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Chandra

Some unmixing problems in physics

Unmixing -ray spectra 
to recover radionuclides’activities 

γ

Unmixing X-ray multispectral images 
to recover physically relevant components 

e.g. synchrotron, thermal, etc.

And many others: radio-astronomy, gravitational wave astro., etc.  

Energy band
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Unmixing, what’s at stake ?

= a1 +a2 +..+ aN

Bkg 60Co 137Cs

The source matrix 

Contamination 

The mixing matrix 

X = ℱ(AS)

e.g. additive Gaussian noise 
Poisson stats. 

Blind Source Separation/unmixing 

Estimating both A and S 
from X only
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Unmixing, what’s at stake ?

▶ BSS is a non-convex problem particularly ill-posed: the regularization is 
crucial (non-negativity, smoothness, sparsity, etc.)

Data fidelity term Regularization 
Terms 

<latexit sha1_base64="6WCXCyHiKwx57zPnO5xQ/ENtm14="></latexit>

min
A,S

R(A) + J (S) +
1

2
kX�ASk2F

▶ But generally ill-posed/badly-posed, requires physics-enforcing 
regularisations

▶ Allows great flexibility to include information about the observation 
model/prior information about the factors

Zibulevsky 04, Comon 10, Bobin 15, Carloni 22, etc.
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Focus on the spectrometry case

a1 +a2 +..+ aN

Bkg 60Co 137Cs



5

Focus on the spectrometry case
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The spectra live on a unknown low-
dimensional manifolds 

Let’s learn a representation 

for the spectra 
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Focus on the spectrometry case

Accounting for the spectral variabilities  
133Ba spectral signature as a function of thickness of the container

a1 +a2 +..+ aN

Bkg 60Co 137Cs

The spectra live on a unknown low-
dimensional manifolds 

Let’s learn a representation 

for the spectra 

Spectra can be simulated with Monte-Carlo simulations …  

1 spectrum in 3 days on a single CPU
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Sketch of a data-frugal ML for learning representations

Learn how to transport points on the 
manifold from anchor points  

ℳ

x
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Sketch of a data-frugal ML for learning representations

Learn how to transport points on the 
manifold from anchor points  

ℳ φ1
φ2

φ3

x

Define model-based signals as barycenters according to some metric ϕ

x = argminz

d

∑
i=1

λiϕ(z, φi)
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Data-frugal AutoEncoder

ℳ

φ2

φ3

x
φ1

Φ(φ2)
Φ(φ3)

Φ(x)

Φ(φ1)

∃{λi}i, Φ(xi) = ∑
i

λiΦ(φi)
Linear interpolation 

Φ Encoder

Ψ Decoder

ΦΨ

Linear interpolation 

In a non-linear domain 
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Data-frugal AutoEncoder

Interpolator 
Encoder   Decoder  

ϕ ψ

ψ ∘ Πaff(ϕ(𝒜)) ∘ ϕ(x)

Reconstruction

Barycentric 
coordinates

Samples/anchor 
points

x, {φ(n)}n

Training:   minϕ,ψ ∑
x∈𝒯

x − ψ ∘ Πaff(ϕ(𝒜)) ∘ ϕ(x)
2

+μ ∑
x∈𝒯

ϕ(x) − Πaff(ϕ(𝒜)) ∘ ϕ(x)
2

Interpolation error Reconstruction error 
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Data-frugal AutoEncoder

Interpolator 
Encoder   Decoder  

ϕ ψ

ψ ∘ Πaff(ϕ(𝒜)) ∘ ϕ(x)

Reconstruction

Barycentric 
coordinates

Samples/anchor 
points

x, {φ(n)}n

Training:   minϕ,ψ ∑
x∈𝒯

x − ψ ∘ Πaff(ϕ(𝒜)) ∘ ϕ(x)
2

+μ ∑
x∈𝒯

ϕ(x) − Πaff(ϕ(𝒜)) ∘ ϕ(x)
2

• Ideally, all elements of the manifolds can be expressed as the decoding of a linear combination of the 
encoded anchor points :

∀x ∈ 𝒱, ∃{λn}n, x ≈ ψ (∑
n

λnϕ(φ(n)))

Interpolation error Reconstruction error 
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Modelling attenuation and Compton scattering by a lead sphere

Results



10/11/2023 10

Representation examples

Reconstructed 133BaSet-up :

- Radioactive source in a lead sphere

 - #Geant 4 simulations: 90

Variabilities as a function of  
the sphere thickness

 - 2 anchorpoints

 - 4 radionuclides
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Unmixing with a plug-and-play approach

► ▶ Hybrid approach: combination with standard statistical inference
►Allows to account for the exact mixture model

►Built on the measurement statistics
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Unmixing with a plug-and-play approach

► ▶ Hybrid approach: combination with standard statistical inference

min
{Λi},{ai}i

ℒ(X, ∑
i

aiΨi(Λi)) + ∑
i

χ≥0(ai)

Positivity of the weights 

▶ SEMSUN algorithm: block-coordinate descent (Phan et al, 23)

Poisson neg-loglikelihood Latent space parameter 

►Allows to account for the exact mixture model

►Built on the measurement statistics
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Mixture:   
▪ Bkg : 50000 
▪ 60Co : 20000 
▪ 133Ba : 12000

▪ 57Co : 8000 
▪ 137Cs : 10000

Simulated spectrum from  
a Poisson distribution

SemSun
S

a

Theoretical signatures: 0.5mm thickness 
1000 Monte Carlo simulations

Oracle: estimate a when S is 
known, the best possible result

Results - high statistics case



13

Mixture:   
▪ Bkg : 1250 
▪ 60Co : 500 
▪ 133Ba : 300

▪ 57Co : 200 
▪ 137Cs : 250Theoretical signatures: 0.5mm thickness 

1000 Monte Carlo simulations

SemSun
S

a

Simulated spectrum from  
a Poisson distribution

Oracle: estimate a when S is 
known, the best possible result

Results - low statistics case
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Unmixing X-ray images in astrophysics

Cassiopeia A

•  Case Study: Supernova Remnants in X-ray multispectral data 
• ► Poisson noise, low signal/noise 
• ► Entangled physical components  
• ► Variabilities described by non-analytical models
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A different mixture model

= + + …

X

Standard linear mixture model

a1 a2

s2s1
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A different mixture model

= + + …

X

Standard linear mixture model

a1 a2

s2s1

+ + …=

X1 X2X

Non-stationary linear mixture model
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A different mixture model

= + + …

X

Standard linear mixture model

a1 a2

s2s1

+ + …=

X1 X2X

Non-stationary linear mixture model

Ill -
 posed !
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Non-stationary mixture model

►  Non-stationary mixture model (noiseless)
Amplitude 

Spectral cube 

X = ∑
i

Ai ⊙ si
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►  Non-stationary mixture model (noiseless)
Amplitude 

Spectral cube 

X = ∑
i

Ai ⊙ si

►  Spectral parametric models exist for the spectra but  

►Costly … to be plugged into unmixing algorithms

►Non-differentiable … cannot be plugged into unmixing algorithms
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Non-stationary mixture model

►  Non-stationary mixture model (noiseless)
Amplitude 

Spectral cube 

X = ∑
i

Ai ⊙ si

►  Spectral parametric models exist for the spectra but  

►Costly … to be plugged into unmixing algorithms

►Non-differentiable … cannot be plugged into unmixing algorithms

AE-based surrogates are not costly (at inference time) and differentiable

They are good candidates for hybrid unmixing solvers
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More formally - spectral regularisation

min
{Ai},{si}i

ℒ(X, ∑
i

Ai ⊙ si)
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More formally - spectral regularisation

min
{Ai},{si}i

ℒ(X, ∑
i

Ai ⊙ si)
▶ The spectra can be described by an AE-based model

= Ψi( ) ⊙ si
Latent space
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More formally - spectral regularisation

min
{Ai},{si}i

ℒ(X, ∑
i

Ai ⊙ si)

min
{Λi},{si}i

ℒ(X, ∑
i

Ψi(Λi) ⊙ si)

▶ The spectra can be described by an AE-based model

= Ψi( ) ⊙ si
Latent space
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More formally - spatial regularisation

▶ The spectra evolve smoothly across the sky 

Latent space
Physical parameters
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More formally - spatial regularisation

▶ The spectra evolve smoothly across the sky 

Latent space
Physical parameters

min
{Λi},{si}i

ℒ(X, ∑
i

Ψi(Λi) ⊙ si) + ∑
i

χ≥0(si) + μ∥WΛi∥ℓ1

Sparsity-enforcing 
regularisation in the domain W 

(e.g. wavelets, etc) 

Positivity of the amplitude 

▶ Sushi: PALM-based solver (Lascar et al, 23)
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Results on synthetic data

• ► From real images + numerical simulations of CasA 

• ►Thermal Component: Varying redshift, temperature 

• ►Synchrotron Component: Constant Photon Index 

• ►#Simulated spectra ~400 

• ►3 anchorpoints

Thermal amplitude Synchrotron amplitude
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Estimated amplitude map Fit 1D  pixel-per-pixel
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Results on synthetic data
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Results on synthetic data
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Estimated physical parameters

Prelim
inary
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Estimated physical parameters

Prelim
inary
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Results from real data - preliminary results !

Synchrotron indexThermal ionisationThermal index Thermal redshift

Thermal amplitude Synchrotron amplitude

Prelim
inary
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Take-away messages

▶ IAE: a flexible model to learn representations when training samples are scarce.

▶ Deployable as surrogates in standard solvers to tackle complex/ill-posed unmixing 
problems.

▶ Unmixing is costly but can be accelerated using deep unrolling (Fahes22)

▶ Quantifying uncertainties is key but complex; under investigation !

https://github.com/JMLascar/SUSHI

https://github.com/jbobin/IAE

SEMSUN to come soon

https://github.com/JMLascar/SUSHI
https://github.com/jbobin/IAE
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Back-up slides
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Unmixing with a plug-and-play approach
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(3)

▪ Constraints for each radionuclide i : ci(Xi)  
▪ The spectral signature is the decoding of the latent variable of IAE 

Joint estimation of X and a 

Complex problem, non-convex, multiple local minima.

Unmixing with a plug-and-play approach
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Block coordinate descent (BCD) (Y.XU, 2017) 

1. Update a: 
  
        Multiplicative update algo NNPU 

2. Update X: 

   
  

Sequential Least Squares Programming (SLSQP) 
(D. Kraft, 1988)

(3)

▪ Constraints for each radionuclide i : ci(Xi)  
▪ The spectral signature is the decoding of the latent variable of IAE 

Joint estimation of X and a 

Complex problem, non-convex, multiple local minima.

X is fixed, 
Estimate a

a is fixed, 
Estimate X

Unmixing with a plug-and-play approach
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SEMSUN - network description

▶ CNN-based networks
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SEMSUN - network description
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Sushi - network

▶ Dense networks
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Sushi - algorithm


