Uncertainty Metrics

Sascha Diefenbacher

Al and the Uncertainty Challenge in Fundamental Physics 2023

UQ Metrics

Uncertainty Quantification

- ML methods lead to great improvements in in High Energy Physics
 - Tagging, fast simulation, analyses, ...
 - Uncertainty quantification only sometimes take into consideration
- In line with other ML fields
 - Many industry applications do not require UQ to perform well
- Problem in HEP
 - Physics needs error bars
- Need to find and benchmark UQ methods
- Need comparison metric

ML Performance Metrics

- Standard Classification:

 - Simple goal: Maximize correct prediction • Simple metrics: Accuracy, ROC curves, AUC scores
- Classification with Uncertainty
 - Complex goals: maximize correct predictions, give accurate confidence interval, minimize confidence interval
 - Complex interactions: accurate confidence interval vs. minimal confidence interval

- Quantities we care about:
 - Simple example

- Quantities we care about:
 - Simple example
 - Sample containing
 - S signal events
 - B background events

- Quantities we care about:
 - Simple example
 - Sample containing
 - S signal events
 - B background events
 - Determine signal rate μ

- Quantities we care about:
 - Simple example
 - Sample containing
 - S signal events
 - B background events
 - Determine signal rate μ
 - Determine signal rate μ relative to reference sample

11.27.2023

- Determine signal rate μ relative to reference sample
 - UQ method returns likelihood $p(\mu)$

S. Diefenbacher

- Quantities we care about:
- 1. Prediction accuracy
 - How close is the predicted μ to μ_{true}

11.27.2023

- Quantities we care about:
- 1. Prediction accuracy
- 2. Prediction uncertainty
 - How large is the uncertainty on the predicted μ ?

UQ Metrics

11.27.2023

0.9

8.0

0.7

0.6

(n) 0.5 n) d 0.4

0.3

0.2

0.1

0.0

- Quantities we care about:
- 1. Prediction accuracy
- 2. Prediction uncertainty
- 3. Uncertainty coverage
 - Does the predicted uncertainty match the observed uncertainty?

- Quantities we care about:
- 1. Prediction accuracy
- 2. Prediction uncertainty
- 3. Uncertainty coverage
- 4. Uncertainty Quantification
 - Our metric should only work on methods that do quantify an uncertainty

- First Idea: MSE/MAE of relevant quantities
- For N test sets and predicted μ

$$\begin{split} \mathsf{MAE}_{\mu} &= \frac{1}{N} \sum_{i=0}^{N} |\mu_i - \mu_{\mathsf{true},i}| \\ \mathsf{MSE}_{\mu} &= \frac{1}{N} \sum_{i=0}^{N} (\mu_i - \mu_{\mathsf{true},i})^2 \\ \mathsf{MAE}_{\Delta\mu} &= \frac{1}{N} \sum_{i=0}^{N} |(\mu_i - \mu_{\mathsf{true},i}) - \Delta\mu_i| \\ \mathsf{MSE}_{\Delta\mu} &= \frac{1}{N} \sum_{i=0}^{N} ((\mu_i - \mu_{\mathsf{true},i}) - \Delta\mu_i)^2 \\ \mathsf{Score}_{\mu} &= \mathsf{MAE}_{\mu} + \mathsf{MAE}_{\Delta\mu} \\ \end{split}$$

$$u_i, \Delta \mu_i, i \in [0,N]$$
, calculate:

13

- Alternative Idea: Quantile score:
 - Method should return interval $[\mu_{16}, \mu_{84}]$
 - Corresponds to central 68% quantile of likelihood function
 - Also corresponds to interval defined by 1 standard deviation (under Gaussian uncertainty assumption)
 - Interval can also be defined with Bayesian methods that output a posterior

11.27.2023

Uncertainty Quantification Metrics • For N test sets and predicted $[\mu_{16}, \mu_{84}]_i, i \in [0,N]$ • Calculate fraction of times interval contains μ_{true} to get coverage c:

- - $c = \frac{1}{N} \sum_{i=1}^{N} 1 \text{ if}(\mu_{\text{true},i} \in [\mu_{84} \mu_{16}]_i)$
 - Calculate average interval width w: $w = \frac{1}{N} \sum_{i=0}^{N} \mu_{84,i} - \mu_{16,i}$
 - Combine both values for score s: s = w f(c)

- Combine both values for score s = w f(c)
- Scaling function *f*:
 - Ideal coverage: 0.68 (68% interval)
 - f = 1 around c = 0.68
 - Power scaling outside of c = 0.68
 - Stricter penalty for undershooting

UQ Metrics

- 3 remaining problems with s = w f(c):
 - 1. Scores can become very large 2. Lower scores winning is unintuitive
 - - $\blacksquare s = -\ln[w f(c)]$

Ō	lhsan Ullah	2	2023-11-02	
2	ragansu	5	2023-11-03	515061194.28
3	ragansu	5	2023-11-03	

- 3 remaining problems with s = w f(c):
 - 1. Scores can become very large
 - 2. Lower scores winning is unintuitive
 - $\blacksquare s = -\ln[w f(c)]$
 - 3. Methods that return $\mu_{16} = \mu_{84}$ always win, since $w = 0 \rightarrow s = \inf$
 - $s = -\ln[(w + \epsilon) f(c)]$

choose ϵ significantly smaller than minimal width

1	lhsan Ullah	2	2023-11-02	
2	ragansu	5	2023-11-03	515061194.28
3	ragansu	5	2023-11-03	

- Quantities we care about:
- 1. Prediction accuracy
- 2. Prediction uncertainty
- 3. Uncertainty coverage
- 4. Uncertainty Quantification

$s = -\ln[(w + \epsilon) f(c)]$

✓ covered by *c*

UQ Metrics

19

- Quantities we care about:
- 1. Prediction accuracy
- 2. Prediction uncertainty
- 3. Uncertainty coverage
- 4. Uncertainty Quantification

 $s = -\ln[(w + \epsilon) f(c)]$

✓ covered by *c*

covered by w

- Quantities we care about:
- 1. Prediction accuracy
- 2. Prediction uncertainty
- 3. Uncertainty coverage
- 4. Uncertainty Quantification

 $s = -\ln[(w + \epsilon) f(c)]$

✓ covered by *c*

covered by w

 \checkmark covered by c

11.27.2023

- Quantities we care about:
- 1. Prediction accuracy
- 2. Prediction uncertainty
- 3. Uncertainty coverage
- 4. Uncertainty Quantification

- $s = -\ln[(w + \epsilon) f(c)]$
- ✓ covered by *c*
- covered by w
- \checkmark covered by c
- v per interval definition

Meters Metrics "Who Watches The Watchers"

A SALENS

- Define simple Poisson UQ task
 - Model 1 nominal solution
 - Model 2 disturbed nominal solution
- Model 1 objectively better than Model 2
- How well can metrics differentiate the two

Model 1 Winning Fraction vs. Number of Task Trials

UQ Metrics

- Example 2:
 - Gaussian signal, gaussian background
 - Task: determine signal rate
 - Method: Gaussian Fit+Likelihood evaluation

UQ Metrics

- Model 1: near perfect fit, Model 2: disturbed by factor
- Heatmap: rate of quantile metric correctly identifying model 1 as better
- Check stability of metric under hyper-parameter changes

Test set size 100 1 - 0.8 Number of test sets <u>ں</u> - 0.7 - 0.6 10-- 0.5 - 20 - 0.4 100 0.3 500 0.2 5e-05 1e-05 0001 0.1 000 8 8 0 0.0 **Disturbance factor**

UQ Metrics

Conclusion

- Proposed quantile metric appears stable
 - Differentiate models of different qualities
 - Current go-to approach for Fair Universe HEP challenge (hackathon, more details on challenge and score Wednesday)
- Topic open for discussion, interested about everyone's input

