

Data frugal machine learning approaches for unmixing problems in Physics

J.Bobin

With R. Carloni - F.Acero - J.Lascar - T. Pham - C.Bobin

Some unmixing problems in physics

Unmixing X-ray multispectral images to recover physically relevant components e.g. synchrotron, thermal, etc.

And many others: radio-astronomy, gravitational wave astro., etc.

Unmixing, what's at stake ?

Unmixing, what's at stake ?

Allows great flexibility to include information about the observation model/prior information about the factors

► BSS is a non-convex problem particularly ill-posed: the **regularization** is <u>crucial</u> (non-negativity, smoothness, sparsity, etc.)

But generally ill-posed/badly-posed, requires physics-enforcing regularisations

¹³³Ba spectral signature as a function of thickness of the container

¹³³Ba spectral signature as a function of thickness of the container

¹³³Ba spectral signature as a function of thickness of the container

cea

1 spectrum in 3 days on a single CPU

Sketch of a data-frugal ML for learning representations

Sketch of a data-frugal ML for learning representations

Sketch of a data-frugal ML for learning representations

Data-frugal AutoEncoder

Data-frugal AutoEncoder

Data-frugal AutoEncoder

Ideally, all elements of the manifolds can be expressed as the **decoding** of *a linear combination* of the **encoded anchor points** :

$$\forall \mathbf{x} \in \mathcal{V}, \exists \{\lambda_n\}_n, \mathbf{x} \approx \psi \left(\sum_n \lambda_n \phi(\varphi^{(n)})\right)$$

Results

Modelling attenuation and Compton scattering by a lead sphere

Representation examples

Set-up :

- Radioactive source in a lead sphere
- #Geant 4 simulations: 90
- 2 anchorpoints
- 4 radionuclides

10/11/2023

10

cea

Hybrid approach: combination with standard statistical inference Allows to account for the exact mixture model

Built on the measurement statistics

Hybrid approach: combination with standard statistical inference Allows to account for the exact mixture model

Built on the measurement statistics

SEMSUN algorithm: block-coordinate descent (Phan et al, 23)

Results - high statistics case

Results - low statistics case

Unmixing X-ray images in astrophysics

Case Study: Supernova Remnants in X-ray multispectral data

- ► Poisson noise, low signal/noise
- Entangled physical components
- ► Variabilities described by non-analytical models

A different mixture model

A different mixture model

Non-stationary linear mixture model

cea

A different mixture model

Non-stationary mixture model

Non-stationary mixture model (noiseless)

Non-stationary mixture model (noiseless)

Spectral parametric models exist for the spectra but

Costly ... to be plugged into unmixing algorithms

Non-differentiable ... cannot be plugged into unmixing algorithms

Non-stationary mixture model (noiseless)

Spectral parametric models exist for the spectra but

Costly ... to be plugged into unmixing algorithms

Non-differentiable ... cannot be plugged into unmixing algorithms

AE-based surrogates are not costly (at inference time) and differentiable They are good candidates for hybrid unmixing solvers

More formally - spectral regularisation

 $\min_{\{\mathbf{A}_i\},\{s_i\}_i} \mathscr{L}\left(\mathbf{X}, \sum_i \mathbf{A}_i \odot s_i\right)$

More formally - spectral regularisation

 $\min_{\{\mathbf{A}_i\},\{s_i\}_i} \mathscr{L}\left(\mathbf{X}, \sum_i \mathbf{A}_i \odot s_i\right)$

► The spectra can be described by an AE-based model

More formally - spectral regularisation

 $\min_{\{\mathbf{A}_i\},\{s_i\}_i} \mathscr{L}\left(\mathbf{X}, \sum_i \mathbf{A}_i \odot s_i\right)$

► The spectra can be described by an AE-based model

 $=\Psi_i(I) \odot S_i$ Latent space $\min_{\{\Lambda_i\},\{s_i\}_i} \mathscr{L}\left(\mathbf{X}, \sum_i \Psi_i(\Lambda_i) \odot s_i\right)$

More formally - spatial regularisation

► The spectra evolve smoothly across the sky

More formally - spatial regularisation

Results on synthetic data

- From real images + numerical simulations of CasA
- ► Thermal Component: Varying redshift, temperature
- Synchrotron Component: Constant Photon Index
- ►#Simulated spectra ~400
- ► 3 anchorpoints

Estimated amplitude map

Fit 1D pixel-per-pixel

pixel (46,63) | kT=1.70 | z=-0.013 | pho=2.50

Estimated physical parameters

Results from real data - preliminary results !

▶ IAE: a flexible model to learn representations when training samples are scarce.

Deployable as surrogates in standard solvers to tackle complex/ill-posed unmixing problems.

Unmixing is costly but can be accelerated using deep unrolling (Fahes22)

Quantifying uncertainties is key but complex; under investigation !

https://github.com/jbobin/IAE

https://github.com/JMLascar/SUSHI

SEMSUN to come soon

Back-up slides

Joint estimation of **X** and **a** $\hat{X}, \hat{a} = Argmin_{X,a} \sum_{i=2}^{r} c_i(X_i) + \chi_{(.\geq 0)}(a) + L(a, X)$ (3)

- Constraints for each radionuclide i : c_i(X_i)
- The spectral signature is the decoding of the latent variable of IAE $X_i = g_i(\lambda_i)$

Complex problem, non-convex, multiple local minima.

Joint estimation of **X** and **a** $\hat{X}, \hat{a} = Argmin_{X,a} \sum_{i=1}^{i} c_i(X_i) + \chi_{(.\geq 0)}(a) + L(a, X)$ (3)

- Constraints for each radionuclide i : c_i(X_i)
- The spectral signature is the decoding of the latent variable of IAE $X_i = g_i(\lambda_i)$

Complex problem, non-convex, multiple local minima.

SEMSUN - network description

CNN-based networks

Hyperparameters	Co60	Ba133	Co57	Cs137	Joint
			100		
Maximum channel	800	250	100	400	800
Solver	Adam	Adam	Adam	Adam	Adam
Learning rate	0.001	0.001	0.001	0.001	0.001
Batch size	36	36	36	36	36
Number of epochs	20000	20000	20000	20000	20000
Regulisation paramater	0.001	0.001	0.001	0.001	0.001
Encoder: numbers of layers	6	6	6	6	6
Activation	Elu(alpha=1)	Elu(alpha=1)	Elu(alpha=1)	Elu(alpha=1)	Elu(alpha=1)
Encoder 1 : Conv1D		· - ·	· - ·	· - ·	
(in channels, out channels,	1, 12, 4, 1	1, 12, 4, 1	1, 12, 4, 1	1, 12, 4, 1	4, 12, 4, 1
kernel size, stride)					
Encoder 2 : Conv1D	12, 12, 4, 1	12, 12, 4, 1	12, 12, 4, 1	12, 12, 4, 1	12, 12, 4, 1
Encoder 3 : Conv1D	12, 12, 6, 2	12, 12, 6, 2	12, 12, 3, 1	12, 12, 6, 2	12, 12, 6, 2
Encoder 4 : Conv1D	12, 16, 6, 2	12, 16, 6, 2	12, 16, 3, 1	12, 16, 6, 2	12, 16, 6, 2
Encoder 5 : Conv1D	16, 16, 6, 2	16, 16, 6, 2	16, 16, 3, 1	16, 16, 6, 2	16, 16, 6, 2
Encoder 6 : Conv1D	16, 16, 4, 2	16, 16, 4, 2	16, 16, 3, 1	16, 16, 4, 2	16, 16, 4, 2
cost function	log	log	log	log	mean log of
	5	5	5	5	each radionuclide

Sushi - network

Dense networks

	Thermal (toy model)	Thermal (Cassopeia A data)	Synchrotron (toy model)	Synchrotron (Cassopeia A data)	Synchrotron (Crab data)		
Physical model	Equilibrium collisional ionized plasma emission (APEC)	Non-equilibrium collisional ionized plasma emission	Power Law				
Number of anchor points	4	6	2	2	2		
Number of layers	4	4	4	2	2		
Step size	6×10^{-4}	4×10^{-4}	8×10^{-4}	10 ⁻³	10 ⁻³		
Optimizer	Adaptive Gradient Algorithm (Adagrad)						
Activation function	Leaky Rectified Linear Activation (LReLU)						

Algorithm 1 SUSHI: Semi-blind Unmixing with Sparsity for Hyperspectral Images

input data X, trained IAE models $\{\mathcal{M}^0, ..., \mathcal{M}^{n_C}\}$, number of wavelet scales J, sparsity threshold factor k, cost function \mathcal{L} . initialisation $\{\theta_0^0, ..., \theta_0^{n_C}\} \leftarrow \{ \mathscr{W} / N_A^0, ..., \mathscr{W} / N_A^{n_C} \}$ $\{A_0^0, ..., A_0^{n_C}\} \leftarrow \sum_e^{n_E} X(., e)/n_C$ $\alpha_{\theta} \leftarrow 0.1/\max(A_0^0)$ $t \leftarrow 0$ while stopping criterion is not met do for component c in $\{0, ..., n_C\}$ do Gradient descent step on θ^c $\theta_{t+1/2}^c \leftarrow \theta_t^c - \alpha_\theta \nabla_{\theta^c} \mathcal{L}(\theta^c | X, A^c, \theta^{C \neq c})$ Sparsity step on θ^c $\theta_{t+1}^c \leftarrow \mathbf{prox}_{l_1,J,k}(\theta_{t+1/2}^c)$ Gradient Descent step on A^c $H \leftarrow \nabla^2_{A^c}(\mathcal{L}(A^c|X,\theta^c_{t+1}))$ $A_{t+1}^c \leftarrow A_t^c - 1/H \nabla_{A^c} \mathcal{L}(A^c | X, \theta_{t+1}^c)$ end for $t \leftarrow t + 1$ end while $\hat{X}^c \leftarrow A^c_t \mathcal{M}^c(\theta^c_t)$ $\hat{X} \leftarrow \sum_{c=0}^{\check{n}_C} \hat{X}^c$ return $\hat{X}, \{\hat{X}^0, ..., \hat{X}^C\}$