Generative modelling in genomics and a perspective on uncertainty quantification

Burak Yelmen

University of Tartu, Institute of Genomics, Tartu, Estonia burak.yelmen@ut.ee

LÍSN UNIVERSITE PARIS-SACLAY

Genetics, genomics, transcriptomics, proteomics

DNA: Deoxyribonucleic acid - **genetic information RNA:** Ribonucleic acid - **transcribed** genetic information **Protein:** Amino acid chains with 3D structure - **translated** genetic information Gene: A sequence of DNA transcribed into a functional RNA - could be protein coding or non-coding Genome: Entirety of DNA in an organism - 3 billion base pairs in human genome

RNA — Protein — Structure and function

Population genomics

SNP: Single-nucleotide polymorphism, change of a single nucleotide at a specific position in the genome Allele: A variant at particular position in the genome **Biallelic SNP:** a SNP with two alternative alleles in the population (most human SNPs)

segregating in the population

What is the source of variation?

Why study genomes?

- Captures all the genetic information of an organism -> protein coding and regulatory regions
- Captures all genetic variation between individuals -> population structure and phenotypes (disease, height etc.)

1. Duforet-Frebourg, Nicolas, et al. "Detecting genomic signatures of natural selection with principal component analysis: application to the 1000 genomes data." Molecular biology and evolution 33.4 (2016): 1082-1093. 2. Kovalev, Gleb "Potential of Artificial Genomes in Genome-wide Association Studies" University of Tartu Press (2021).

Generative models

Definition 1 (Statistical):

Definition 2 (Task-oriented):

Any model which aims to generate partial or full data points

Definition 3 (Training-oriented):

Any model for which the training loss function is based on generation of partial or full data

Generative modelling -> joint probability P(X,Y), Discriminative modelling -> conditional probability P(Y|X)

Generative models in genomics

Generative modelling with biological sequences has a long history: An example is **Hidden Markov models** (HMMs)

HMM for modelling protein-coding eukaryotic genes¹

Generative models in genomics

More recently, deep generative models such as generative adversarial networks (GANs), variational autoencoders (VAEs) and large language models (LLMs) for

- **Data generation:** Generation of realistic genomic data and design of functional sequences characterisation of differences and downstream analyses
- 2. Dimensionality reduction: From high-dimensional genomic space to low-dimensional latent space for
- 3. **Prediction:** Prediction of function, disease status or evolutionary parameters

Why deep generative models?

- Unsupervised and semi-supervised training
- 2. High-quality data generation
- 3.

Meaningful non-linear mapping of high-dimensional genomic space to low-dimensional latent space

Generative adversarial network (GAN)¹

Typical GAN and Wassertein GAN² models used in genomics³

1. Goodfellow, Ian, et al. "Generative adversarial networks." Communications of the ACM 63.11 (2020): 139-144. 2. Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein generative adversarial networks." International conference on machine learning. PMLR, 2017 3. Yelmen, Burak, and Flora Jay. "An Overview of Deep Generative Models in Functional and Evolutionary Genomics." Annual Review of Biomedical Data Science 6 (2023).

Relevant research: GANs for designing DNA sequences¹

Unsupervised GAN training

Using the trained generator combined with a predictor function to adjust the latent space for generating sequences with desired properties, such as higher protein binding

1. Killoran, Nathan, et al. "Generating and designing DNA with deep generative models." arXiv preprint arXiv:1712.06148 (2017).

Relevant research:

GAN-like model for evolutionary parameter estimation¹

Variational Autoencoder (VAE)¹

Typical VAE model used in genomics²

1. Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." *arXiv preprint arXiv:1312.6114* (2013). 2. Yelmen, Burak, and Flora Jay. "An Overview of Deep Generative Models in Functional and Evolutionary Genomics." Annual Review of Biomedical Data Science 6 (2023).

Relevant research:

VAE for dimensionality reduction¹

KL-divergence(μ , σ) + *reconstruction* loss = *VAE* loss

Between latent and standard normal distribution N(0,1)

1. Battey, C. J., Gabrielle C. Coffing, and Andrew D. Kern. "Visualizing population structure with variational autoencoders." G3 11.1 (2021): jkaa036.

(Binary cross-entropy between input and decoded sequence)

Relevant research:

VAE for dimensionality reduction¹

DNA Language Models

Contextual difference in using different architectures: Global (Attention) vs Local (Convolution)¹

Cross-entropy loss for pre-training:

$$L = \sum_{i=0}^N -y'_i \, \log(y_i)$$

1. Ji, Yanrong, et al. "DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome." Bioinformatics 37.15 (2021): 2112-2120.

DNABERT model¹

Relevant research:

DNA language models for functional sequence prediction¹

Genomic Pre-trained Network (GPN)

1. Benegas, Gonzalo, Sanjit Singh Batra, and Yun S. Song. "DNA language models are powerful predictors of genome-wide variant effects." Proceedings of the National Academy of Sciences 120.44 (2023): e2311219120.

а

Generation of artificial human genomes

RESEARCH ARTICLE

Creating artificial human genomes using generative neural networks

Burak Yelmen^{1,2,3*}, Aurélien Decelle^{3,4}, Linda Ongaro^{1,2}, Davide Marnetto¹, Corentin Tallec³, Francesco Montinaro^{1,5}, Cyril Furtlehner³, Luca Pagani^{1,6}, Flora Jay^{3*}

 Institute of Genomics, University of Tartu, Tartu, Estonia, 2 Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia, 3 Laboratoire de Recherche en Informatique, CNRS UMR 8623, Université Paris-Sud, Université Paris-Saclay, Paris, France, 4 Departamento de Física Téorica I, Universidad Complutense, Madrid, Spain, 5 Department of Biology-Genetics, University of Bari, Bari, Italy, 6 APE Lab, Department of Biology, University of Padova, Padova, Italy

* burakyelmen@gmail.com (BY); flora.jay@lri.fr (FJ)

Why generate genomic data?

- accessible due to privacy issues
- Underrepresented populations in research

Overarching research goals

- Creating artificial genomes (AGs) which cannot be traced back to the original genomes yet bear all important characteristics of them
- Making high quality AG datasets as surrogates of private genome banks which can be accesses publicly

Methods

Generative neural networks -

Data accessibility: Substantial amount of genomic data held by companies and institutions are not easily

From the GWAS catalogue through Jan 2019 Sirugo et al. 2019

Generative adversarial network (GAN)

Restricted Boltzmann machine (RBM)

19

Restricted Boltzmann machine (RBM)*

Joint probability distribution of visible and hidden units $p(\underline{s},\underline{\tau}) = \frac{1}{Z} \exp(\sum_{ia} w_{ia} s_i \tau_a + \sum_i \theta_i s_i + \sum_a \eta_a \tau_a)$

Optimize weights and biases to maximise likelihood $L = \sum_{m=1}^{M} \left[\sum_{i} \theta_{i} s_{i}^{(m)} + \sum_{a} \log(1 + \exp(\sum_{i} w_{ia} s_{i}^{(m)} + \eta_{a})) \right] - M \log(Z)$

*Smolensky 1986; Teh and Hinton 2001

sampling visible layer

Aurélien Decelle

Allele frequencies Estonian dataset

Genome1 0 1 1 ... Genome2 0 0 0 ... Genome3 1 0 0 ...

Zoom on low frequency features

Linkage Disequilibrium (non-random association of alleles at different positions) Estonian dataset

Overfitting/underfitting¹ Estonian dataset

$$AA_{syn} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(d_{ST}(i) > d_{SS}(i))$$

$$AA_{TS} = \frac{1}{2}(AA_{truth} + AA_{syn})$$

Nearest Neighbour Adversarial Accuracy (AA_{TS}) below 0.5 -> overfitting; above 0.5 -> underfitting

$$AA_{truth} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(d_{TS}(i) > d_{TT}(i))$$

Privacy Scores¹ Estonian dataset Privacy loss -> higher values more information leakage

 $PrivacyLoss = TestAA_{TS} - TrainAA_{TS}$

Applications

Imputation (statistical inference of missing genotypes)

C Study sample

cgagAtctcccgAcctcAtgg cgaaGctcttttCtttcAtgg

Reference haplotypes

CGGCCCCGGCAATTTTTTT CGAGATCTCCCGACCTCATGG CCAAGCTCTTTTCTTCTGTGC CGAAGCTCTTTTCTTCTGTGC CGAGACTCTCCGACCTTATGC TGGGATCTCCCGACCTCATGG CGAGATCTCCCGACCTTGTGC CGAGACTCTTTTCTTTTGTAC CGAGACTCTCCGACCTCGTGC CGAAGCTCTTTTCTTCTGTGC

b Study sample

....G.....C...A...

Reference haplotypes

CGAGATCTCCTTCTTCTGTGC CGAGATCTCCCGACCTCATGG CCAAGCTCTTTTCTTCTGTGC CGAAGCTCTTTTCTTCTGTGC CGAGACTCTCCGACCTTATGC TGGGATCTCCCGACC<mark>TCATGG</mark> CGAGATCTCCCGACCTTGTGC CGAGACTCTTTTCTTTTGTAC CGAGACTCTCCGACCTCGTGC CGAAGCTCTTTTCTTCTGTGC

*Gurdasani et al. 2015; Mitt et al. 2017

Minor Allele Frequency in Estonian Dataset

Applications

Selection scans Estonian dataset

XP-EHH

PBS

Artificial genomes preserve selection signals in real genomes detected by allele frequency-based (PBS) and haplotype-based (XP-EHH) methods.

Major obstacles for large sequence generation

Computational complexity -

Number of parameters in fully connected GAN model for 10K SNP dataset: 238 million

[>>> 600*(10e3//1.2) + (10e3//1.2)*(10e3//1.1) + (10e3//1.1)*10e3 + 10e3*(10e3//2) + (10e3//2)*] (10e3//3) + (10e3//3)*1 + (10e3//1.2) + (10e3//1.1) + (10e3//2) + (10e3//3)238340859.0

Training instability -

due to stochastic nature of the models

Fully connected neural network

GAN training heavily depends on data, architecture, hyperparameters and even chance on rare occasions

Possible solutions

- **Computational complexity**
- Convolutional architecture for GAN
 - Around 7M parameters for 65K SNP data
 - Can learn local structures -
- Conditional RBM

- Train the RBM for multiple chunks with shared regions

Training instability -

Wasserstein GAN (WGAN)

- Instead of "discriminator" (real or fake prediction) -> "critic" (realness score) -
- distributions

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} \left[\|x - y\| \right]$$

Critic tries to estimate Wasserstein distance (Earth-Mover distance) between real and generated

RESEARCH ARTICLE

Deep convolutional and conditional neural networks for large-scale genomic data generation

Cyril Furtlehner¹, Guillaume Charpiat¹, Flora Jay¹

1 Université Paris-Saclay, CNRS, INRIA, LISN, Paris, France, 2 University of Tartu, Institute of Genomics, Tartu, Estonia, 3 Universidad Complutense de Madrid, Departamento de Física Teórica, Madrid, Spain, 4 Université d'Évry Val-d'Essonne, Évry-Courcouronnes, France

* burakyelmen@gmail.com

Yelmen, B., Decelle, A., Boulos, L. L., Szatkownik, A., Furtlehner, C., Charpiat, G., & Jay, F. (2023). Deep convolutional and conditional neural networks for large-scale genomic data generation. PLoS Comp. Bio

Burak Yelmen^{1,2}*, Aurélien Decelle^{1,3}, Leila Lea Boulos^{1,4}, Antoine Szatkownik¹,

WGAN Model

WGAN-GP with multiple noise inputs at different resolutions for the generator, trainable location-specific vectors for preserving the positional information, **residual blocks** to prevent vanishing gradients and **packing** for the critic to eliminate mode collapse

Objective function to be minimised by the generator and maximised by the critic:

 $E_x[C(x)] - E_z[C(G(z))]$

b)

CRBM Model

Conditional training multiple RBMs (CRBM) based on shared genomic regions with out-of-equilibrium training scheme

Sequence data

Aurélien Decelle

1000G dataset 65,535 SNPs

> Principal component (a), allele frequency (b) and linkage disequilibrium (LD) decay (c) analyses of artificial genomes with 65,535-SNP size.

- 0.002271
- 0.001743
- 0.001542
- 0.001366
- 0.001181
- 0.000971
- 0.000747
- 0.000521
- 0.000295
- ⊥ 0.000098
- - 0.01281
- 0.01040
- 0.00883
- 0.00724
- 0.00549
- 0.00364
- 0.00259
- 0.00166
- 0.00078
- 0.00027

Privacy checks

1000G dataset 10,000 SNPs

Membership inference attacks:

An adversary holds a collection of samples some of which are thought to be from the training data. The adversary tries to detect these sequences.

White-box attack: Adversary has full access to the model

Black-box attack: Adversary has access to the model architecture and generated samples but not the weights

Original trained model

Privacy checks

1000G dataset 10,000 SNPs

White-box attack: Adversary has full access to the model

Black-box attack: Adversary has access to the model architecture and generated samples but not the weights

Why measure uncertainties?

- Genome-wide uncertainty for model improvement and selection of generated genomes **Position-specific uncertainty** for model improvement and potential discovery
- 2. 3.
- Further evidence for ethical and regulatory compliance in real life applications

Unique challenges in uncertainty quantification for artificial genomics

- Highly correlated features
- 2. Very high-dimensional data
- 3. Potential trade-off between privacy preservation and data uncertainty
- 4. Potential trade-off between **novel haplotypes** and **data uncertainty**

1000G dataset

Indirect assessment of **genome-wide** data uncertainty by model evaluation: Models capture the inherent genomic variability well

1000G dataset

Unlike prediction tasks, we cannot assess out-of-distribution examples for the generator

A preliminary assessment of **position-specific** data uncertainty for the GAN model: Distribution of output probabilities over epochs

Potential trade-off between novel haplotypes and uncertainty

Closing remarks

- Artificial Genomics: Newborn field with many promising applications in the future? (from functional sequence design to whole-genome generation)
- Artificial genome banks can soon become a reality with improved haplotype quality and privacy guarantees, increasing data accessibility
- For uncertainty quantification, possible future routes are **Bayesian** methods (might not be feasible), ensembles/bagging, MC dropout or variational inference (checking variability in VAE latent space?)
- Many computational and algorithmic challenges remain for modelling **high-dimensional space** with **complex interactions** -> generative modelling in reduced space?*

Towards creating longer genetic sequences with GANs: Generation in principal component space

> Antoine Szatkownik¹, Cyril Furtlehner¹, Guillaume Charpiat¹, **Burak Yelmen**^{1,2,*}, **Flora Jay**^{1,*} ¹ Université Paris-Saclay, CNRS, INRIA, LISN, Paris, France ² University of Tartu, Institute of Genomics, Tartu, Estonia * These authors contributed equally. Corresponding author: Antoine Szatkownik <szatkownik@lisn.fr>

Acknowledgements

- Flora Jay —
- Aurélien Decelle
- Guillaume Charpiat -
- Cyril Furtlehner
- Antoine Szatkownik -
- Leila Léa Boulos -----
- Linda Ongaro _
- Davide Marnetto

- Luca Pagani -
- Francesco Montinaro
- Corentin Tallec
- Inria TAU team —
- University of Tartu -HPC Center

anr agence nationale de la recherche

LÍSN UNIVERSITY OF TARTU Institute of Molecular and Cell Biology

The CoMorMent project has received funding from the European Union's Horizon 2020 Research and nnovation Programme unde Grant agreement 847776

Supplementary slides

Potential trade-off between privacy preservation and data uncertainty: A superficial connection with differential privacy

A randomised algorithm G is ϵ -differentially private if for all datasets T_1 and T_2 differing on at most one element and for all sets S of possible outputs, the following holds:

$$P(G(T_1) \in S) \leq e^{\varepsilon} \times P(G(T_2) \in S)$$

Since differentially privacy is typically achieved by adding noise and added noise increases data uncertainty, we can write uncertainty as a function of epsilon:

$$U(\widehat{Y}|Y,\varepsilon) = f(\varepsilon)$$

Privacy checks 1000 Genomes 65,535 SNPs

Distribution of haplotypic pairwise difference within (left) and between (right) 65,535-SNP datasets.

Nearest neighbour adversarial accuracy (AATS)

Our WGAN concept

Ausmees, K., & Nettelblad, C. (2022). A deep learning framework for characterization of genotype data. G3

Training 1

Aurélien Decelle

Training 2

Our VAE concept

Related research:

Battey et al. 2021 - Visualizing population structure with variational autoencoders Ausmees et al. 2021 - A deep learning framework for characterization of genotype data

Restricted Boltzmann machine (RBM)*

Gradient

*Smolensky 1986; Teh and Hinton 2001

