

Data frugal machine learning approaches for unmixing problems in Physics

J.Bobin

With R. Carloni - F.Acero - J.Lascar - T. Pham - C.Bobin

Some unmixing problems in physics

Unmixing γ-ray spectra to recover radionuclides'activities

Unmixing X-ray multispectral images to recover physically relevant components e.g. synchrotron, thermal, etc.

Unmixing, what's at stake?

Bkg

The mixing matrix The source matrix

Blind Source Separation/unmixing
 Estimating both A and S from X only

e.g. additive Gaussian noise

Poisson stats.

Unmixing, what's at stake?

$$
\min _{\mathbf{A}, \mathbf{S}} \mathcal{R}(\mathbf{A})+\mathcal{J}(\mathbf{S})+\underbrace{\frac{1}{2}\|\mathbf{X}-\mathbf{A S}\|_{F}^{2}}_{\substack{\text { Regularization } \\ \text { Terms }}} \text { Data fidelity term }
$$

- Allows great flexibility to include information about the observation model/prior information about the factors
- BSS is a non-convex problem particularly ill-posed: the regularization is crucial (non-negativity, smoothness, sparsity, etc.)
- But generally ill-posed/badly-posed, requires physics-enforcing regularisations

Focus on the spectrometry case

Focus on the spectrometry case

Accounting for the spectral variabilities

Focus on the spectrometry case

The spectra live on a unknown lowdimensional manifolds

Let's learn a representation

for the spectra

Accounting for the spectral variabilities

Focus on the spectrometry case

Accounting for the spectral variabilities

Spectra can be simulated with Monte-Carlo simulations ...
1 spectrum in 3 days on a single CPU

Sketch of a data-frugal ML for learning representations

Learn how to transport points on the manifold from anchor points

Sketch of a data-frugal ML for learning representations

Learn how to transport points on the manifold from anchor points

Sketch of a data-frugal ML for learning representations

Learn how to transport points on the manifold from anchor points

Sketch of a data-frugal ML for learning representations

Learn how to transport points on the manifold from anchor points

Define model-based signals as barycenters according to some metric ϕ

$$
x=\operatorname{argmin}_{\mathbf{z}} \sum_{i=1}^{d} \lambda_{i} \phi\left(\mathbf{z}, \varphi_{i}\right)
$$

Data-frugal AutoEncoder

Linear interpolation
In a non-linear domain

Ψ Decoder

Linear interpolation
$\exists\left\{\lambda_{i}\right\}_{i}, \quad \boldsymbol{\Phi}\left(\mathbf{x}_{i}\right)=\sum_{i} \lambda_{i} \boldsymbol{\Phi}\left(\varphi_{i}\right)$

Data-frugal AutoEncoder

Data-frugal AutoEncoder

Ideally, all elements of the manifolds can be expressed as the decoding of a linear combination of the encoded anchor points :

$$
\forall \mathbf{x} \in \mathscr{V}, \exists\left\{\lambda_{n}\right\}_{n}, \mathbf{x} \approx \psi\left(\sum_{n} \lambda_{n} \phi\left(\varphi^{(n)}\right)\right)
$$

Results

Modelling attenuation and Compton scattering by a lead sphere

Representation examples

Set-up :

- Radioactive source in a lead sphere
- \#Geant 4 simulations: 90
- 2 anchorpoints
- 4 radionuclides

Variabilities as a function of the sphere thickness

Reconstructed ${ }^{133} \mathrm{Ba}$

Unmixing with a plug-and-play approach

- Hybrid approach: combination with standard statistical inference Allows to account for the exact mixture model

Built on the measurement statistics

Unmixing with a plug-and-play approach

- Hybrid approach: combination with standard statistical inference Allows to account for the exact mixture model

Built on the measurement statistics

- SEMSUN algorithm: block-coordinate descent (Phan etal, 23)

Results - high statistics case

Mixture:

Theoretical signatures: 0.5 mm thickness 1000 Monte Carlo simulations

Simulated spectrum from a Poisson distribution

- Bkg: 50000
- 60Co: 20000
- 57Co: 8000

Oracle: estimate a when S is

- $133 \mathrm{Ba}: 12000$ - ${ }^{137 \mathrm{Cs}: 10000 \text { known, the best possible result }}$

Results - Iow statistics case

Mixture:

- Bkg: 1250
- ${ }^{60} \mathrm{Co}: 500$
- ${ }^{133 \mathrm{Ba}: 300}$ 1000 Monte Carlo simulations

Simulated spectrum from
a Poisson distribution

SemSun
a

- ${ }^{57} \mathrm{Co}: 200$
- ${ }^{137} \mathrm{Cs}: 250$

Ba133

Oracle: estimate a when S is known, the best possible result

Unmixing X-ray images in astrophysics

Case Study: Supernova Remnants in X-ray multispectral data

- Poisson noise, low signal/noise
- Entangled physical components
- Variabilities described by non-analytical models

A different mixture model

A different mixture model

Non-stationary linear mixture model

A different mixture model

Non-stationary linear mixture model

Non-stationary mixture model (noiseless)

$$
\mathbf{X}=\sum_{i} \mathbf{A}_{\mathbf{i}} \odot s_{i}^{\text {Amplitude }}
$$

Non-stationary mixture model

Non-stationary mixture model (noiseless)

Spectral parametric models exist for the spectra but
Costly ... to be plugged into unmixing algorithms
Non-differentiable ... cannot be plugged into unmixing algorithms

Non-stationary mixture model

Non-stationary mixture model (noiseless)

Spectral parametric models exist for the spectra but
Costly ... to be plugged into unmixing algorithms
Non-differentiable ... cannot be plugged into unmixing algorithms
AE-based surrogates are not costly (at inference time) and differentiable They are good candidates for hybrid unmixing solvers

More formally - spectral regularisation

$$
\min _{\left\{\mathbf{A}_{i}\right\},\left\{s_{i}\right\}_{i}} \mathscr{L}\left(\mathbf{X}, \sum_{i} \mathbf{A}_{i} \odot s_{i}\right)
$$

More formally - spectral regularisation

$$
\min _{\left\{\mathbf{A}_{i}\right\},\left\{s_{i}\right\}_{i}} \mathscr{L}\left(\mathbf{X}, \sum_{i} \mathbf{A}_{i} \odot s_{i}\right)
$$

- The spectra can be described by an AE-based model

More formally - spectral regularisation

$$
\min _{\left\{\mathbf{A}_{i}\right\},\left\{s_{i}\right\}_{i}} \mathscr{L}\left(\mathbf{X}, \sum_{i} \mathbf{A}_{i} \odot s_{i}\right)
$$

- The spectra can be described by an AE-based model

More formally - spatial regularisation

- The spectra evolve smoothly across the sky

More formally - spatial regularisation

- The spectra evolve smoothly across the sky

Positivity of the amplitude

Latent space

$$
\min _{\left\{\mathbf{\Lambda}_{i}\right\},\left\{s_{i}\right\}_{i}} \mathscr{L}\left(\mathbf{X}, \sum_{i} \Psi_{i}\left(\mathbf{\Lambda}_{i}\right) \odot s_{i}\right)+\sum_{i} \chi_{\geq 0}\left(s_{i}\right)+\mu\left\|\mathbf{W} \boldsymbol{\Lambda}_{i}\right\|_{\ell_{1}}
$$

Sparsity-enforcing regularisation in the domain W

Results on synthetic data

- From real images + numerical simulations of CasA
- Thermal Component: Varying redshift, temperature
-Synchrotron Component: Constant Photon Index
- \#Simulated spectra ~400
-3 anchorpoints

Thermal amplitude

z

Synchrotron amplitude

Pho

Estimated amplitude map Fit 1D pixel-per-pixel

SUSHI

Thermal
SUSHI

Synchrotron

Ground Truth

Ground Truth

Classic

Classic

Synchrotron

Results on synthetic data

Results on synthetic data

Estimated physical parameters

Estimated physical parameters

Results from real data - preliminary results !

Take-away messages

- IAE: a flexible model to learn representations when training samples are scarce.
- Deployable as surrogates in standard solvers to tackle complex/ill-posed unmixing problems.
- Unmixing is costly but can be accelerated using deep unrolling (Fahes22)
- Quantifying uncertainties is key but complex; under investigation !
https://github.com/jbobin/IAE
https://github.com/JMLascar/SUSHI

Back-up slides

Unmixing with a plug-and-play approach

Unmixing with a plug-and-play approach

Joint estimation of X and $a \quad \hat{X}, \hat{a}=\operatorname{Argmin}_{X, a} \sum_{i=2}^{p} c_{i}\left(X_{i}\right)+\chi_{(. \geq 0)}(a)+L(a, X)$

- Constraints for each radionuclide i: $c_{i}\left(X_{i}\right)$
- The spectral signature is the decoding of the latent variable of IAE $\quad X_{i}=g_{i}\left(\lambda_{i}\right)$

Complex problem, non-convex, multiple local minima.

Unmixing with a plug-and-play approach

Joint estimation of X and $a \quad \hat{X}, \hat{a}=\operatorname{Argmin}_{X, a} \sum_{i=2}^{p} c_{i}\left(X_{i}\right)+\chi_{(. \geq 0)}(a)+L(a, X)$

- Constraints for each radionuclide i: $\boldsymbol{c}_{\mathrm{i}}\left(\boldsymbol{X}_{\mathrm{i}}\right)$
- The spectral signature is the decoding of the latent variable of IAE $\quad X_{i}=g_{i}\left(\lambda_{i}\right)$

Complex problem, non-convex, multiple local minima.

SEMSUN - network description

- CNN-based networks

Hyperparameters	Co60	Ba133	Co57	Cs137	Joint
Maximum channel	800	250	100	400	800
Solver	Adam	Adam	Adam	Adam	Adam
Learning rate	0.001	0.001	0.001	0.001	0.001
Batch size	36	36	36	36	36
Number of epochs	20000	20000	20000	20000	20000
Regulisation paramater	0.001	0.001	0.001	0.001	0.001
Encoder: numbers of layers	6	6	6	6	6
Activation	Elu(alpha=1)	Elu(alpha=1)	Elu(alpha=1)	Elu(alpha=1)	Elu(alpha=1)
Encoder 1: Conv1D (in channels, out channels, kernel_size, stride)	$1,12,4,1$	1, 12, 4, 1	1, 12, 4, 1	1, 12, 4, 1	4, 12, 4, 1
Encoder 2 : Conv1D	12, 12, 4, 1	12, 12, 4, 1	12, 12, 4, 1	12, 12, 4, 1	12, 12, 4, 1
Encoder 3 : Conv1D	12, 12, 6, 2	12, 12, 6, 2	12, 12, 3, 1	12, 12, 6, 2	12, 12, 6, 2
Encoder 4 : Conv1D	12, 16, 6, 2	12, 16, 6, 2	12, 16, 3, 1	12, 16, 6, 2	12, 16, 6, 2
Encoder 5 : Conv1D	$16,16,6,2$	16, 16, 6, 2	$16,16,3,1$	16, 16, 6, 2	16, 16, 6, 2
Encoder 6 : Conv1D cost function	$\begin{aligned} & 16,16,4,2 \\ & \log \end{aligned}$	$\begin{aligned} & 16,16,4,2 \\ & \log \end{aligned}$	$\begin{aligned} & 16,16,3,1 \\ & \log \end{aligned}$	$\begin{aligned} & 16,16,4,2 \\ & \log \end{aligned}$	$16,16,4,2$ mean log of each radionuclide

Sushi - network

- Dense networks

	Thermal (toy model)	Thermal (Cassopeia A data)	Synchrotron (toy model)	Synchrotron (Cassopeia A data)	Synchrotron (Crab data)
Physical model	Equilibrium collisional ionized plasma emission (APEC)	Non-equilibrium collisional ionized plasma emission		Power Law	
Number of anchor points	4	6	2	2	2
Number of layers	4	4	4	2	2
Step size	6×10^{-4}	4×10^{-4}	8×10^{-4}	10^{-3}	10^{-3}
Optimizer	Adaptive Gradient Algorithm (Adagrad)				
Activation function	Leaky Rectified Linear Activation (LReLU)				

Sushi - algorithm

```
Algorithm 1 SUSHI: Semi-blind Unmixing with Sparsity for
Hyperspectral Images
    input data \(X\), trained IAE models \(\left\{\mathcal{M}^{0}, \ldots, \mathcal{M}^{n_{C}}\right\}\), num-
ber of wavelet scales \(J\), sparsity threshold factor \(k\), cost
function \(\mathcal{L}\).
initialisation \(\left\{\theta_{0}^{0}, \ldots, \theta_{0}^{n_{C}}\right\} \leftarrow\left\{\nVdash / N_{A}^{0}, \ldots, \nVdash / N_{A}^{n_{C}}\right\}\)
\(\left\{A_{0}^{0}, \ldots, A_{0}^{n_{C}}\right\} \leftarrow \sum_{e}^{n_{E}} X(., e) / n_{C}\)
\(\alpha_{\theta} \leftarrow 0.1 / \max \left(A_{0}^{0}\right)\)
\(t \leftarrow 0\)
while stopping criterion is not met do
    for component \(c\) in \(\left\{0, \ldots, n_{C}\right\}\) do
            Gradient descent step on \(\theta^{c}\)
            \(\theta_{t+1 / 2}^{c} \leftarrow \theta_{t}^{c}-\alpha_{\theta} \nabla_{\theta^{c}} \mathcal{L}\left(\theta^{c} \mid X, A^{c}, \theta^{C \neq c}\right)\)
            Sparsity step on \(\theta^{c}\)
            \(\theta_{t+1}^{c} \leftarrow \operatorname{prox}_{l_{1}, J, k}\left(\theta_{t+1 / 2}^{c}\right)\)
            Gradient Descent step on \(A^{c}\)
            \(H \leftarrow \nabla_{A^{c}}^{2}\left(\mathcal{L}\left(A^{c} \mid X, \theta_{t+1}^{c}\right)\right)\)
            \(A_{t+1}^{c} \leftarrow A_{t}^{c}-1 / H \nabla_{A^{c}} \mathcal{L}\left(A^{c} \mid X, \theta_{t+1}^{c}\right)\)
        end for
        \(t \leftarrow t+1\)
end while
\(\hat{X}^{c} \leftarrow A_{t}^{c} \mathcal{M}^{c}\left(\theta_{t}^{c}\right)\)
\(\hat{X} \leftarrow \sum_{c=0}^{n_{C}} \hat{X}^{c}\)
return \(\hat{X},\left\{\hat{X}^{0}, \ldots \hat{X}^{C}\right\}\)
```

