45].

The properties of online training, specifically seeing every event independently and only
once, are in tension with training generative models. Such models perform best when they
have the option to look at data points more than once. Additionally, processing several events
at the same time should allow the model to train significantly faster through the use of GPU-
based parallelization and stochastic gradient descent. This is why we follow a hybrid approach:
incoming events are collected in a buffer with size Nbuff. Once this buffer is full, it is passed
to the network, which processes the information in batches of size Nbatch. This process is
iterated over Niter times. After this, the buffer is discarded and replaced by the next buffer. We
visualize this scheme in Fig. 3. In addition to aiding the network training, this hybrid training
also decouples the network training rate from the data rate, as we can continuously adapt Niter
to ensure the network is done with the current buffer by the time the next is filled. Additional
technical details, including the estimation of uncertainties, of our approach are discussed in
the context of the examples presented below.

3 Parametric example

We first illustrate our strategy for a 1-dimensional parametric example. While in practice it
would be straightforward to store at least a histogram for any given 1-dimensional observ-
able, this scenario still allows us to explore how generative training and subsequent statistical
analysis approaches need to be modified for the ephemeral learning task.

4

• Rapid progress in calorimeter simulation with generative models, 
including sophisticated benchmarks 
Chance to augment them with uncertainties?


• Anomaly detection as powerful technique to detect new physics. 
Inclusion of generative uncertainty might be crucial


• Demonstrate statistical gain from generative models


• Plays direct role generative model replaces data 


