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Evaluate the difference before and after retraining

−



Improved coverage
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Sluijterman, Laurens, Eric Cator, and Tom Heskes. "Confident neural network regression with bootstrapped deep ensembles."





Bayesian

p(θ ∣ 𝒟) =
p(𝒟 ∣ θ)p(θ)

p(𝒟)
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p(θ) : 𝒩(0,1)

qm(θ) : m ⋅ Z, Z ∼ Ber(p)
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Out-of-distribution

 

Ensemble Dropout



Likelihood ratio

Sluijterman, Laurens, Eric Cator, and Tom Heskes. "Likelihood-ratio-based confidence intervals for neural networks."
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