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Genetics, genomics, transcriptomics, proteomics
DNA: Deoxyribonucleic acid - genetic information 
RNA: Ribonucleic acid - transcribed genetic information 
Protein: Amino acid chains with 3D structure - translated genetic information 
Gene: A sequence of DNA transcribed into a functional RNA - could be protein coding or non-coding 
Genome: Entirety of DNA in an organism - 3 billion base pairs in human genome 
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Flow of genetic information (Central dogma) 

 ATGCAATGC

 TACGTTACG
 AUGCAAUGC MQC

Structure and function 



Population genomics

A  A  T  G  A … 
A  A  T  C  C … 
A  C  T  C  C … 
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Genome1 
Genome2 
Genome3 

Biallelic SNPs: two alleles are 
segregating in the population 

SNP: Single-nucleotide polymorphism, change of a single nucleotide at a specific position in the genome 
Allele: A variant at particular position in the genome  
Biallelic SNP: a SNP with two alternative alleles in the population (most human SNPs) 

0  1  1 … 
0  0  0 … 
1  0  0 … 

Genome1 
Genome2 
Genome3 



Genetic variation

Mutation

Recombination

Selection

Demography
Genetic drift
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What is the source of variation?
A  A  T  G  A … 
A  A  T  C  C … 
A  C  T  C  C … 

Genome1 
Genome2 
Genome3 

0  1  1 … 
0  0  0 … 
1  0  0 … 

Genome1 
Genome2 
Genome3 



Why study genomes?
- Captures all the genetic information of an organism -> protein coding and regulatory regions 
- Captures all genetic variation between individuals -> population structure and phenotypes (disease, height etc.) 

51. Duforet-Frebourg, Nicolas, et al. "Detecting genomic signatures of natural selection with principal component analysis: application to the 1000 genomes data." Molecular biology and evolution 33.4 (2016): 1082-1093.

PCA of 1000 Genomes data1 Type 2 diabetes genome-wide association study 
(GWAS) on Estonian genomes2

2. Kovalev, Gleb "Potential of Artificial Genomes in Genome-wide Association Studies” University of Tartu Press (2021).



Generative models
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Definition 1 (Statistical):  
Generative modelling -> joint probability P(X,Y), Discriminative modelling -> conditional probability P(Y|X) 

Definition 2 (Task-oriented): 
Any model which aims to generate partial or full data points 

Definition 3 (Training-oriented): 
Any model for which the training loss function is based on generation  
of partial or full data 



Generative models in genomics
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Generative modelling with biological sequences has a long history: An example is Hidden Markov models 
(HMMs)

HMM for modelling protein-coding eukaryotic genes1

1. Yoon, Byung-Jun. "Hidden Markov models and their applications in biological sequence analysis." Current genomics 10.6 (2009): 402-415.



Generative models in genomics
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More recently, deep generative models such as generative adversarial networks (GANs), variational 
autoencoders (VAEs) and large language models (LLMs) for

1. Data generation: Generation of realistic genomic data and design of functional sequences 
2. Dimensionality reduction: From high-dimensional genomic space to low-dimensional latent space for 

characterisation of differences and downstream analyses 
3. Prediction: Prediction of function, disease status or evolutionary parameters

Why deep generative models?
1. Unsupervised and semi-supervised training 
2. High-quality data generation 
3. Meaningful non-linear mapping of high-dimensional genomic space to low-dimensional latent space



Generative adversarial network (GAN)1
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1. Goodfellow, Ian, et al. "Generative adversarial networks." Communications of the ACM 63.11 (2020): 139-144.
2. Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein generative adversarial networks." International conference on machine learning. PMLR, 2017

Typical GAN and Wassertein GAN2 models used in genomics3

3. Yelmen, Burak, and Flora Jay. "An Overview of Deep Generative Models in Functional and Evolutionary Genomics." Annual Review of Biomedical Data Science 6 (2023).



Relevant research: 
GANs for designing DNA sequences1

Unsupervised GAN training

Using the trained generator combined 
with a predictor function to adjust the 
latent space for generating sequences 
with desired properties, such as higher 
protein binding

1. Killoran, Nathan, et al. "Generating and designing DNA with deep generative models." arXiv preprint arXiv:1712.06148 (2017).



Relevant research: 
GAN-like model for evolutionary parameter estimation1

(Coalescent simulations)

1. Wang, Zhanpeng, et al. "Automatic inference of demographic parameters using generative adversarial networks." Molecular ecology resources 21.8 (2021): 2689-2705.



Variational Autoencoder (VAE)1

121. Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013).
2. Yelmen, Burak, and Flora Jay. "An Overview of Deep Generative Models in Functional and Evolutionary Genomics." Annual Review of Biomedical Data Science 6 (2023).

Typical VAE model used in genomics2



Relevant research: 
VAE for dimensionality reduction1

(Binary cross-entropy between 
input and decoded sequence)

Between latent and standard 
normal distribution N(0,1)

1. Battey, C. J., Gabrielle C. Coffing, and Andrew D. Kern. "Visualizing population structure with variational autoencoders." G3 11.1 (2021): jkaa036.



Relevant research: 
VAE for dimensionality reduction1

1. Battey, C. J., Gabrielle C. Coffing, and Andrew D. Kern. "Visualizing population structure with variational autoencoders." G3 11.1 (2021): jkaa036.



DNA Language Models
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DNABERT model1

Contextual difference in using different architectures:  
Global (Attention) vs Local (Convolution)1

Cross-entropy loss for pre-training:

1. Ji, Yanrong, et al. "DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome." Bioinformatics 37.15 (2021): 2112-2120.



Relevant research: 
DNA language models for functional sequence prediction1

Genomic Pre-trained Network (GPN)

1. Benegas, Gonzalo, Sanjit Singh Batra, and Yun S. Song. "DNA language models are powerful predictors of genome-wide variant effects." Proceedings of the National Academy of Sciences 120.44 (2023): e2311219120.

UMAP clustering of GPN 
embeddings

Prediction with logistic regression 
on embeddings



Yelmen, B., Decelle, A., Ongaro, L., Marnetto, D., Tallec, C., Montinaro, F., ... & Jay, F. (2021). Creating artificial human genomes using generative neural networks. PLoS genetics 17

Generation of artificial human genomes



Why generate genomic data?
- Data accessibility: Substantial amount of genomic data held by companies and institutions are not easily 

accessible due to privacy issues 

- Underrepresented populations in research 

Overarching research goals
- Creating artificial genomes (AGs) which cannot be traced back to the 

original genomes yet bear all important characteristics of them 

- Making high quality AG datasets as surrogates of private genome banks 
which can be accesses publicly  

Methods
- Generative neural networks 

From the GWAS catalogue through Jan 2019  
Sirugo et al. 2019
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Generative adversarial network (GAN) Restricted Boltzmann machine (RBM)
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Restricted Boltzmann machine (RBM)*

*Smolensky 1986; Teh and Hinton 2001

Optimize weights and biases to maximise likelihood

Joint probability distribution of visible and hidden units

Aurélien Decelle



Model assessment 
PCA        
1000G dataset

Asians

Europeans Africans
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Model assessment 
Allele frequencies        
Estonian dataset

Zoom on low frequency features

New RBM

New RBM

0  1  1 … 
0  0  0 … 
1  0  0 … 

Genome1 
Genome2 
Genome3 



Model assessment 
Linkage Disequilibrium (non-random association of alleles at different positions) 
Estonian dataset



Model assessment 
Overfitting/underfitting1 
Estonian dataset 𝐴𝐴𝑡𝑟𝑢𝑡h =

1
𝑛

𝑛

∑
𝑖=1

𝟏(𝑑𝑇𝑆(𝑖) > 𝑑𝑇𝑇(𝑖))𝐴𝐴𝑠𝑦𝑛 =
1
𝑛

𝑛

∑
𝑖=1

𝟏(𝑑𝑆𝑇(𝑖) > 𝑑𝑆𝑆(𝑖))

𝐴𝐴𝑇𝑆 =
1
2

(𝐴𝐴
𝑡𝑟𝑢𝑡h

+ 𝐴𝐴𝑠𝑦𝑛)

1. Yale, Andrew, et al. "Privacy preserving synthetic health data." ESANN 2019-European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. 2019.

Nearest Neighbour Adversarial Accuracy (AATS) below 0.5 -> overfitting; above 0.5 -> underfitting



Model assessment 
Privacy Scores1 
Estonian dataset 𝑃𝑟𝑖𝑣𝑎𝑐𝑦𝐿𝑜𝑠𝑠 = 𝑇𝑒𝑠𝑡𝐴𝐴𝑇𝑆 − 𝑇𝑟𝑎𝑖𝑛𝐴𝐴𝑇𝑆

Privacy loss -> higher values more information leakage

RBM_alt
New RBM

1. Yale, Andrew, et al. "Privacy preserving synthetic health data." ESANN 2019-European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. 2019.



Applications 
Imputation (statistical inference of missing genotypes) 

26Li, Yun, et al. "Genotype imputation." Annual review of genomics and human genetics 10 (2009): 387-406.



Applications 
Imputation (statistical inference of missing genotypes) 
Estonian dataset

Imputation scores can be improved using 
additional population specific reference 
panels*

*Gurdasani et al. 2015; Mitt et al. 2017 27



XP-EHH

PBS 

Applications 
Selection scans 
Estonian dataset 

Artificial genomes preserve selection signals in real genomes detected by allele 
frequency-based (PBS) and haplotype-based (XP-EHH) methods.

28



Major obstacles for large sequence generation

- Computational complexity 
- Number of parameters in fully connected GAN model for 10K SNP dataset: 

238 million 

- Training instability 
- GAN training heavily depends on data, architecture, hyperparameters and even chance on rare occasions 

due to stochastic nature of the models 

Fully connected neural network

29



Possible solutions

- Computational complexity 
- Convolutional architecture for GAN 

- Around 7M parameters for 65K SNP data 
- Can learn local structures 

- Conditional RBM 
- Train the RBM for multiple chunks with shared regions 

- Training instability 
- Wasserstein GAN (WGAN) 

- Instead of “discriminator” (real or fake prediction) -> “critic” (realness score) 
- Critic tries to estimate Wasserstein distance (Earth-Mover distance) between real and generated 

distributions 

Filter

Input Output

1D Convolution operation
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Yelmen, B., Decelle, A., Boulos, L. L., Szatkownik, A., Furtlehner, C., Charpiat, G., & Jay, F. (2023). Deep convolutional and conditional neural networks for large-scale genomic data generation. PLoS Comp. Bio 
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WGAN Model

WGAN-GP with multiple noise inputs 
at different resolutions for the 
generator, trainable location-specific 
vectors for preserving the positional 
information, residual blocks to prevent 
vanishing gradients and packing for the 
critic to eliminate mode collapse  

Objective function to be minimised by 
the generator and maximised by the 
critic: 



CRBM Model
Conditional training multiple RBMs (CRBM) based on shared 
genomic regions with out-of-equilibrium training scheme 

Aurélien Decelle



Principal component (a), allele frequency (b) and linkage 
disequilibrium (LD) decay (c) analyses of artificial genomes with 
65,535-SNP size. 

Model assessment 
1000G dataset 
65,535 SNPs
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Membership inference attacks: 
An adversary holds a collection of 
samples some of which are thought 
to be from the training data. The 
adversary tries to detect these 
sequences.

Privacy checks 
1000G dataset 
10,000 SNPs

White-box attack: Adversary has full 
access to the model 

Black-box attack: Adversary has 
access to the model architecture and 
generated samples but not the 
weights

Hayes, J., Melis, L., Danezis, G., & De Cristofaro, E. (2017). Logan: Membership inference attacks against generative models. 35



Privacy checks 
1000G dataset 
10,000 SNPs

White-box attack: Adversary has full 
access to the model 

Black-box attack: Adversary has 
access to the model architecture and 
generated samples but not the 
weights
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Why measure uncertainties?
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1. Genome-wide uncertainty for model improvement and selection of generated genomes 
2. Position-specific uncertainty for model improvement and potential discovery 
3. Further evidence for ethical and regulatory compliance in real life applications

Unique challenges in uncertainty quantification  
for artificial genomics
1. Highly correlated features 
2. Very high-dimensional data 
3. Potential trade-off between privacy preservation and data uncertainty 
4. Potential trade-off between novel haplotypes and data uncertainty

Uncertainty quantification



Indirect assessment of genome-wide data uncertainty by model evaluation:  
Models capture the inherent genomic variability well

38

Uncertainty quantification 
1000G dataset



A preliminary assessment of position-specific data uncertainty for the GAN model: 
Distribution of output probabilities over epochs
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Uncertainty quantification 
1000G dataset

Unlike prediction tasks, we cannot assess out-of-distribution examples for the generator 
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Uncertainty quantification 
Potential trade-off between novel haplotypes and uncertainty Potentially plausible admixed 

artificial genomes?



Closing remarks 
- Artificial Genomics: Newborn field with many promising applications in 

the future? (from functional sequence design to whole-genome 
generation) 

- Artificial genome banks can soon become a reality with improved 
haplotype quality and privacy guarantees, increasing data accessibility 

- For uncertainty quantification, possible future routes are Bayesian 
methods (might not be feasible), ensembles/bagging, MC dropout or 
variational inference (checking variability in VAE latent space?)  

- Many computational and algorithmic challenges remain for modelling 
high-dimensional space with complex interactions -> generative 
modelling in reduced space?*

41
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Supplementary slides
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Uncertainty quantification 
Potential trade-off between privacy preservation and data uncertainty: A superficial connection with differential privacy

A randomised algorithm G is ϵ-differentially private if for all datasets T1 
and T2 differing on at most one element and for all sets S of possible 
outputs, the following holds:  

Since differentially privacy is typically achieved by adding noise and added noise 
increases data uncertainty, we can write uncertainty as a function of epsilon:



Distribution of haplotypic pairwise difference within (left) and between (right) 
65,535-SNP datasets. 

Nearest neighbour adversarial accuracy (AATS)

Privacy checks 
1000 Genomes 
65,535 SNPs



Our WGAN concept

Conv ConvDeConv Conv ConvConv

Residual connectionResidual connection

Latent space Location-specific variable

GENERATOR CRITIC

“Realness” score

Generated data
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Ausmees, K., & Nettelblad, C. (2022). A deep learning framework for characterization of genotype data. G3



Our conditional RBM (CRBM) concept

Input data

fixed weights

visible layer

hidden layer

Training 1 Training 2
Aurélien Decelle

Conditional training multiple RBMs (CRBM) 
based on shared genomic regions with 
out-of-equilibrium training scheme 
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Fixed to real input sequence 
during training 



Our VAE concept
Latent space Location-specific variable

Conv ConvConv

Residual connection

Conv ConvDeConv

Residual connection

Related research:  
Battey et al. 2021 - Visualizing population structure with variational autoencoders  Ausmees et al. 2021 - A deep learning framework for characterization of genotype data

ENCODER DECODER



Restricted Boltzmann machine (RBM)*

*Smolensky 1986; Teh and Hinton 2001

Gradient
Monte Carlo to estimate

PCD-k Rdm-k (New RBM)
MC chains start from previous state MC chains start from random initial conditions 

(some fixed distribution)


