Generative models and uncertainty

Gregor Kasieczka Email: gregor.kasieczka@uni-hamburg.de Twitter/X: @GregorKasieczka Artificial Intelligence and the Uncertainty challenge in **Fundamental Physics** 30.11.2023 - AISSAI / IN2P3

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

CENTER FOR DATA AND COMPUTING **IN NATURAL SCIENCES**

Partnership of

Universität Hamburg and DESY

Bundesministerium

GEFÖRDERT VOM

für Bilduna und Forschung

Introduction

- Increasing use of generative models in different aspects of LHC analysis chain
- Proper treatment of uncertainties is not fully keeping up: interesting problems
- Will discuss 4 examples:
 - Calorimeter Simulation
 - Ephemeral learning
 - Anomaly Detection
 - Surrogate Classifiers

Introduction

- Increasing use of generative models in different aspects of LHC analysis chain
- Proper treatment of uncertainties is not fully keeping up: interesting problems
- Will discuss 3 examples:
 - Calorimeter Simulation
 - Ephemeral learning
 - Anomaly Detection
 - Surrogate Classifiers

Efficient Sampling from Bayesian Network Posteriors for Optimal Uncertainties

Bayesian neural networks are a key technique when including uncertainty predictions into neural network analysis, be it in classification, regression or generation. Although being an essential building block for classical Bayesian techniques, Markov Chain Monte Carlo methods are seldomly used to sample Bayesian neural network weight posteriors due to slow convergence rates in high dimensional parameter spaces. Metropolis-Hastings corrected chains exhibit two major issues: using a stochastic Metropolis-Hastings term and bad acceptance rates. We present solutions to both problems in form of a correction term to the loss objective and novel proposal distributions based on the Adam-optimizer. The combined algorithm shows fast convergence and good uncertainty estimation for physics use cases without dramatically increasing the cost of computation over gradient descent based optimization.

Sprecher: Sebastian Bieringer (Hamburg University, Institute for experimental physics)

🕓 25m

Calorimeter Simulation

Generative Models

This happens in the experiment

This is what we want to know

Simulation is crucial to connect experimental data with theory predictions

Generative Models

This happens in the experiment

This is what we want to know

Simulation is crucial to connect experimental data with theory predictions, but computationally very costly

2020 Computing Model -CPU: 2030: Baseline

ATLAS Preliminary

Generative Models

→Use generative models trained on simulation or data as efficient surrogates

Overview of generative architectures

Simulation targets

Simulation targets

Buhmann, .., GK et al 2005.05334

Buhmann, .., GK et al 2112.09709;

Buhmann, .., GK, et al 2305.04847

Dairson. More details on the CALOCLOUDS models can be found in Refs. [35, 39]. Buhmann, ..., GK et al 2309.05704

Quality of simulation

How well does the generative model describe the training data?

Buhmann, .., GK et al 2005.05334

Buhmann, .., GK et al 2309.05704

Two-dimensional metrics

Geant4

 $m_{1,x}$ $m_{1,y}$ -0.01 $m_{1,z}$ -0.12 -0.01 $m_{2,x}$ 0.01 0.00 -0.38 1.00 $m_{2, y}$ 0.04 -0.01 -0.29 0.41 1 $m_{2,z}$ 0.07 0.01 -0.34 0.16 0.14 $E_{\rm vis}$ 0.06 0.02 0.21 -0.08 -0.06 0.08 $E_{\rm inc}$.07 0.01 0.35 -0.14 -0.10 0.04 0.98 1.0 $n_{
m hit}$ 0.05 0.02 0.14 -0.03 -0.01 0.18 99 0 96 1 $E_1/E_{\rm vis}$ 0.16 0.00 0.93 0.35 0.28 0.42 -0.27 -0.38 -0.21 $E_2/E_{
m vis}$ -0.13 0.01 0.13 -0.05 -0.06 -0.33 0.23 0.19 0.22 -0.47 $E_3/E_{
m vis}$ -0.07 -0.01 0.93 -0.35 -0.27 -0.22 0.12 0.28 0.06 -0.24 $m_{2,z}$ $E_{
m vis}$ $E_{
m inc}$ $n_{
m hit}$ $E_1/E_{\rm vis}$ $E_2/E_{\rm vis}$ $m_{1,x}$ $m_{1,y}$ $m_{1,z}$ $m_{2,x}$ $m_{2,i}$ E_3/E_1

	$m_{1,x}$	$m_{1,y}$	$m_{1,z}$	$m_{2,x}$	$m_{2, y}$	$m_{2,z}$	$E_{\rm vis}$	$E_{ m inc}$	$n_{ m hit}$	$E_1/E_{\rm vis}$	$E_2/E_{\rm vis}$	$E_3/E_{\rm vis}$
$E_3/E_{\rm vis}$	0.18	0.13	0.00	-0.54	-0.29	-0.40	-0.07	-0.05	-0.15	0.00	-0.02	0.00
$E_2/E_{\rm vis}$	0.17	0.26	-0.03	0.25	0.26	0.20	0.00	-0.01	0.02	0.01	0.00	
$E_1/E_{\rm vis}$	-0.28	-0.29	0.00	0.31	0.08	0.23	0.06	0.05	0.12	0.00		
$n_{ m hit}$	0.26	0.19	-0.15	0.27	0.45	0.02	-0.00	-0.01	0.00			
$E_{\rm inc}$	0.26	0.20	-0.05	0.19	0.39	-0.04	0.00	0.00				
$E_{\rm vis}$	0.24	0.19	-0.07	0.26	0.44	-0.01	0.00					
$m_{2,z}$	-0.02	-0.16	-0.32	-0.13	-0.12	0.00						
$m_{2,y}$	-0.31		-0.19	-0.50	0.00							
$m_{2,x}$	-0.27	-0.49	-0.45	0.00								
$m_{1,z}$	0.25	0.23	0.00									
$m_{1,y}$	-0.33	0.00										
$m_{1,x}$	0.00											

Geant4 - BIB-AE PP

$m_{1,x}$	0.00											
$m_{1,y}$	-0.27	0.00										
$m_{1,z}$	-0.02	-0.00	0.00									
$m_{2,x}$	0.17	0.05	-0.25	0.00								
$m_{2,y}$	-0.05	-0.16	-0.23	-0.09	0.00							
$m_{2,z}$	-0.02	0.01	-0.13	0.29	0.20	0.00						
$E_{\rm vis}$	-0.27	-0.29	-0.08	0.13	0.07	-0.15	0.00					
$E_{\rm inc}$	-0.26	-0.27	-0.04	0.09	0.03	-0.18	-0.01	0.00				
$n_{ m hit}$	-0.27	-0.30	-0.10	0.21	0.15	-0.08	-0.00	-0.01	0.00			
$E_1/E_{\rm vis}$	0.05	0.03	0.02	0.27	0.21	0.01	0.00	-0.03	0.03	0.00		
$E_2/E_{\rm vis}$	-0.09	-0.09	-0.32	-0.09	-0.02	0.37	0.12	0.07	0.11	0.23	0.00	
$E_3/E_{\rm vis}$	0.03	0.04	0.01	-0.20	-0.21	-0.28	-0.15	-0.11	-0.17	0.01	-0.30	0.00
	$v_{1,x}$	$\iota_{1,y}$	$\imath_{1,z}$	$v_{2,x}$	$v_{2,y}$	$v_{2, z}$	$E_{\rm vis}$	$E_{\rm inc}$	$n_{ m hit}$	$E_{\rm vis}$	$E_{\rm vis}$	$E_{\rm vis}$
	п	п	u	п	n	и				$E_1/$	$\overline{U_2}/\overline{U_2}$	E_3/I

Pair-wise correlations contain more information

Multi-dimensional metrics

Capture full phase space information with classifiers

# Showers per simulator	AUC GEANT4 vs L2LFlows	AUC GEANT4 vs BIB-AE			
95k	0.8518 ± 0.0042	0.9947 ± 0.0025			
190k	0.8768 ± 0.0029	—			
380k	0.8962 ± 0.0024	—			
760k	0.9402 ± 0.0011	—			

Still depends on training data

Choice of classifier

How good, is good enough really?

Adding reconstruction

Taking stock so far

GEANT4 Generative Model

Extensive set of metrics to judge quality

Useful for ranking generators

Less useful to make an absolute decision "good enough"

Taking stock so far

GEANT4 Generative Model

Extensive set of metrics to judge quality

Useful for ranking generators

Less useful to make an absolute decision "good enough"

But can additionally correct

DCTRAN

Train classifiers to reweight distributions

Diefenbacher, .., GK et al 2009.03796

Calorimeter Summary

Calo Challenge

<text><text><text><text><text>

Final phase of generative calorimeter challenge See Claudius' talk at ML4Jets for latest

Emphemeral Learning

Emphemeral Learning

- Trigger:
 - Only able to store a subset (<1 in 10.000) of events
- Possible alternative:
 - Train a generative model online during data taking

- Fixed size, independent of training data amount
- Radically different format from usual way of storing data, but might open up new approaches

Diefenbacher, .., GK et al 2202.0937

OnlineFlows

Schematic of proposed approach.

Focus on HLT, more technical challenges for use in hardware Trigger

Main problem: How to make training work if each event is only available for short time?

Diefenbacher, ..., GK et al 2202.0937

Classical Bump Hunt

Diefenbacher, .., GK et al 2202.0937

GANplification aside

Statistics

If we train a generator on N data points, and use it to produce M>>N examples, what is the statistical power of the M points?

Compare (known) truth distribution to sample and oversampled data from GAN

Diefenbacher, .., GK et al 2008.06545

Statistics - 2D

Relative deviation from Gaussian ring distribution

Diefenbacher, .., GK et al 2008.06545

Statistics - Physics

Test the statistical properties of simplified calorimeter showers.

Scaling of difference to ground truth with resolution again better for the generative model.

Bieringer, .., GK et al 2202.07352

Back to our problem

Generative Bump Hunt

35

30

25

20

15

10

5

0

significance

 $S = \mathcal{O} - B$

 $\delta_s^2 = \delta_{\mathcal{O}}^2 + \delta_B^2$

Include ensemble uncertainty of background predictions

Diefenbacher, .., GK et al 2202.0937

- Relatively simple signal
 - Known to differ in previously mentioned features from background distribution
- Unrealistically high S/B

X

m=500 GeV $_q$

Q

GK, Nachman, Shih, et al, 2107.02821

More realistic example

Diefenbacher, .., GK et al 2202.0937

More realistic example

Use LHCO dataset, train on high-level features on a mixture of background (99%) and signal (1%).

> Train classifier to distinguish a signal region and sideband (CWoLA appaorach)

Compare procedure directly carried out on data with output of flow.

Anomaly Detection

Motivation

- Expect physics beyond the Standard Model
- Only negative results in searches
- Two discovery strategies:
 - Model-specific
 - Model independent
- Trade off:
 Sensitivity to specific model vs broad coverage

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

Need to find a feature in which signal is resonant and background smooth.

No assumptions in other features.

Further generalisation as open issue.

Consider resonant anomalies: slightly reduces generality, but allows fully data-based construction of anomaly detection score

What are the crucial uncertainties?

Uncertainty from the 1d fit (including parameter choice)

What are the crucial uncertainties?

Uncertainty from the 1d fit (including parameter choice)

Statistical uncertainty in signal region

What are the crucial uncertainties?

Uncertainty from the 1d fit (including parameter choice)

Statistical uncertainty in signal region

Non-closure of generative model!

Generative non-closure

Inclusive is sideband; other distributions after classifier cut

True sideband/ Generated sideband

Figure by Sommerhalder

Generative non-closure

Might benefit (highly) from clever uncertainty ideas

Figure by Sommerhalder

Gain in high dimensions?

Buhmann, .., GK, et al 2310.06897

Closing

Closing

- Rapid progress in calorimeter simulation with generative models, including sophisticated benchmarks Chance to augment them with uncertainties?
- Anomaly detection as powerful technique to detect new physics.
 Inclusion of generative uncertainty might be crucial
- Demonstrate statistical gain from generative models
- Plays direct role generative model replaces data

Thank you!