

Karlsruher Institut für Technologie

- Sebastian Bieringer, Gregor Kasieczka, Jan Kieseler, Maximilian Steffen, Mathias Trabs
 - Institut für Experimentalphysik, Universität Hamburg, Germany sebastian.guido.bieringer@uni-hamburg.de
- 01.12.2023 Artificial Intelligence and the Uncertainty challenge in Fundamental Physics 2023

Sebastian Bieringer

Efficient Sampling from Bayesian Network **Posteriors for Optimal Uncertainties**

Jet Classification Surrogates

HELMHOLTZ

Introduction

The estimation of uncertainties is fundamental to

"Bayesian Neural Networks" **Mean Field Gaussian Variational Inference**

Description (<u>1505.05424</u>):

- Estimate the posterior $p(\theta \mid \mathscr{D})$ with a simpler distribution $q(\theta)$
- Infer with gradient descent: $L_n(\hat{f}_{\vartheta}; \mathcal{D}_n) = \mathrm{KL}(p(\theta | \mathcal{D}_n) | q(\theta)) = - \left[d\theta q(\theta) \log p(\mathcal{D}_n | \theta) + \mathrm{KL}(q(\theta) | p(\theta)) \right]$

Pros & Cons:

- + Fast posterior sampling, active learning possible
- Additional loss term with high variance \rightarrow influences performance
- Assumption: Posterior has uncorrelated Gaussian shape
- Doubles the number of parameters

Adaptations:

 Noise-Contrastive Priors (<u>1807.09289</u>), Flipout Layers <u>1803.04386</u>

Efficient Posterior Sampling

approximate posterior

sample from posterior

Efficient Posterior Sampling

Cyclic sgLD

Description (<u>1902.03932</u>):

- (Pretrain to optimal parameters $\theta^{(0)} = \theta^{\star}$)
- Construct a Markov-Chain with invariant distribution

$$p(\boldsymbol{\theta} \,|\, \mathcal{D}) \propto \exp\left(-\lambda_{\mathrm{LD}} L_{\mathrm{NLL}}(\hat{f}_{\boldsymbol{\theta}}; \mathcal{D})\right)$$

Stochastic Gradient Langevin Dynamics (sgLD):

$$\theta^{(k+1)} = \theta^{(k)} - \eta_k \nabla_{\theta} L_{\text{NLL},n}(\theta^{(k)}) + \sqrt{\frac{2\eta_k}{\lambda_{\text{LD}}}} \epsilon_k \text{ with } \epsilon_k \sim 10^{-10} \text{ or } k_k = 10^{-10} \text{ or$$

• Cyclic scheduling of stepsize η_k

Pros & Cons:

- + Exact sampling from the posterior
- + Good out-of-distribution detection
- Slow mixing rates
- Strongly dependent on the scheduling parameters

Adaptations:

Hamiltonian Monte-Carlo (HMC) (<u>1902.03932</u>)

Sebastian Bieringer

Efficient Posterior Sampling

N(0,1)

taken from

Blundell, Charles, et al. "Weight uncertainty in neural network." International conference on machine learning. PMLR, 2015.

01.12.2023

5

Corrected Stochastic Metropolis Adjusted Langevin Algorithm

Sebastian Bieringer

Efficient Posterior Sampling

Corrected Stochastic Metropolis Adjusted Langevin Algorithm

Sebastian Bieringer

Efficient Posterior Sampling

Corrected Stochastic Metropolis Adjusted Langevin Algorithm

Sebastian Bieringer

Efficient Posterior Sampling

Fits with Stochastic Gradient MALA

Sebastian Bieringer

DASHH

Adam-MCMC

Sebastian Bieringer

Efficient Posterior Sampling

Adam-MCMC

- Invariant distribution -

Theorem 1. For $\rho_l^2 = (1 - \beta_l^2)s^2$, l = 1, 2, and arbitrary proposal distributions $q_{1,k}(\tau^{(k)}|\vartheta^{(k)}, m^{(k)})$ the Markov chain $(\vartheta^{(k)}, m^{(k)})_{k\geq 1}$ admits the invariant distribution $f(\vartheta, m) = p_{\lambda}(\vartheta | \mathcal{D}_n) \varphi_{g(\vartheta), s^2}(m_1) \varphi_{g(\vartheta)^2, s^2}(m_2)$. In particular, the marginal distribution of $f(\vartheta, m)$ in ϑ is the Gibbs posterior distribution $p_{\lambda}(\cdot | \mathcal{D}_n)$.

- Convergence -

Theorem 2. Let $\rho_l^2 = (1 - \beta_l^2)s^2$, l = 1, 2, take $q_{1,k}$ from (4) and $m^{(0)} \sim \mathcal{N}((g(\vartheta^{(0)}), g(\vartheta^{(0)})^2), s^2 I_{2\#\vartheta})$ where $\vartheta^{(0)}$ is an arbitrary random initialization of the chain. Then the distribution of $\vartheta^{(k)}$ converges in total variation distance to the Gibbs posterior $p_{\lambda}(\cdot | \mathcal{D}_n)$:

 $\mathrm{TV}(\mathbb{P}^{\vartheta^{(k)}}, \Pi_{\lambda}(\cdot | \mathcal{D}_n)) \lesssim (1-a)$

$$a^{k} \xrightarrow{k \to \infty} 0$$
 for some $a \in (0, 1)$.

Physics Use-case

Efficient Posterior Sampling

Efficient Posterior Sampling

Classification Surrogates

Is this evaluation also sensitive to $X \rightarrow Y + Z?$

Sebastian Bieringer

Efficient Posterior Sampling

Classification Surrogates

Is this evaluation also sensitive to $X \rightarrow Y + Z?$

No, its not!

Hard scattering

Hadronization

Generative Model (Classification Surrogate)

Sebastian Bieringer

Efficient Posterior Sampling

The Toy Setup

Sebastian Bieringer

Efficient Posterior Sampling

Detector Smearing Distribution DASHH

- pick a jet event
- select the 100 events with $p_T, \eta, \phi, E_{\text{jet}}, n_{\text{jet}}$ closest

Efficient Posterior Sampling

Detector Smearing Distribution DASHH

- pick a jet event
- select the 100 events with $p_T, \eta, \phi, E_{\text{jet}}, n_{\text{jet}}$ closest

Efficient Posterior Sampling

The Generative Model

 $z \propto \mathcal{N}(0,1)$ -

Sebastian Bieringer

Variational Inference Bayesian CFM DASHH.

Continuous Normalizing Flow:

- Flow $\phi : [0,1] \times \mathbb{R}^d \to \mathbb{R}^d$ defined via

$$\frac{\mathrm{d}}{\mathrm{d}t}\phi_t(x) = v_t(\phi_t(x)) = \tilde{v}_t(x,\theta)$$

- solve the ODE to train and sample
- linear trajectory
- transforms probability distributions

$$p_t(x) = p_0\left(\phi_t^{-1}(x)\right) \det \left[\frac{\partial \phi_t^{-1}}{\partial x}(x)\right]$$

Variational Inference Bayesian Conditional Flow Matching:

- Bayesian loss $\mathscr{L}_{\text{BNN}} = \text{KL}\left[q(\theta), p\left(\theta \mid x\right)\right] = -\left[d\theta q(\theta) \log p\left(x \mid \theta\right) + \text{KL}[q(\theta), p(\theta)] + \text{ const.}$
- connect both $\mathscr{L}_{B-CFM} = \langle \mathscr{L}_{CFM} \rangle_{\theta \sim q(\theta)} + c KL[q(\theta), p(\theta)]$, with $q(\theta)$ uncorrelated Gaussian shape

Sebastian Bieringer

Efficient Posterior Sampling

Conditional Flow Matching:

- loss that does not ODE solving

$$\mathscr{L}_{\mathrm{FM}}(\theta) = \mathbb{E}_{t,p_t(x)} \left\| v_t(x) - \tilde{v}_t(x,\theta) \right\|^2$$

- by choice of p_t and v_t

$$\mathscr{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t,p_t(x),\epsilon} \left[\tilde{v}_t \left((1-t)x_0 + t\epsilon, \theta \right) - \left(\epsilon - x_0 \right) \right]$$

- not a log-Likelihood loss

Adam-MCMC Bayesian CFM **DASHH**

Continuous Normalizing Flow:

- Flow $\phi : [0,1] \times \mathbb{R}^d \to \mathbb{R}^d$ defined via

$$\frac{\mathrm{d}}{\mathrm{d}t}\phi_t(x) = v_t(\phi_t(x)) = \tilde{v}_t(x,\theta)$$

- solve the ODE to train and sample
- linear trajectory
- transforms probability distributions

$$p_t(x) = p_0\left(\phi_t^{-1}(x)\right) \det \left[\frac{\partial \phi_t^{-1}}{\partial x}(x)\right]$$

Adam-MCMC Bayesian Conditional Flow Matching:

- train the network with CFM
- start Markov Chain from this point (independent of starting point):
 - 1D problem: Solve ODE to get log-Likelihood of batch for update steps and acceptance rates

Sebastian Bieringer

Efficient Posterior Sampling

Conditional Flow Matching:

- loss that does not ODE solving

$$\mathscr{L}_{\mathrm{FM}}(\theta) = \mathbb{E}_{t,p_t(x)} \left\| v_t(x) - \tilde{v}_t(x,\theta) \right\|^2$$

- by choice of p_t and v_t

$$\mathscr{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t,p_t(x),\epsilon} \left[\tilde{v}_t \left((1-t)x_0 + t\epsilon, \theta \right) - \left(\epsilon - x_0 \right) \right]$$

- not a log-Likelihood loss

Learned Detector Smearing Distribution DASHH

Sebastian Bieringer

Efficient Posterior Sampling

ParT/B-CFM output

Learned Detector Smearing Distribution DASHH.

Sebastian Bieringer

Efficient Posterior Sampling

ParT/B-CFM output

Learned Detector Smearing Distribution DASHH.

Sebastian Bieringer

Efficient Posterior Sampling

ParT/B-CFM output

1.0

Predicted ROC

Sebastian Bieringer

Efficient Posterior Sampling

Unphysical Inputs

Sebastian Bieringer

Efficient Posterior Sampling

ParT/B-CFM output

01.12.2023 28

1.0

Unphysical Inputs

Sebastian Bieringer

Efficient Posterior Sampling

DASHH

Unphysical Inputs

Sebastian Bieringer

Efficient Posterior Sampling

ParT/B-CFM output

01.12.2023 30

1.0

Conclusion

- Adam-MCMC can provide improved error estimates over more common Bayesian architectures
- CFM model can can predict the indistribution behavior of a large classifier well
 - Independent of detector-level data
 - Can be shared with analysis

 $p_T = 1459.2 \text{ GeV}$

Efficient Posterior Sampling

Effects of the Prior Parameter *C* **DASHH**.

Bayesian loss
$$\mathscr{L}_{BNN} = \mathrm{KL}\left[q(\theta), p\left(\theta \mid x\right)\right] = -\int \mathrm{d}\theta \, q(\theta) \log p\left(x \mid \theta\right) + \mathrm{KL}[q(\theta), p(\theta)] + \text{ const.}$$

connect both
$$\mathscr{L}_{B-CFM} = \langle \mathscr{L}_{CFM} \rangle_{\theta \sim q(\theta)} + cKL$$

Sebastian Bieringer

Effects of high inverse temperature λ DASHE

Adam-MCMC Bayesian Conditional Flow Matching:

- λ gives the inverse temperature of a tempered Gibbs-Posterior $p_{\lambda}(\vartheta \mid D_n) \propto \exp(-\lambda L_n(\vartheta)) p(\vartheta)$

$$\lambda = 50$$

Sebastian Bieringer

Metropolis-Hastings correction: Accept new weight values with probability $\alpha = \frac{\exp(-\lambda L_n(\tau_i)) q(\theta_i | \tau_i)}{\exp(-\lambda L_n(\theta_i)) q(\tau_i | \theta_i)}$

Effects of low inverse temperature λ DASHE

Adam-MCMC Bayesian Conditional Flow Matching:

- λ gives the inverse temperature of a tempered Gibbs-Posterior $p_{\lambda}(\vartheta \mid D_n) \propto \exp(-\lambda L_n(\vartheta)) p(\vartheta)$

Sebastian Bieringer

Metropolis-Hastings correction: Accept new weight values with probability $\alpha = \frac{\exp(-\lambda L_n(\tau_i)) q(\theta_i | \tau_i)}{\exp(-\lambda L_n(\theta_i)) q(\tau_i | \theta_i)}$

What if only trained on truth? DASHH.

p_T = -0.852

Sebastian Bieringer

top jets

not top jets

obviously the same for events of the same class -10(surrogate) classifier output

p T = 3.08

Efficient Posterior Sampling

